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Nous avons ainsi

Yot flo—iap

<lb—2l+ [ |#]dP—n-mes(8—8,);
S 8

_Sn

et en conségquence?)

Pt [lo—2lldP <|b—2l+2 [ l@ldP.
8

8-8,
Comme Bz < +oco pour » assez grand, nous obtenons
Blw—i) < [b—2al,

ce qui-montre que b n’est pas une moyenne au sens de Doss.
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) nemes (8 —8y) = [|A]] - Pr(§—8p).

REMARKS ON THE DOSS INTEGRAL
BY

K. URBANIXK (WROCLAW)

I. In this note XX will denote a metric space, I — theinterval 0 <<t <1
and X¥ — the set of all X-valued funetions defined on I.

A function f (fe(7) is called measurable if for every open subset U
(U CX) +(U) is a Lebesgue measurable subset of I.

A meagurable function f (feS) is called Doss integrable (see [17)
if there exists a unigue element a;e X such that for every zeX the inequa-
lity L

e(a,2) < [ o(f(t), 2)at
o
holds (¢ denotes the distance in 9¢). The element a; is called the Doss
tntegral of the function f. We use the notation

oy = [f@ar.

Suppose the following intepretation: t is a random parameter, and
consequently a measurable function f is a random variable. The Doss
integral a; is the expectation of a random variable f. The purpose of this
note is to prove that, with some natural agsumptions concerning a space
X, if for every finitely-valued random variable there exists an expecta-
tion, then < is a normed linear space.

Finally we remark that the result of the present note is also true
it the interval I with the Lebesgue measure is replaced by an arbitrary
meagure gpace with a non-atomic probability measure.

II. Suppose that 9 is an abelian metric group. Let 4 denote the
group-addition and @ the zero element. It is well known that for every
metric group there exists an invariant distance, 4. e., a distance satisfying
for all @, y,2¢% the condition o(w-2,y+2) = o(x, y) (see [2]).

9 will denote the set of all measurable functions belonging to o’
‘which only take a finite number of values.
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TarorREM. If & is an abelian metric group with an invariant distance
and if every function belonging to U is Doss integrable, then X is o normed
linear space and the Doss integral over 2 is equal to the usual integral, 1. e.,

1 n
(1) [twat = > m(La,
0 j=1
k2
where f(t) = weX for tel; j=1,2,...,m), I =HI, and I\, =0

for § %=k (m(A) denotes the Lebesgue measure of the sel A).

Remarks. (a) The assumption of the invariance of distance g is
essential.

Indeed, 16t & be the multiplicative group of all positive real numbers
with the distance g(z, ¥) = |#—vy|. Assumex, > 0,4, = 0(f = 1,2,...,n)
and 4, 42Az-F...+4, = 1. It is eagy to prove that & = A+ Aot ..+ Auty
is the unique positive real number satistying for all z > 0 the inequality

n
la—e| < D Alwy—2l.
j=l

Thus all functions belonging to 2 are Doss integrable. It is eagy to
see that in this example the Doss integral is non-additive (in the sense
of group multiplication). Since from (1) it follows that the Doss integral
is additive, then for this example the assertion of the theorem is false,

(b) The following example shows that a space X satisfying the assump-
tiony of the theorem can be non-complete, 4. ¢., can be not a Banach space.

Let &X' be the space of all sequences of real numbers @ == (%, #;, ...)
vanishing for sufficiently large indices. The addition and the scalar-multi-
plication are defined in the following way:

B4Y = (B1FY1s Bat-Yay -o0)y A8 = (Ay, Ay, ..0).

The distance i3 defined by the formula

R
_ @ =V 3@ —ur.

gl

Consequently, the vector space 9 is non-complete. It is also easy
to prove that every funection belonging to 2 is Doss integrable.

HI. In this part suppose the assumptions of the theorem to be satis-
fied.

Let
(2) | = o(x, )

for wxell,
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Then, obviously
(¥)  An element a; (a;¢X) is the Doss integral of a fumction f (fe2L) if
and only if for each zeS( the inequality
1

oy —ell < [ 1F(t)—2]dt
0

holds.
To prove the theorem it is sufficient

(a) to define for every zeX and for every real mumber 2 the product
Az satisfying the following conditions:

(i) (A+A)m = X+ Ay,
(i) My +mp) = A+ Ay,
(i) A (Aa2) = (Ads) m,
(iv) 12 =,

(v) Az = [2] - @]

The second part of theorem is the immediate consequence of
(x) and the definition of the Doss integral. Indeed, from («) it follows
that for each zeX the following inequality holds:

Hi’m(lj)mj—z” < i‘m(l,-)“w,-—z” = fl“f(t)—zjj dat.

Hence, according to (x), we obtain equality (1).

Before the proof of condition («) we shall prove some elementary
lemmas. The definition of the product ix is contained in formulae (3),
(4) and (11).

Let xeX and 0 << » << 1. Let

z  for
& for

It is eagy to see that, for fixed = and », f (v, 2, t) e 2. By D(», «) we shall
denote by D(v,x) the Doss integral of the funection f(»,z, £):

1

0Lty
(3) f("’aw)t):{ <1

¥ < &

(4) D(v,a) = [f(v, =, 1)ds.

Limvma 1. Leét xeX. Then the equality 2z = O implies the equality © = @.

Proodf. In view of (3) and (4) the inequality (¥) will take for » = }
the form

(8 1D(4,0)—=|| < [ 13 @ —sldt < Ho—al+ 1Rl (2eX).
0

~1
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This implies

ID(%, o) +o—e < §l2e—d|+Hle—2  (zeX).
Since 2w = @, the last inequality implies
ID (%, 2)+a—2ll < Ho—d+ilel  (eeX).
Consequently, in view of (5), we have D(}, #)+» = D(}, ®). Then

we find that o = 6.

LEMMA 2. For each veXX and 0 <
+D(1—v,2) = is true.

Proof. From (), (3) and (4) it follows that the following inequality
holds:

v << 1 the equality D{v, )+

D, @) —z| < sle—al -+l (zeX).
Then, by replacing # by s—=z, we get
le—D >, 0) =2l < (1—)o—s|+oll  (2e).
Consequently,
z—D(», z) =f7‘(1——v,m,t)dt= D —v, ).
b

The lemma is thus proved.

Leva 3. For each weX the equality D(%, 22) = @ is frue.

Proof. According to lemma 2 we obtain 2D(¥, 20) = 22. Conse-
quently, 2{D(}, 22)—a} = @. Then, in view of lemma 1, D(},2z) = =.

Lemma 4. For each xeX the equality

(6) . |22 = 2|2
8 true.

Proof. From (3), (4) and (*) (for z = 0) it follows that the follo-
wing inequality holds:

1D (%, 22)| < $l2a).

Then, in view of lemma 3, 22| < ||24]. Hence, taking into account
the triangle inequality |22 < 2/%|l, we obtain equality (6).

LemmA 5. If 0 <wyym <1 and »,-+9, < 1, then for each wedX the
equality

Dy, &) +D(vy, 0) = Dy vy, )

5 true.

Proof. From (*), (3) and (4) it follows that for each 2z the following
inequalities hold:

icm
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(7) D (w1 ) —2l] < wllw—2]| 4 (L —w)lfe]],
(8) 1D (va, @) —ell < wllw—2l+ (1 —w,)|f2],
9) 1D (91 +-v,, ) ) —2ll << (1 o)l —2]) -+ ( (L—»y—w,)]lel].

Ineclluahty (7), in which 2 is replaced by 2—D(v,, @), and inequality (8)
imply

(10) 1D, ) +D (), @) —e| < »y0yl|20—2]|
F (v, —2vp)lle—2l| (L 4wy —r — )l -

From the inequality [2(x—e)|| <

; 22—zl and from Lemma 4
we obtain -

< |20 —2| +lol| — 24w —e| -
Thus in view of (9) the following inequality is satisfied:
1D (3149, @) |
< (etnlie—2ll (L —v, —w)lie] +ryvy(([20—2l| +| el — 2w —2))
= vl|20—2| + (o1 +v,—2vim) | —2] (L v, — v, —m) ]
Hence, according to (10),

ID (3142, @)—2ll < [ lfalt)—2lldt,

ID (51, @)D (v, w)—2)l < [ [Ifo(t) —2lldt,

where the function f, (f,¢) is defined by the formula

2z for Ot vy,
h(t) =12 for vy <t <K otrp—wn,
@  for wtw,—ry, <t<1.

From the last inequalities and from (%) we see that the equality
D(vy, ®)+D(v,, 1) = D(v;+v,, &) is true. The lemma is thus proved.
Lovya 8. If 0 <vyv, <1 and »-Fu, > 1, then for each X the
equality

D (v, @)+D (v, @) = D(n+v,—1,0)+w

is true.
Proof. According to lemma 5

D(vy, @) = D(1~—w, 2)+-D(m+3—1, @).
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This implies
Do, @) +D (v, 2) = D3

Hence, in view of lemma 2, the assertion of the lemma is obtained.
LeMyA 7. For each 2eX and 0 < v, v, < 1 the Pq’ualm;

s @) +D (v, v 2)+D(1—w, »).

Doy, Do, 2)) = Do, )

8 true.
Proof. From (7) by replacing « by (s, @) we get the mequal-
ity
1D (v, D(vgy @ )—z‘|<v11|1)(vn, )=+ 1 —n)lel  (z€5X),
Hence, according to (8),
1D vy, D (2, )] =2 < vy [paliie =2 (1 —=ve)ell) 4 (L =) el

= upylle—2||+(1 (2eX).

Then, in view of (x) and (3), D(v;, D(»;, #)) is the Doss integral of
the function f(wv,,x,1). Hence, according to (4), the assertion of the
lemma is obtained. '

* Proof of theorem. The product Az, Where me‘\ and 2 is a real
numher, is defined hy the formula

(11) Jx = [Ale+D(A—[4], 2)

—vy)|[2l

([4] denotes the greatest integer <C 1).
From lemmas 5 and 6 it follows that tor each 1), 4, and a6 the
followmg equality holds:

D4~ 4], #)+D(X—[4], )
= DA +A4—[4+2], =)+
Hence, according to (11),
(h+-ha)e = [yt Aalo+ DUyt Ay — [y 4741, 2)
= [(4Jo+D (4 —[4], #)+[A]z+D(A
. The relation (i) is thus proved.
For each ;. _/e9C in view of relation (i), we have

m
o { (w+u)}

Henee

(A +4]—[h]—[4])

—[AWJ, ) = A®-Ax.

m@+y). (n=0,1,...5m =0, £1, )

m(z+y) = mz-my =2"{—27w+§y} {n=0,1,..;m=0, +1,...).
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This implies

Fi13 ‘e

2 {2" (e+y)— (2,,, r17+“§.3;?/)} =6 (m=0,1,..;m=0,+1,...).

Consequently, in view of lemma 1, we have for each x,ye<X

m ’
(12) o (r%"/)";;,‘J—F (=0,1,..5m =0, 41, ...).

ml

From (*) (for z = @), (3) and (4) it follows that for each z&% the
following inequality holds: ‘

(13) [[D(A
Definition (11) implies
Azl| < (AT (D (A~[A], @)

0, then the lagt inequality and (1.
Azl <

—[A1s el < (A—[AD) kel

iz 3) imply

(ANl +(A—[AD) el] = Alja].
If A < 0, then, according to (i), (—A)x = — Az, and: consequently
Azl = { —A)all < (—A)lf.

We see that for each zeX and for each real number A the inequality
(14) (lA2ell < [A] - fjed
ig true. If 2, — 0, then the last inequality implies A4,z — @. Hence, in
view of (i), we obtain the following implication: if 4, — 4, then for e <X,
Az — Az. Hence, according to (12), it follows that the relation (ii) holds
for each real number 1 and for each x, yeX.

The relation (i) and (i) imply immediately the following equalities:

(18)  Ax(h) = M([A]2)+ T4 —[A])a] +(4—[4]) (A~ (4] 2},
(16) 71 ([el2) = (WA=,
am D= ]2} = {[h} (A ~[4])]®

From definition (11) and from lemma 7 we obtain

(18) (h—[h]) {(e =A@} = {([A—[4]) (A —[AD}a.

The equalities (i), (15), (16), (17) and (18) imply the following equa-~
lity : .
W(d) = (W [B)z+{[4] (e~ (AD}e+{(4

Relation (iii) is thus proved.

—[h]) (Aa—[hD}e = (hh)e
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Tnequality (13) implies D (0, #) = 6. Then, in view of (11), relation

(iv) holds. .
From inequality (14) and from relation (iil) we obtain for 4 # 0 and

zeX:

o] = “ (1) uzwn

Hence
|Afllel] << A«

Then, according to (14), relation (v) holds: The theorem ig thus pro-
ved.
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ON THE COMPARISON OF TWO PRODUCTION PROCESSES AND
THE RULE OF DUALISM™
BY

H.STEINHAUS AND 8. ZUBRZYCKI (WROCEAW)

INTRODUCTION

A silk ribbon produced by an automaton is an example of a conti-
nuous production process. An observer estimates the quality of the pro-
duct by counting the defects, say, in a given segment of the product. In
this example the role of defects may be played by stains or holes. From
the number of defects observed the inspector estimates the defectiveness
of the product and expreqses it by the number of defects per meter of xib-
bon.

It may happen that not the estimation of defectiveness but the compa
rison of two production processes is the purpose of examination. In such
a case the above example should be replaced by another, namely by two
ribbons running parallel with the same gpeed. The comparison is a sta-
tement that the defectiveness of the second ribbon is at least o times
greater than the defectiveness of the first ribbon; it is known that such
statements can be deduced from observations with a certain “probability”.
The observation proceeds according to a certain plan. We shall be concer-
ned with two such plans. The first of them, called classical, consists in
observing the ribbons until the total of defects in both ribbons reaches
a prescribed number N. If n and m are the numbers of defects on the
first and second ribbon respectively, we have m--n — N. The iecond
plan, called sequential, consists in observing the ribbons until on the first
ribbon the n-th defect appears, where n is prescribed. Once the plan is
chosen and the observation taken we compute by a suitable formula the
‘“probability” P of the statement formulated above. This probability de-
pends on three numbers, a, m and #. Our aim is to discuss the methods
of defining the “probability” P.

It is worth while to answer the question why we do not estimate
the defectiveness of each process separately. We have here an analogy

* Another version of this paper appeared in Polish, see [8].
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