

On the extending of models (IV) *

Infinite sums of models

par

J. Loś (Toruń) and R. Suszko (Warszawa)

In this paper we consider the problem how to characterize those elementarily definable classes ${\mathfrak A}$ of models which have the following property:

for every increasing sequence of models $\{\mathfrak{M}_n\}_{n=1,2,...}$

$$\text{if} \quad \mathfrak{M}_n \in \mathfrak{A} \quad \text{ for } \quad n=1,2,..., \quad \text{ then } \quad \sum_{n=1}^{\infty} \mathfrak{M}_n \in \mathfrak{A} \ .$$

We call such classes σ -classes of models. The class of all groups is, for example, a σ -class of models. The sum of an arbitrary increasing sequence of groups is a group.

The theorems concerning the problem of σ -classes are given in § 3. But the central point of our paper consists in lemma 4 given in § 2.

1. Terms and notation

In what follows we are concerned with elementary theories (with identity) E_1, E_2, E_3, E_4 , which are nearly analogous to those investigated previously ¹). For reasons of simplicity, in the theory E_1 we have, as extralogical constants, one sign of relation r and one sign of function f only. In the theory E_2 , apart from signs of the theory E_1 , there are some new signs q_i (i=1,2,...). The signs q_i may be individual constants or signs of function. Therefore the models in the theories E_1 and E_2 are of the forms

(4)
$$\langle A, R, F \rangle$$
 and $\langle A, R, F, Q_1, Q_2, ... \rangle$

respectively. If one introduces into E_1 and E_2 a family of individual constants $\{g_a\}$ where the index a runs over the set A, then one obtains

the theories E_3 and E_4 . It is clear that in the theories E_3 and E_4 we may formulate, by considering the constants g_a as names of elements $a \in A$, the descriptions (see [3], § 4) of models (Δ) for E_1 and E_2 respectively.

If \mathfrak{M}_k is a model for E_k (k=1,2), then $E_k(\mathfrak{M}_k)$ is the set of all sentences $\alpha \in E_k$ fulfilled in \mathfrak{M}_k ; analogously $E_{k+2}(\mathfrak{M}_k)$ is the set of all sentences $\alpha \in E_{k+2}$ fulfilled in \mathfrak{M}_k (k=1,2).

The sequence of models $\{\mathfrak{M}_n\}_{n=1,2,\dots}$ is called *increasing* if for every n, \mathfrak{M}_n is a submodel of \mathfrak{M}_{n+1} . If $\{\mathfrak{M}_n\}_{n=1,2,\dots}$ is an increasing sequence of models, then the sum $\sum_{n=1}^{\infty}\mathfrak{M}_n$ is the least model of which every model \mathfrak{M}_n is a submodel. It is clear that for every increasing sequence of models $\{\mathfrak{M}_n\}_{n=1,2,\dots}$ the sum $\sum_{n=1}^{\infty}\mathfrak{M}_n$ exists, for the operations in \mathfrak{M}_n are finitary and the sequence is infinite.

We limit our considerations to the field of sentences, *i. e.* well-formed formulas without free variables. A sentence $\alpha \in E_k$ is called Π -sentence, $\prod \sum$ -sentence or $\sum \Pi$ -sentence if there is a sentence $\beta \in E_k$ of the form

$$\prod_{x_1} \dots \prod_{x_n} \gamma(x_1, \dots, x_n),$$

$$\prod_{x_1} \dots \prod_{x_n} \sum_{y_1} \dots \sum_{y_m} \gamma(x_1, \dots, x_n, y_1, \dots, y_m),$$

$$\sum_{x_1} \dots \sum_{x_n} \prod_{y_1} \dots \prod_{y_m} \gamma(x_1, \dots, x_n, y_1, \dots, y_m)$$

respectively, containing only the indicated quantifiers and no free variables and such that the equivalence $a \equiv \beta$ is a tautology, $i.\ e.\ (a \equiv \beta) \in Cn(0)$.

Let $\{\mathfrak{M}_n\}_{n=1,2,\dots}$ be an increasing sequence of models in the theory E_1 . We call a sentence $a \in E_1$ persistent in this sequence if the sentence a fulfils the condition:

if for every
$$n = \alpha \in E_1(\mathfrak{M}_n)$$
, then $\alpha \in E_1\left(\sum_{n=1}^{\infty} \mathfrak{M}_n\right)$.

It is quite clear that every Π -sentence is persistent in every increasing sequence of models. The same holds for $\Pi\Sigma$ -sentences also. On the other hand there are $\Sigma\Pi$ -sentences which are not persistent in some increasing sequences of models ²). Making use of the theorem on extending of models with secondary conditions [3] we can show that for

^{*} Presented to the Polish Mathematical Society, Torun Section, on 12. V. 1955.

¹⁾ See [3], chapters 1 and 2. We assume here notions and notation used in that paper with a few exceptions mentioned explicitely in the text above.

²) The axiomatics for ordered sets with a least element is a $\sum \prod$ -sentence which is not persistent in the sequence of models $\mathfrak{M}_n = \{1, 2, ..., n\}$.

every sentence α which is not both $\prod \sum$ -sentence and $\sum \prod$ -sentence there is an increasing sequence of models in which either α or α' is not persistent ³).

We mention here the following result obtained by Ryll-Nardzewski: if $\{\mathfrak{M}_n\}_{n=1,2,\dots}$ is an increasing sequence of models and $\alpha \in E_1(\mathfrak{M}_n)$ for every $n=1,2,\dots$, then there is a model \mathfrak{M} such that $\sum_{n=1}^{\infty}\mathfrak{M}_n \subset \mathfrak{M}$ and $\alpha \in E_1(\mathfrak{M})^4$.

2. Lemmas

LEMMA 1. Let D be a non-empty additive and multiplicative subset of some Boolean algebra B and let $\{b_k\}_{k=1,2,...}$ be a sequence of elements of B such that $b_k \leqslant b_{k+1}$ for every k=1,2,... If the sequence $\{b_k\}_{k=1,2,...}$ satisfies the condition

(*) if
$$b_k \leqslant d \leqslant b_{k+m}$$
 then $d \notin D$,

then there exist in B two prime ideals, J1 and J2, such that

- 1) $b_k \in J_1$ for every k=1,2,...,
- 2) $b_1' \in J_2$ (consequently $b_k' \in J_2$),
- 3) $J_1 \cap D \subset J_2$.

Proof. Let J(A) be the least ideal containing the set

$$A = \underset{x \in B}{F} (b_1 \leqslant x' \in D).$$

We are going to prove that $b_k' \in J(A)$. Let us suppose, on the contrary, that $b_k' \in J(A)$. This means that $b_k' \leqslant a_1 + \dots + a_n$ where $a_i \in A$, and consequently $b_1 \leqslant a_i' \in D$. Therefore $b_1 \leqslant a_1' \cdot \dots \cdot a_n' \leqslant b_k$, which contradicts (*). Let J_1 be a prime ideal such that $J(A) \subset J_1$ and $b_k \in J_1$ for every $k = 1, 2, \dots$ and let $J(J_1 \cap D)$ be the least ideal containing the set $J_1 \cap D$. If we suppose that $b_1 \in J(J_1 \cap D)$, then we have $b_1 \leqslant d = d_1 + \dots + d_n$ for some $d_1, \dots, d_n \in J_1 \cap D$. It follows that $d \in J_1 \cap D$, and consequently $d \in J_1$, $d' \in J_1$ and $d' \in A$. On the other hand we have $d' \in A$, which follows from

the previously stated relation $b_1 \leq d \in D$. Therefore $b_1 \in J(J_1 \cap D)$. If we extend the ideal $J(J_1 \cap D)$ to a prime ideal J_2 such that $b_1 \in J_2$, then we see that the ideals J_1 and J_2 satisfy our lemma.

LEMMA 2. Let Z = Cn(Z) be a consistent system and let $\{\beta_k\}_{k=1,2,...}$ be a sequence of sentences in E_1 such that $(\beta_{k+1} \rightarrow \beta_k) \in Cn(Z)$ for every k=1,2,... If this sequence satisfies the condition

(**) if
$$(\beta_{k+m} \to \delta) \land (\delta \to \beta_k) \in Cn(Z)$$
 then δ is not a $\prod \sum$ -sentence,

then there exist in E_1 two consistent complete systems $X,\,Y$ containing the system Z and such that

- 1) $\beta_k \in X$ for every k=1,2,...,
- 2) $\beta_1' \in Y$ (consequently $\beta_k' \in Y$),
- 3) every $\prod \sum$ -sentence belonging to X belongs to Y also.

Proof. Our lemma follows immediately from lemma 1 in view of the fact that complete consistent systems containing a system Z are prime ideals in the field of sentences modulo Z and that the set of all $\prod \sum_{i}$ -sentences is additive and multiplicative.

LEMMA 3. If $\mathfrak{M} = \langle A, R, F \rangle$ is a model in E_1 and X = Cn(X), Y = Cn(Y) are two consistent systems in E_1 such that $Y \subset E_1(\mathfrak{M})$ and every $\prod \sum$ -sentence belonging to X belongs to Y also, then the set $X \cup Z$ is consistent, where Z is the set of all \prod -sentences in E_3 which are fulfilled in \mathfrak{M} .

Proof. The sets X,Z are, of course, multiplicative. Therefore if the set $X \cup Z$ is inconsistent, then there is a sentence $\alpha \in X$ and a \prod -sentence

$$\prod_{x_1} \dots \prod_{x_n} \eta(g_{a_1}, \dots, g_{a_m}, x_1, \dots, x_n)$$

belonging to $Z \subset E_3(\mathfrak{M})$ where $a_1, ..., a_m \in A$ and such that

$$\left(\alpha \wedge \prod_{x_1} \dots \prod_{x_n} \eta(g_{a_1}, \dots, g_{a_n}, x_1, \dots, x_n)\right)'$$

is a tautology. Consequently the sentence

$$a \rightarrow \sum_{x_1} \dots \sum_{x_n} \eta'(g_{a_1}, \dots, g_{a_n}, x_1, \dots, x_n)$$

is a tautology. In view of the fact that $\alpha \in X$ and the constants g_{a_k} (k=1,2,...,m) do not occur in α , it follows that the sentence

$$\prod_{y_1} \dots \prod_{y_m} \sum_{x_1} \dots \sum_{x_n} \eta'(y_1, \dots, y_m, x_1, \dots, x_n)$$

³⁾ We construct two consistent systems X_1 and X_2 such that $\alpha \in X_1$, $\alpha' \in X_2$ and $O \cap X_1 = O \cap X_2$, where O is the set of all \prod -sentences. Then one can extend every model of X_1 to the model of X_2 and conversely. It follows that there is an increasing sequence of models $\{\mathfrak{M}_n\}_{n=1,2,\dots}$ such that $\alpha \in X_1 \subset E_1(\mathfrak{M}_{2n-1})$, $\alpha' \in X_2 \subset E_1(\mathfrak{M}_{2n})$, and $\sum_{n=1}^{\infty} \mathfrak{M}_{2n-1} = \sum_{n=1}^{\infty} \mathfrak{M}_{2n-1} = \sum_{n=1}^{\infty} \mathfrak{M}_{2n}$.

⁴⁾ Obviously, every \prod -sentence belonging to the system Cn(a) is fulfilled in the model $\sum_{n=1}^{\infty} \mathfrak{M}_n$. Therefore we can make the required extension.

On the extending of models (IV)

57

belongs to X and consequently to Y. But this is impossible, because the contradictory sentence

$$\sum_{y_1} \cdots \sum_{y_m} \prod_{x_1} \cdots \prod_{x_n} \eta(y_1, \dots, y_m, x_1, \dots, x_n)$$

is fulfilled in M

LEMMA 4. Let Z=Cn(Z) be a consistent system in E_1 and let $\{\beta_k\}_{k=1,2,...}$ be a sequence of sentences in E_1 such that $(\beta_{k+1}\to\beta_k)\in Cn(Z)$ for every k=1,2,... If this sequence satisfies the condition (**) of lemma 2, then there exists an increasing sequence of models $\{\mathfrak{M}_n\}_{n=1,2,...}$ such that:

- 1) $Z \subseteq E_1(\mathfrak{M}_n)$ i. e. $\mathfrak{M}_n \in \mathfrak{A}(Z)$ for all n,
- 2) $\beta_k \in E_1(\mathfrak{M}_n)$ for all k, n

and

3)
$$\beta_1 \in E_1\left(\sum_{n=1}^{\infty} \mathfrak{M}_n\right)$$
.

Proof. We take a sequence $\{\beta_k\}_{k=1,2,\dots}$ of sentences in E_1 . Let $\gamma_k \in E_1$ be a sentence of normal form in E_1 such that the equivalence $\beta_k' \equiv \gamma_k$ is a tautology, and let $\gamma_k^* \in E_2$ be the generalization of the open solution 5) of γ_k . If, for example, β_k is of the form

$$\prod_{x} \sum_{y} \prod_{z} \alpha(x, y, z)$$

where a(x,y,z) is an open formula, then the sentences $\gamma_k \in E_1$ and $\gamma_k^* \in E_2$ are of the form

$$\sum_{x}\prod_{y}\sum_{z}lpha'(x,y,z)$$
 and $\prod_{y}lpha'(q_{1},y,q_{2}(y))$

respectively.

Let Z=Cn(Z) be a consistent system in E_1 and let the sequence $\{\beta_k\}_{k=1,2,\dots}$ satisfy the conditions:

$$(\beta_{k+1} \rightarrow \beta_k) \in Cn(Z)$$
 for all k ,

if
$$(\beta_{k+m} \rightarrow \delta) \wedge (\delta \rightarrow \beta_k) \in Cn(Z)$$
 then δ is not a $\prod \sum$ -sentence.

According to lemma 2 there are two consistent systems X_1, X_2 in E_1 (where X_1 is complete) such that $Z \subset X_1 \cap X_2$, $\beta_k \in X_1$ for all $k=1,2,\ldots$, $\beta_1' \in X_2$ and

(**) every
$$\prod \sum$$
-sentence belonging to X_1 belongs to X_2 .

The system $Y = Cn(X_2 \cup \{\gamma_1^*\})$ is consistent in E_2 and contains the system Z. It follows that there is a model

$$\mathfrak{M}_1 = \langle A_1, R_1, F_1, Q_{11}, Q_{12}, \ldots \rangle$$

in the class $\mathfrak{A}(Z)$ such that $Y \subset E_2(\mathfrak{M}_1)$ and consequently $X_2 \subset E_1(\mathfrak{M}_1)$. We shorten the model \mathfrak{M}_1 , *i. e.* we consider the model

$$\mathfrak{M}_2 = \langle A_2, R_2, F_2 \rangle$$

such that $A_2=A_1$, $R_2=R_1$, $F_2=F_1$. Evidently $X_2 \subset E_1(\mathfrak{M}_2)$.

We join to the theory E_1 a family of individual constants $\{g_a\}_{a\in A_1=A_2}$. We obtain in this way the theory E_3 . Let us consider now the set Z_0 of all \prod -sentences in E_3 which are fulfilled in the model \mathfrak{M}_2 . By lemma 3 we see that the set $X_1 \cup Z_0$ is consistent. We prove that

(**) every \prod -sentence in E_1 belonging to the set $Cn(X_1 \cup Z_0)$ belongs to X_2 .

Evidently every \prod -sentence is a $\prod \sum$ -sentence and therefore, by $\binom{**}{*}$ every \prod -sentence belonging to X_1 belongs to X_2 . Suppose now that there is a \prod -sentence α in E_1 such that $\alpha \in Cn(X_1 \cup Z_0)$ and $\alpha \in X_2$. Consequently $\alpha \in X_1$. On the other hand it follows by the multiplicativity of the set Z_0 that there is in $Z_0 \subset E_3(\mathfrak{M}_2)$ a \prod -sentence ξ of the form

$$\prod_{x_1} \dots \prod_{x_n} \eta(g_{a_1}, \dots, g_{a_m}, x_1, \dots, x_n)$$

for example, such that $(\xi \to \alpha) \in Cn(X_1)$. The constants g_{a_1}, \dots, g_{a_m} do not occur either in α or in the sentences belonging to X_1 . Thus we have $(\xi^* \to \alpha) \in Cn(X_1)$ where ξ^* is the sentence in E_1 of the form

$$\sum_{y_1} \dots \sum_{y_m} \prod_{x_1} \dots \prod_{x_n} \eta(y_1, \dots, y_m, x_1, \dots, x_n).$$

But $\xi^* \in Cn(Z_0)$. So we infer from the completeness of the system X_1 and from the consistency of the set $X_1 \cup Z_0$ that $\xi^* \in X_1$. Consequently $\alpha \in X_1$, which is impossible.

Let us return now to the model \mathfrak{M}_2 . We apply to it the theorem on the existence of extensions of models with secondary conditions (Theorem 3.1 in [3]). Then, making use of $\binom{**}{**}$, we infer that there exists a model

$$\mathfrak{M}_3 = \langle A_3, R_3, F_3 \rangle$$

in E_3 such that $X_1 \cup Z_0 \subset E_3(\mathfrak{M}_3)$ and \mathfrak{M}_2 is a submodel of it. Evidently $X_1 \subset E_1(\mathfrak{M}_3)$.

⁵⁾ For the notion of the open solution see [2], chapter 27. The open solution = -,,aufgelöste Form" in [1].

Finally we prove that there is a model

$$\mathfrak{M}_4 = \langle A_4, R_4, F_4, Q_{41}, Q_{42}, ... \rangle$$

which is an extension of the two models, \mathfrak{M}_1 and \mathfrak{M}_3 , and such that $Y \subset E_2(\mathfrak{M}_4)$, and consequently $X_2 \subset E_1(\mathfrak{M}_4)$. Let us assume, on the contrary, that such a model does not exist. We then construct from E_2 the theory E_4 by joining to it a family of individual constants $\{g_a\}_{a \in A_3}$. In E_4 we can formulate the descriptions of the models \mathfrak{M}_1 and \mathfrak{M}_3 , denoted by $D(\mathfrak{M}_1)$ and $D(\mathfrak{M}_3)$. From the assumption it follows that the set

$$Y \cup D(\mathfrak{M}_1) \cup D(\mathfrak{M}_3)$$
,

i. e. the set

$$Y \cup (D(\mathfrak{M}_3) - D(\mathfrak{M}_1)) \cup D(\mathfrak{M}_1)$$

is inconsistent. Therefore there exist some sentences $\alpha_1, \ldots, \alpha_k$ belonging to $D(\mathfrak{M}_3) - D(\mathfrak{M}_1)$ such that $\alpha' \in Cn(Y \cup D(\mathfrak{M}_1))$ where α stands for the conjunction $\alpha_1 \wedge \ldots \wedge \alpha_k$. Let us write the sentence α' in the form

$$\eta(g_{a_1},\ldots,g_{a_m},g_{a_{m+1}},\ldots,g_{a_{m+s}})$$

where $a_1, ..., a_m \in A_1 = A_2$ and $a_{m+1}, ..., a_{m+n} \in A_3 - A_1$ indicate all constants g occurring in a'. From the fact that constants g_a such that $a \in A_3 - A_1$ do not occur in the sentences of the set $Y \cup D(\mathfrak{M}_1)$ we conclude that the sentence

$$\prod_{\mathbf{x}_1} \dots \prod_{\mathbf{x}_n} \eta(g_{a_1}, \dots, g_{a_n}, x_1, \dots, x_n)$$

belongs to the set $Cn(Y \cup D(\mathfrak{M}_1))$, and consequently to the set $E_3(\mathfrak{M}_1)$ also. In view of the fact that $E_3(\mathfrak{M}_1) \subset E_3(\mathfrak{M}_2)$ it follows that this sentence is satisfied in \mathfrak{M}_2 . On the other hand this sentence is not satisfied in \mathfrak{M}_3 because $\alpha_1, \ldots, \alpha_k \in D(\mathfrak{M}_3)$ and consequently $\alpha' \notin E_4(\mathfrak{M}_3)$. Thus we arrive at the false conclusion that there is a \prod -sentence in $E_3(\mathfrak{M}_2)$, (i. e. a sentence belonging to the set Z_0) which is not satisfied in \mathfrak{M}_3 .

Starting from the model \mathfrak{M}_4 we obtain the models \mathfrak{M}_5 , \mathfrak{M}_6 , \mathfrak{M}_7 in the same manner as we have obtained the models \mathfrak{M}_2 , \mathfrak{M}_3 , \mathfrak{M}_4 from the model \mathfrak{M}_1 . If we repeat this reasoning, we shall arrive at an increasing sequence of models $\{\mathfrak{M}_n\}_{n=1,2,\dots}$ such that

$$\begin{array}{cccc} \gamma_1^* \in Y \subset E_2(\mathfrak{M}_{3n-2}) & \text{and} & \beta_1' \in X_2 \subset E_1(\mathfrak{M}_{3n-2}) \,, \\ \beta_1' \in X_2 \subset E_1(\mathfrak{M}_{3n-1}) & \text{and} & \beta_k \in X_1 \subset E_1(\mathfrak{M}_{3n}) & \text{for every} & k = 1, 2, \dots \end{array}$$

In view of the fact that $Z \subset X_1 \cap X_2$ it follows that all models \mathfrak{M}_{3n} belong to the class $\mathfrak{U}(Z)$. It remains to prove that $\beta_1 \notin E_1(\sum_{i=1}^{\infty} \mathfrak{M}_{3n})$. If

$$\begin{split} \sum_{n=1}^{\infty}\mathfrak{M}_{3n} &= \langle A\,, R\,, F\rangle \quad \text{then} \quad \sum_{n=1}^{\infty}\mathfrak{M}_{3n-2} = \langle A\,, R\,, F\,, Q_1\,, Q_2\,, \ldots\rangle \quad \text{and therefore} \\ E_1(\sum_{n=1}^{\infty}\mathfrak{M}_{3n-2}) &= E_1(\sum_{n=1}^{\infty}\mathfrak{M}_{3n})\,. \quad \text{The sentence } \gamma_1^* \text{ is a } \prod\text{-sentence and consequently } \gamma_1^* \in E_2(\sum_{n=1}^{\infty}\mathfrak{M}_{3n-2})\,. \quad \text{It follows that } \beta_1' \in E_1(\sum_{n=1}^{\infty}\mathfrak{M}_{3n-2})\,, \quad \beta_1 \in E_1(\sum_{n=1}^{\infty}\mathfrak{M}_{3n-2})\,\\ \text{and finally } \beta_1 \notin E_1(\sum_{n=1}^{\infty}\mathfrak{M}_{3n})\,, \quad \text{q. e. d.} \end{split}$$

3. Theorems

THEOREM 1. All $\prod \sum$ -sentences, and only those sentences are persistent in every increasing sequence of models.

Proof. It is obvious that all $\prod \sum$ -sentences are persistent in all increasing sequences of models. It remains to prove that all persistent sentences are $\prod \sum$ -sentences. To prove this we take a sentence β_0 which is not a $\prod \sum$ -sentence. We apply the lemma 4 putting Z = Cn(0) = set of tautologies and $\beta_k = \beta_0$ for all k. It follows that there exists an increasing sequence of models $\{\mathfrak{M}_n\}_{n=1,2,\dots}$ such that $\beta_0 \in E_1(\mathfrak{M}_n)$ for all n and $\beta_0 \notin E_1(\mathfrak{M}_n)$. Therefore β_0 is not persistent.

THEOREM 2. Let $\mathfrak{A}(X)$ be an elementarily definable class of models. The class $\mathfrak{A}(X)$ is a σ -class if and only if there exists a set Y of $\prod \sum$ -sentences such that $\mathfrak{A}(X) = \mathfrak{A}(Y)$ or, which is equivalent, Cn(X) = Cn(Y).

Proof. Suppose that there exists a set Y of $\prod \sum$ -sentences such that $\mathfrak{A}(X) = \mathfrak{A}(Y)$ and take an increasing sequence of models $\{\mathfrak{M}_n\}_{n=1,2,...}$ such that $\mathfrak{M}_n \in \mathfrak{A}(X)$ for all n. It follows that $Y \subset E_1(\mathfrak{M}_n)$ for all n and consequently $Y \subset E_1(\sum_{n=1}^{\infty} \mathfrak{M}_n)$. In other words $\sum_{n=1}^{\infty} \mathfrak{M}_n \in \mathfrak{A}(Y) = \mathfrak{A}(X)$. Therefore $\mathfrak{A}(X)$ is a σ -class.

To prove the necessity of our condition we consider the set $Y_0 = \sum_{\alpha \in Cn(X)} (\alpha \text{ is a } \prod \sum$ -sentence). Clearly $Cn(Y_0) \subset Cn(X)$. We prove that $Cn(X) \subset Cn(Y_0)$. Suppose on the contrary that $Cn(X) - Cn(Y_0) = X_0 \neq 0$. Let $\{\alpha_n\}_{n=1,2,\dots}$ be the sequence of all elements of X_0 and β_k the conjunction $\alpha_1 \wedge \dots \wedge \alpha_k$. The system $Cn(Y_0)$ and the sequence $\{\beta_k\}_{k=1,2,\dots}$ satisfy the assumptions of lemma 4. Namely, it is obvious that $(\beta_{k+1} \to \beta_k) \in Cn(Y_0)$. On the other hand, if δ is a $\prod \sum$ -sentence and $(\beta_{k+m} \to \delta) \wedge (\delta \to \beta_k) \in Cn(Y_0)$, then $\delta \in Cn(Y_0 \cup \{\beta_{k+m}\}) \subset Cn(X)$. Consequently $\delta \in Y_0$ and $\beta_k \in Cn(Y_0)$. But this is a contradiction because $\beta_k \in Cn(X) - Cn(Y_0)$. Therefore by lemma 4, there is an increasing sequence of models $\{\mathfrak{M}_n\}_{n=1,2,\dots}$

such that $Cn(Y_0) \subset E_1(\mathfrak{M}_n)$ for all n and $\beta_k \in E_1(\mathfrak{M}_n)$ for all k,n but $\beta_1 \in E_1(\sum_{n=1}^{\infty} \mathfrak{M}_n)$. It follows that $X \subset E_1(\mathfrak{M}_n)$ for every n and $X \subset E_1(\sum_{n=1}^{\infty} \mathfrak{M}_n)$. In other words, all models \mathfrak{M}_n belong to the class $\mathfrak{A}(X)$ but $\sum_{n=1}^{\infty} \mathfrak{M}_n \in \mathfrak{A}(X)$. The class $\mathfrak{A}(X)$ is not a σ -class, q. e. d.

THEOREM 3. Let $\mathfrak{A}_0=\mathfrak{A}(Z)$ be a σ -class of models definable by the set of axioms $Z \subset E_1$ and let β be a sentence in E_1 . The class $\mathfrak{A}_1=\mathfrak{A}(Z+\{\beta\})$ is a σ -class if and only if the sentence β is a $\prod \sum$ -sentence over the axiomatics Z, i. e. if there is a $\prod \sum$ -sentence γ such that $\beta \equiv \gamma \in Cn(Z)$.

Proof. According to theorem 2 we can assume that every sentence belonging to the set Z is a $\prod \sum$ -sentence. If $\mathfrak{A}(Z+\{\beta\})$ is a σ -class, then it follows, from theorem 2 again, that there is a set Y of $\prod \sum$ -sentences such that $Cn(Z+\{\beta\}=Cn(Y))$. Therefore $\beta \in Cn(Y)$. Consequently $\beta \in Cn(\gamma) \subset Cn(Z+\{\gamma\})$ where $\gamma = \gamma_1 \wedge \ldots \wedge \gamma_n$ for some $\gamma_i \in Y$. It is clear that γ is a $\prod \sum$ -sentence. On the other hand, $\gamma \in Cn(Y) \subset Cn(Z+\{\beta\})$. Therefore $\beta \equiv \gamma \in Cn(Z)$.

Suppose now that γ is a $\prod \Sigma$ -sentence and $\beta \equiv \gamma \in Cn(Z)$. It follows that $\mathfrak{A}_1 = \mathfrak{A}(Z + \{\beta\}) = \mathfrak{A}(Z + \{\gamma\})$. If $\mathfrak{M}_n \in \mathfrak{A}_1$ for n = 1, 2, ..., then $\mathfrak{M}_n \in \mathfrak{A}_0$ is a σ -class and γ is a $\prod \Sigma$ -sentence we infer that $\sum_{n=1}^{\infty} \mathfrak{M}_n \in \mathfrak{A}_0$ and $\gamma \in E_1(\sum_{n=1}^{\infty} \mathfrak{M}_n)$. It follows that $\sum_{n=1}^{\infty} \mathfrak{M}_n \in \mathfrak{A}(Z + \{\gamma\})$, i. e. \mathfrak{A}_1 is a σ -class.

References

D. Hilbert und P. Bernays, Grundlagen der Mathematik, Bd. II, Berlin 1939.
 J. Łoś, The algebraic treatment of the methodology of elementary deductive systems, Stud. Log. 2 (1955), p. 151-212.

[3] - On the extending of models (I), Fund. Math. 42 (1955), p. 38-54.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 22.11.1955

On the definitions of computable real continuous functions

b;

A. Grzegorczyk (Warszawa)

In this paper I shall prove the equivalence of some definitions of computable real continuous functions. Let us assume the following abbreviations: $\mathcal{N} =$ the set of natural numbers, $\mathcal{T} =$ the set of all integers, $\mathcal{R} =$ the set of real numbers, $\mathfrak{F} = \mathcal{T}^{\mathfrak{I}}$ (the class of functions defined over the set \mathcal{I} and assuming the values from \mathcal{I}), Com = the class of computable (general recursive) integral functions, $\mathfrak{Com} \subset \mathfrak{F}$, $\mathcal{K} =$ the class of computable functionals in the sense of [1] (defined over the n-tuples of the elements of \mathfrak{F} , and the k-tuples of the elements of \mathcal{I} and assuming the integral values. We shall often use the expression $A(\alpha, f)$ as an abbreviation of: $\alpha \in \mathcal{R}$, $f \in \mathfrak{F}$ and for any $n \in \mathcal{N}$

$$\left|a-\frac{f(n)}{n+1}\right|<\frac{1}{n+1}.$$

Latin letters will be used in such a manner that always $i, k, l, m, n \in \mathcal{N}$, $p, q, r, s, t, u, x, y, z \in \mathcal{J}$, $a, b, c, d, e \in \mathcal{R}$.

Let r_n be a recursive enumeration of all rationals without repetitions. Let No(p,q) be the recursive converse function of the function r_n . This means that

$$r_{\text{No}(p,q)} = \frac{p}{q} \,.$$

We assume that p/0=0. Instead of No (p,q) we shall often write No (p/q). Let us set

(2)
$$W_n(k) = W(n,k) = (\mu x) \left[\left| r_n - \frac{x}{k+1} \right| < \frac{1}{k+1} \right],$$

No, $W_n \in Com$. We obviously have

(3)
$$\left| r_n - \frac{W(n,k)}{k+1} \right| < \frac{1}{k+1} \quad \text{for all} \quad n, k \in \mathcal{N}.$$