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On computable sequences
by

A. Mostowski (Warszawa)

A real number a (0 <a <1) is said to be computable (cf. Robinson [9],
Rice [8]) if there is a general recursive function ¢ such that

(1) la—gm)n]<1jn for n=1,2,..
This definition is equivalent to each of the following ones?):

(ii) There is a general recursive funetion p such that

o
a=21p('n)/10" and p)<l0 for =w=1,2,..

n=1

(ili) The relation B which p bears to ¢ if and only if p/g<a is ge-
neral recursive. (Tn other words the function ¢ such that #(p,q) <1 and
B (p,q)=1}={pjg <d} is general recursive ?).)

Several other equivalent formulations of (i) are known.

Let us now pass from numbers to sequences. If we replace in the
definitions given above a by o and ¢,p,9 bY @x,Px,9% where the index k
runs over integers and if we further require that these functions be ge-
neral recursive in all variables (including “k”), then we obtain three
definitions of what may be called computable sequences. Xt will be proved
below that no two of these definitions and of a couple of others, which
we shall formulate later, are equivalent.

There is no doubt that of these various definitions the one which
best expresses the existence of an algorithm permitting one to caleulate
uniformly the terms of a sequence with any desired degree of accuracy
is that which corresponds to (i). The other definitions represent merely
a mathematical curiosity. It seems to us, however, that the following
cireumstance deserves emphasis: if we replace in the definitions (i)-(iii)

1) The equivalence of these definitions has been first observed by Robinson [9].
Cf. further Rice [8] and Myhill [6].

%) These definitions have heen formulated by Mazur [3]. The definition given
by Rice [8] is equivalent to the first of these definitions.
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of computable numbers the general recursive functions ¢,y,% by the
primitive recursive ones, we obtain definitions which are not equivalent
to each other and the logical relations which hold between those defi-
nitions are exactly the same as the logical relations which hold between
the definitions of computable sequences in which general recursive fune-
tions are used (ef. Specker [10] and Péter [7], p. 185 seq.).

It remains an open problem whether this is a coinecidence or a spe-
cial case of a general phenomenon whose causes ought to be discovered.

1. In what follows we shall use lower case Roman type to denote
integers >0 and lower case Greek type to denote general recursive fune-
tions. Sequences of real numbers are denoted by symbols {ax} where
. is the kth term of the sequence. We assume once for all that 0 < q; <1.

We introduce several classes of sequences %):

tde O= 3 TT ] flax—gp(n,k)yml <13,
. ¢ K

n=1

eu=3{]] [ae= Y win, ] [Ttpt, 19 <1},

n=1 nk

& >l k

0 <= Y TT{ [ o= Yetn,,000] [ tétn,0, 01 <03,
n=1 mk

{ai}e 0452 H({[ﬁ(%q,k)=1] =[prg<alld(p,q,k) <1},

% Pk

{axd e C'sEZ” ({[C(P,q,k):1]§[p/!1>ak]}[§'(p,qyk) <1]).

8 pak

Lemya 14). If lak—ll(n,k)/lz(n,k)} <m(m)/ps(n) for m,k=1,2,...

. and._
Bm g (n)/psn) = 0, then {ar}eC,.
00

Proof. For an arbitrary » there is a ¢ such that (B pa(t) < 1/20.
The funetion »(n)=min {1 ()] ua(t) <1/2n3 is thus general recursive. Putting
- T

oi(n, k)=12v(n),k) for i=i,2 we obviously have [a; —o,(n, k)loy(n, k)| <1/2n.
If ¢(n,k) is the integer nearest to noy(n,k)/oy(n, k), then ¢ is a general
recursive funection and ['nal(n,k)/o'z(n,k)—gv(n,k)] <1/2. Combining the
inequalities thus obtained we have [ax—g( #yk)/n| <1/n and hence {q} «

%) We use symbols 3, [, V/, -, 5 and = ag synonymous with the words *the
is”, “for every”, “or”, “and”, “implies” and *ig equivalent to”. The dot denoting
conjunction is ofen omitted, )

4) This lemma iz due to Mazur [3].
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THEOREM 1. (3CC,,CC;y for each p>1.
Proof. The formula C;C(C%, is evident. If {a;}e Csp, then

aa=p=x Ny, R)apr+a 3 pin,k)pr.

n==1 n=x+1
The function a(x,k)=[p—* Ew(n,k)l‘p"'"] is obviously general re-
n=l
cursive and satisties the inequalities
o0
lza; —a(z,k)| <1+ Z wn,k)pr<l4a/px..
n=x+1
On account of lemma 1 this proves that {az}e ;.
THEOREM 2. (,C(; and C;CC,.
Proof. If {a;}eC;s, then
fr=[ga:]} = {z <qu <w+1}5{~v=m<i;1 (=¥ q,k)=1)-1}.
Y=

These equivalences prove that the function a(g,k)=[ga:] is general re-

cursive. Now we put
E1,p,k)y=a(p,k),
En+1,p,k)=a(p"*,k)—pa(p"k),

oo
and easily obtain =2, &(n,p,k)/p” and &(n,p,k)<p.
n=1 A .
If {a} €, then we denote by (a) the least integer x for which
£+ 1>a and obtain :

{=(gau)} = {p=min(y+1>g0,)} E{w=rygi31 (#y+1,9,k)=0}}.

Thus the function a(g,k)=(gaz) i3 general recur:‘sive. Defining £ in the
same way as above we obtain the desired function. ‘

THEOREM 3. If p,q>1 and a power of q is divisible by p, then
C3qC 0y ‘

Proof. Assume that sp=gm and {a;}e Cz, and let

< : =1,2,...
=Y pln,k)g  where y(nk)<q for mk=1,2,

n=1

We put
no i .
Wi,k = e Ree,  j=0,1,25,

=1
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and define by induction the functions g, and o ag follows:

(0, 8)/sT=v4(1,E), P'(0, %) —spo(1,k)=p(1,k) s
[(#G %)+ goo i, B) s+ = ol + 1, k)
YU k) +goe(, B) = yo(f+ 1, k)= o(j +1,k).
It follows from these definitions that e(j, %) is the rest of a division
of an integer by &/ and hence o(i, k) <si.

We shall show that w,(j k) <p.
Indeed, for j=1 we have the inequality

¥(0,k) >syy(1, k),

which on account of the formula

go—I={(g=1){g™"+ g2+ ..+ 1) >¢'(j, k)

proves that gro=sp > spy(1,k).
For j=>1 the required inequality results from the identity

VB +goe (i k)= sy + 1,k) + o(j +1, k)

by means of the following ealculations:

S+ 1,5) <y, )+ g0 (i, 5) <o — 1+ gro(s/— 1)
= qm)si_lz Sjﬂp -1 <Sj+1p .

It remains to prove that

=D viln,p)/p".

n=1

In order to obtain this formula we shall first prove that

J o0
== Zl' Yol 25 k)i 4 0(7, k) /gim +Zw’('n,k)/'q("+1)"0.
n= n=j

The verification of thig fbrmlﬂa. for j=

: 1 is immediate. Assuming that
it holds for an integer j we obtain ¢
J 00
B = X ol )"+ 0 gm0y (7, R g+ 2 (k) fgoeeom
n=1
n=j+1
7

j ¥ ! L . » had
—’% vo(n, k) jp +("P {73 %)+ gmg (?,k))/g0+1)11n+ Z »'(n,k)/glr+ D

R=j+1
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J
D ol R8T i 4 1,K)/g0 40+ g 1, R g+

-4
n=1
+ O vl kg
o1 « n=j+1
= D Wl )t e +1, kg0 Y (T fgles i
n=1 n=j+1

The formula is thus proved for an arbitrary j. It follows from this
formula that

J o
e D pln e | <srjgrot (o —1) ) v per 4 g,

n=1 n=j
which proves that {ac}e Cs,.

2. We shall now show that inclusions in theorems 1-3 cannot he
replaced by equations.

THEOREM 4. C,5£C,, for each p>1.

Proof®). In order to facilitate the reading of the subsequent for-
mulas we first give an outline of the proof.

Let X,,X, be two disjoint recursively enumerable sets which cannot
be separated by means of recursive sets (¢f. Kleene [1]). The problem
whether ke X; is equivalent to the problem whether there exists an
integer y such that a{k,y)=0 (¢=1,2). We now define a rational number
az=1lm q;, in the following manner:

For a given n we test the integers y <» and try to find among them
the smallest integer for which o(k,y)=0 or ayk,y)=0. If there is no
such y, then we put ap,=1/p—1/p". If & is the least y <n such that
of(k,y)=0 then we put az,—=1/p+1/p*? where we take the -+ sign
if ke X, and the — sign if % ¢ X,. It is evident that ay<1/p or ay>1/p
according as ke X, or ke X;. Hence the first digit in the development
of a; on the scale p is 0 for ke X; and 1 for ke X,. The development
of ar on the scale p caunot, therefore, be recursive.

We now give an exact proof. Let «;,a, be general recursive functions
such that ke X;=2 [afk,y)=0] and let

v

Bi(k,n)=min (1, min e;(k,2)), i=1,2,
z=<n
yilk,n)=min (B(k,2)=0), i=1,2,

z<n

%) The proof was already sketched in Mostowski [4]. We give here a detailed
proof.
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8(k 1) = (p"—1) +[1~Ay(l, )] [1 + pr=1=n%a] 4 [1— (k6 m)][1— pr-imtin]
ax=lm {6 (&, n)/p™}.

If ke X,, then there is a Jeast sy, such that ay(%,s:1.)=0 and there
is 0o s such that ayk,s)=0. Hence 4(k,y)=1 and y(k,y)=0 for Y <81z
and fy(k,y)=0 and y(k,y)=s for y>>sy,; finally Ba(k,¥)=1 and
yao(k,y)=0 for all y. It follows that if n>sy, then km)=pr—1+4
+14pri-sie=pr4-pr-i-s: and hence = 1/p+1/purte,

If ke X,, we similarly find g,=1/p —1/p=++2 where g, is the least s
such that G.Z(k,vggk): 0.

It ke X,0X,, then By(k,y)=Ppuk,y)=1 for all y and hence Qp=p~2L

Thus ax=p~?4ep~22 where e=1,0,—1 according as ke X,
ke XyuX,, ke X, and where ¢, is an integer 0.

We shall now show that {a.}e(,.

From the definitions it follows that

e— O (R, n)[pr = o=t — p=n-i—[1— B(k, n)][p=r-1 4 p2-nlen] —
—[1—fall,m)][p=n=1 — p2-nten]
If &=0, then gy(k,n)=pB,(k,n)=1 and hence
ax— 8k n)pri = — pn-t,
If 5=1 and »n <8y, then f,= $1 and
g — 8 (kyn)[prtt=p—s1x-2 | pn-1 < op-r-1,
If g=1 and n>>s,, then
ak—6(k,91)/p"+1=p—f1k—2_p—n—l_p—n—l_p-sm—zz —2p—n-1,
If &g=—1 and »n <82%, then t=s,;, and

G = 8(kyn)[prHl=— p=sn=?  p-n-1,
whence

0 <ar—6(k,n)/pr+t < p-n—t,
If &=-—1 and n>sy, then
=0k, n)/pr+i= —pme—t —port_ponei L pes29pnoa,
Thus for all % and »
lax—8(k, n)/p+1] < 2p-n-1,
which proves that {a,}e (.
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The assumption that {a;} e Cs, leads to a contradiction. Indeed, if
a":';gw(k’n)/p”’ then (k,1)=0 for ke X, and p(k,1)=1 for ke X,. '
The sets X,, X, are thus separated by the set [, [p(k,1)==0] and hence y
cannot be a recursive funetion. *

THEOREM 5. If no power of q is divisible by p, then C3,GCop.

The idea of this proof is as follows. We develop 1 /p on the scale ¢

Up =Y u(n)g"
n=1
and show first that 0 < x(n)<q for infinitely many n. Let n,,n,,... be
a sequence of (not necessarily all) values of » which satisfy this inequality.
We now consider the same sets X,,X, and functions o,,a, as in the pre-

vious proof and put a = Ew(k,n)/qn where y(k,n)=x(n) except when
n=1

# i the first term #, of the sequence #y,mny,... such that o (k,h)=0 or

ag(k,h)=0. In this exceptional case we put p(k,n)==x(n)F1 according

as a(k,1)=0 or ay(k,h)=0. It follows that a,<1/p for k ¢ X, and o, >1/p

for k e XX,, and hence the development of g, on the seale p is not recursive.

The exact proof runs as follows. We may assume that for infinitely

many » #(n)>0. Since the development of 1/p is periodical, we can re-
present 1/p in the form

Up=2(L)jg+ e re(uollgret 3 gy 1g + o+ 20+ 8)gro*]
J=1

where »#(ng+1),...,%(n,-+8) form the period of the development. In view
of the assumption made above not all integers s(mg—+1),...,%(Ry-}+$)
vanish. If all of them were =¢—1 we should have

1p=2(1)/q+ ... 4% {ng)/g" +1jgm

where x%(n,)<<q—1 (since the period begins after the n th term). Thus
we should obtain

1p= {e(1) g0t ot ng— 1) g+ [e{0) + 11370

.and gm would he divisible by p.

It follows that there is an integer r, 1<r<s, such that

0<xlng+jry<g for j=1,2,..
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) Now let «;,f;,9: (i=1,2) be the same functions that we considered
in the proof of theorem 4 and let
w()+(=1)" i rln—ng, Bilk,(n—ne)r)=0
and (n—mng)/s=yi(k,(n—mn,)/r),
#(r) in all remaining cases,

= D'p(k,n)/q"-

n=1

It is obvious that {o;}e Csp. We shall show that {n,}¢ C, p-
If FeX, and slkznyxin[al(k,g/)=0], then gy(k,n)=1 for all » and

p(k,m) =

yi(k,n)=0 or 1 according as n <<s;; Or n>>s From th initi ¥
¢ - . 28k he def
the function y it follows that H mition of

»(n) for  nFEng+s-syy,
w(m)~1 for a=mn,-s-84,

w(k,u)={

and hence ar=1/p—1jg9e. If ke X, and s, —min [ay(k,y)=10], then
a s 3 >
we find similarly that =1/p-1/¢r, It k¢ X;uX,, then q,=1/p.
o
Suppose now that a,= Z; Ak,n)/p~ where A(k,n)<p. Hence

pa=2(k, 1)+ Y Ak,n+1)/pr
n=1
and we obtain A(k,1)=1 for keX,, A(k
1)=0 for k¢ X,. s
that the function 1 cannot be recur;;ve.( a or e 1t follows
| dIn order to express conveniently the content of theorems 3 and 5
We'h ellllote by p1,0:,... the sequence of primes and by Z, the set of j’s
;}1(i.t t‘ a,t‘ pjlp.. The class of all sets Z, is identical with the class of all
inite sets of integers. From theorems 3 and 5 we obtain the following
indﬂ(j;)ROIjLAl?Y-I. The family of classes Cs, ordered by the relation of
usion is similar to the class of all sets Z, ordered by the same relation.
Another corollary from theorems 1 and- 5 is
CoROLLARY II. Cb,C, for each p>1.
Indeed, €,CCy, for each
v 2>1 and no class (,, i i i
the common part of classes Copy p=2,3,... o 1 contaned
THEOREM 6. 7 C,5(;.
Proof. Let o be a recursive function such that the set

Z=F X'To(k,m)=0)
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is non-recursive ¢) and, for i=1,2, let

o=

{1/2 for keZ,
124 (12" for keZ, s=min[o(k,n)=0].

The assumption that {af’} « (5 leads to a contradiction since
FeZ={aP <1j2}={(1,2,k)=1}.

Similarly {a®} e ¢, is impossible since we should then have
LeZ=1{a@>1/2y={»(1,2,k)=1}.

It remains to prove that {aP1 e @, for i=1,2. We put
wl,2m)y=m—1, p(n,2m)=2m—1 for n>1,
vo(l,2m)=m, py(n,2m)=0 for n>1,

yiin,2m+1)=m for a=1,2,.. and i=1,2.

It is obvious that
1/2:2;;,»(11 ,py/pr. for i=1,2.
n=1

We shall show that there exist primitive recursive functions A, p,8)
such that for i=1,2

ks

) 12+ (—1)2°= 3 M, p,s)ipn,  O<h(n,0,8) <P,
=1
(2) it n<(s—1)/lg,p, then L(nyp,8)=vi{n,p) .

In order to prove this we distinguish two cases:
Case I. p=2m. We put 1/2° =, f(n,p,s)/p" where 3 is primitive
n=1
recursive and B(n,p,s)70 for infinitely many . If n, is the least n for
which B(n,p,s)70, then 1ny>s/lg.p- On putting
M, ,8)=pin,p) + (1Y B(1:2,9)
. The verification is imme-

1,p,s)<p follows from
have

we obtain functions satisfying (1) and (2)
diate; we remark only that the inequality 0<A{
the fact that A(1,2m,s)<in—1, since otherwise we should

1/2° > B(1,2m,8),2m >m2m=1/2.

) The existence of such a function has been established by Specker [10].
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' Case II. p==2m+1. Evidently there are primitive recursive fune-
tions 7, satisfying (1). We show that (2) is automatically satisfied. In-
deed, if n, is the least integer for which the conclusion of (2) fails, then

2= | 30, p,5) (0, )|

n=1

)
> [m—2{ng,p,8)]/pro— 2 lm—Ai(n,p,s)|/pr
n=np4-1
> 1pm0— (7n/pno+1) 2 1/23": ljﬁp"o

n=0
whenee n,>(s—1)/Ig,p.
Now we put

(vlnap) it [T [a(k,u)s0],

(3)  &(n,p,k)= . urlgyp+1
_ Wnyp,8) i D' [o(k,u)=0] and s=min [o(k,u)=0].
unlgop+1
If k¢ Z, then &iln,pik)=yin,p) for all » and hence
) D &ln,p Bp"=off.
n=1

If keZ and sk=1:3i11[a(k,14)=0], then according to (3) &n,p, k)

=yin,p) for s.>n lg, p+1. Formula {2) proves that for these values
of # we have also 7i{myp)=Ai(n,p,s). Hence

) Ei(”‘y?rk);}'i(n7pask)'
The same equation holds for the remainin, i
; g values of % as we im-
in;ecllﬁf,tely see t;’:Lvom (3). Formula (1) proves therefore that (4) holds also
€ present case. From (4) we immediately obtain fo@
theorem 6 is thus proved. Y (0} Gy ana
THEOREM 7. 04—6'5#0#05—04.
Proof. Let o be a primitive recursive funetion such that the get

Z=@2H[e(k,w)=0]
Xg xXZ>xg
belongs to the class P® but not to the @®
class

for all k and 7). Put ass @y and that o(k,2) <1
(Ik:Z elk,n)/n!.

n=1

") The existence of a functio ith t
Markwald (2] and Mostowski [5], "o i these

properties has been established by

icm
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We shaﬂi show that {a;} e C;. Indeed,

wla<ad={plg< ) o(k,m)nt}

=p(g—!1< Y (gl/ah)elkym)+ D (g/nh)e(k,n) -

n=1 n=g+1

Since

D) (@nhelk,n) <glL/(g+1) +1/(g +2)!+...]
n=g+1

=Yg+ D)L+ 1(g+2) +.. 1< (1fig+1) Y 1Ug+1r=1/g<1,

we obtain \ ”
plg<adplg-1n<{ Y (@/nhe(k,m)] .

The converse implication being obvious, we obtain the eguivalence

plg<ad={p@—1!= ) (a/n)o(k,n) =0}

n=1

and hence {p/¢>a}={(p,q,k)=1} where

C gk =sm [plg— D= D(@/nhe(k,m)].

n=1

‘Tf {az} were in C,, we should have the equivalence

{a; is rational} = ' [(pjg<ad)(plg>an)]= D [L(p,¢,k)="D(p,g,k)=0].
. g pa
Since % e Z if and only if a, is rational, the above equivalence would
prove that Z is a recursively enumerable set. Hence {ar} € C5—Cy.

Now we put ai=1—ax. Since
{plg<ai}={g—p)g>at={{(g—p,0,k)=1},
we obtain {a}} e 04. On the other hand {ai}¢ Cs since keZt={ar I8
rational}.
Theorem 7 is thus proved.

&< .
3. Let ax= ) f{k,n)/p" and let g and h be functions such that
n=1

{plg<a}={g(p,q,k)=1} and {p/g>a}={(p,q,k)=1}. We know from
theorems proved in sections 1 and 2 that if {a;}e C,, then the functions
- f,4,% do not need to be general recursive. ‘We shall prove here two t.heo-
rems which characterize to a certain extent the nature of these functions.
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THEOREM 8%). {ai} e () if and only if the ternary relations R, and B_
defined by medans of the equivalences

Ra(psq: k) =p/gZ
are recursively enumerable.
Proof. If jay—e(n,k)/n|<1/n, then

Be(pa,k)= D) [plgZ e (n, k)inx1/n],

and hence relations R, are recursively enumerable.
Assume now that

Ra(p,0,8)=) A4(p,q, k)

where 4. are recursive relations.

We shall construet a general recursive sequence of intervals I,,
= {@r(n)8", wu(n)/3"> whose lengths tend recursively to 0 and such that
are I, for each » and % °

The plan of this construction is as follows: We start with the interval
I1=+10,1> Let us now assume that L. is defined for a value of #.
We subdivide it into three equal parts I = <pofas, pofgsd, 18— {Pa/ s,
Ps/4>; Iik=<Pafts, Pujgs> Where D1/t <Dof¢s <Ps/¢s <p,/q, 2nd determine
the least integer 2=, (n+1) for which

A—-(Pz;{lzyk;m)VA-k(Pa:Qs:k;l') .

Such an integer x exists since if QG <Ps/Qs, then R.(ps,gs,k) is true
and if o >py/g;, then E_(peygs,k) is true. Hence Di(n+1) can be de-
fined by means of an effective min-operation and @ (n+1) is a (general)
recursive function of k and n. Tt is now sufficient to take I trri= I I® or
__Tk,:,:l:lﬁ).ulff’,), according as A, (ps,gs, &, Bu(n + 1)) or A_(pay oy, Bi(n+1))
18 true.

‘ We give now an exact proof. We define by induetion three fune-
tions ¢,y,® as follows:
70)=0, i (0)=1, B0)=0,
(8)  Pyn+1)
= i) [ (2u0)+ i), 3% ) v A i) + 2an), 3143, )

5
?

2p(n)+ye(n) 3y(n),
Pl +1)=1 3gp(n}, P+ 1)= 1 g(n) + 2yn(n)
2o(n) +-pe(n) , () 4 2y(n)

%) This theorem is related to but not identical with a theorem of Myhill [6].
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aecording as

(6)  A_(2¢u(n) +yi(n,3"+, b, By(n 4 1))
and non-A. (gx(i1) + 2u(n), 3"k, B(n + 1))

(7) 110n-A_(2zpk( ) +ye(n), 3, kL, Dr{n + 1))
and A, (gx(n) + 2p(n), 3Lk, Be(n + 1)},

(8)  A_{2¢u(n) +yu(), 3, Br(n+ 1))
and A, (ga(n)+ 2pi(n), 3742, %, Be(n + 1)).

This kind of definitions does not lead outside the class of general
recursive functions if the min-operation in (5) is effective, i. e., if for
each » there is an z satisfying the condition given in (3). In order to
show this we first prove that

(9) Pr(n) 8" < ap <yr(n) /37,

For n=0 these inequalities are evident. Let us assume their va-
lidity for an » and consider the intervals

a5 =E{3¢k(n)[3n+1 <1< [2gun) Fp(n)]j3"Y
La=FE2odn) +ua(m))/3™ <u < [pa(n) + 2p(n))/3"}
1,‘,",2:@ Le(m) + 2(n)}/8" T <u <3y (n)/3"} .

a is in one of these intervals. If it is in I8}, then we have case (7)
and hence gi(in+1)=3pu(n), ye(n+1)=gx(n) + 2y(n), which proves that
(9) is true for the number n+1. If g is in IZ, then we have case (8)
and we prove similarly that (9) is true for the number #-4-1. Finally
it ax is in I$}, then (6) is satisfied and we again obtain (9) for the num-
ber w4 1.

Since

Fln+1)=2@(n) +ype(n) o pun+1)=qu{n) + 2p(n),
the formula gg(n - 1)/3%+1 < ax <yy(n+1)/3%+1 proves that
R_(2p(n) +yu(n) 307, k) or  Blpdn)+2p(n),3 &) .

Hence the min-operation in (5) is effective and ®@,p,p are general re-
cursive. -
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From the inductive definitions of these functions we obtain
0 <p(n+1)—guln-+1) <2[pe{n) —gu(n)],
whence 0 <yx(n)—gi(n) <2 and finally
[ —r(n)[37] < (2/3)".

According to lemma 1 this formula proves that {o;} ¢ ¢,. Theorem 8§
is thus proved.

THEOREM 9. If {ai}eCy, then the relation R defined by means of
the equivalence

R{m,n,p,k)={m=[p"al}

belongs to the smallest field of sets generated by P{”.k

Proof. It [ax—g(n,k)/n| <1/n, then

R(myn,p,k)={m<pra<m+1}= {Z [P"(e(y, k) +1) <y (m +1)]} .
>

[ ety 0+ 1)>ym]} .

From theorem 9 it follows that if {o;}e 0y, then ap= ) flk,n)/pn
n==1

where f is a function obtainable by multiplications and subtractions
from funetions whose graphs belong to the smallest field of sets gene-
rated by recursively enumerable gets.

4. Let ( be the class of primitive recursive real numbers a (0 < g <1)
(ef. Specker [10] and Péter [7], p. 185 seq.), Oy the class of real num-

o
bers which possess a primitive recursive development a= )Y y(n)/p
n=1

(0<w(n)<p), C3 the class of real numbers a such that q— 2 E(n,p)fp"
n=1

(0<&(n,p) <p) for each p>1. Finally let € and CF be classes of real
numbers a (0 <a<1) such that relations 2/q = a are primitive recursive.

THEOREM 10. (3 05,2 (3=00=(2.

The first two inclusions were proved by Specker for p=10. Chan-
ging slightly his construction we obtain a proof valid for an arbitrary
p>1. Since the next equation is evident, it remains only to prove that
O3=Cs. If a=p/g, then qe () and a e C2 , we can therefore assume that
a is irrational. The development of q on the scale P is given by the for-

mula a= 3 £(n,p)/p" where #(1,p)~[pa] and £(n,p) = [p"a]— p[pr-ta]

icm
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for n>1. If'a e G5, then [pna] is a primitive recursive function of p and »n
and hence ae Cy. If a e Cy, then £(1,p) is a primitive recursive funetion
and hence p/g>a is a primitive’ recursive relation since {p/q¢>a}
={p>[gali={p>4(1,)}.

THEOREM 11. If p,q>1 and a power of q is divisible by p, then
03,C 0%y

In order to prove this theorem we repeat the proof of theorem 3

supressing the argument % in all the functions considered and assuming p
to be primitive recursive.

Tt remains an open question whether a theorem converse to theo-
rem 11 is also true. Another open question is whether C; is the com-
mon part of Gy, (p=2,3,..) and whether ¢? is the common part of
Cgp(p=2,3,...).
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