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Let K be & field and T its normal algebraical extension. The Galois
group G(L/K) considered as a topological space (see [3], [2], p. 187-190
and [4], p. 239-240) is bicompact and O-dimensional. T I is a denumer-
able extension of K, then the space G(L/K) is separable and dense in
itself and hence homeomorphic with the Cantor discontinuum, 4. e., with
the Cartesian product of denumerably many finite spaces.

The aim of this note is to generalize this fact to the
trary infinite extensions: we shall show that G(L/K) is homeomorphic
with the Cartesian product (endowed with the ordinary Tichonoff topo-
logy) of a suitable number of finite spaces.

We shall use the following notation. The ground field will be de-
noted by K and the letters L,/ V... with or without indices will de-
note normal extensions of K. The Galois group of M with respeet to K
will be denoted by G(M/K). It peG(M/K) and N is a field intermediate
between K and 3, then we denote by @|N the restriction of ¢ to X.
If X is a subset of G(H /K), then we denote by X [N the set of automor-
phisms | where e X. It M; and M, are two extbensions of K, then

we denote by (1, 3I,) the compositum of M, and M,, i. e., the smallest
field generated by A, and I7,.

of arbi-

1. In this section we assume that I is 2 normal, algebraical, and

separable extension of K. We further assume that KCHCL, K CNCL,
and that X is finite over K.

LEnra 1 (see [2],p. 149 or [17, p. 63). G(N|M~AN)= G((M,N)/’M)!N.
Proof. Denote by H the group of the right-hand side of the equa-
tion to be proved. It is obviously contained in G(N/Af ~N) and hence,
by the fundamental theorem of the Galois theory, has the form G(N/P)
where P is a subtield of N¥. Since for every a in N — 3 there is a ¢ in H
such that g(a)s£a, it follows that P— M ~N. Lemma 1 is thus proved.
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Leaa 2. Let G(N|EYy=A4A,v dsw ..o d; be a partition of th_e groupr
G(N}K) into disjoint sets each of which has exactly one element in com-
mon lwitlz each co-set of G(N|MA~N) in G(N]/K); furthe;: let ¢ be an eleme%n‘
of G(M|K) and i an integer <s. Under these assumptions there is a p in
G(M ,N)/E) such that p|M=g and y|N ¢ 4;. ] o

Proof. It is evident that there ave y in G{{M ,.N) {K) satisfying the
equation p|M=¢ and that if p satisfies this equation, the-n so does po
Wilere de G((M ,N)/M). Hence it is sufficient to show that if 6 runs over
G((M,N)/M), then yo|N runs over a co-set of G(N/M~N) in G(ZV/.ZL.),
This, however, follows from the observation that {pG((3,N)/M)}| N is
a coy-set of G(N/M~N) in G(N/K) because, in view of lemma 1,

(WG {31, )/ I)} | N = (| N) G(( I, N)/ M| ¥ = (9} N) G (N[ M ~X) .

2. Again let I be a normal, algebraical, and .st?pavrable 'e-‘Xte‘IlSiOIl
of K and let {K?}c, be a transfinite sequence of finite e§ten5}o11<: ‘con‘-
taining exactly once each finite extension of K. We. define b?r Tans-
finite induction two sequences {K,} and {M,} of subfields of L:

My=K,=X,

M= (M,,K,),

M=\ M, for limit numbers Ay

g > -

K= "Lj;; where £ is the smaillest ordina « that Kig M, or K,=X
if no such & exists.

The least ordinal # such that M,=L is denotefllb.y %o- o

For each 7 <7, we select a finite family of d1§]01nt sets‘ i f,-},-.gnzn
(where Z, is a set of indices) covering the group G(ILU/K) and satis wtﬁ
the condition that each A7 has exactly one element Iin eoml‘J.aon Wi "
each co-set of the group G(K,/K,~M,) in .G(K,,/K). W‘e. C(‘)nsld.e]; nexff
the Cartesian product P,.,Z, endowed with t}le ordinary Tichono
topology. With this notation we have the following

TarorEM 1. The space G(L/K) endowed with the Krull topology is

. homeomorphic with Py Z,-

Proof. For an arbitrary ¢ € G(L/K) we denot_e by fe tl}ef glemf]rllz
of P,c,,Z, such that f,(n) is the unique element ¢ of Zﬂ.satxstymgﬂ;rmt;
formula ¢[K, e A7. From lemma 2 it follov‘*s" by an easy 11f1due. 1;)111:Lite;b(1 ¢
each element of P,., Z, can be represented in the form f, for a ;
e i f G(L/K), then f,#f,. Indeed,

If p and y are different elements o (LjI), o .,po usf, L
let £ be the smallest ordinal such that q:]M{#yJ]M;.. Vi " y_ i
a limit number; let Z—1 be the precedessor of . Since @|My_1=p|M; 2

¢
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and .‘U;z (J[;_I,K;,]_), we obtain (PIKC—I —,‘f‘-’l,UIK;..l. At the same time (lec_l
and y|&;, belong to the same co-set of the group G(K;,;/K;_lnﬂ[;‘l)
in the group G(K, ,/K) since ¢ and v act identically on the elements
of M; ;. Each set 4!™! havin exactly one element in common with
each co-set of the group G(K; 1iK; 1~M;_;) in the group G(K; ,/K),
we infer that if plH; ied{™ and y|K,;edi™, then ;= j. Hence
FlS—1) 108 —1), i. e, o5,

In order to show that the mapping f: p->f, is continnous it is suf-
ficient to show that for each §<<m and each %eZ; the counter-image

of the set {k € PyeyZy: k(£)=1} is open in G(L/K). This counter-image,

however, is equal to the set {p e G(L/I): f(&)=1}, i e, to the set
{y e G(L/K): ¢|K;eAF), which is obviously open. ‘
The continuity of the inverse mapping 77 results from the eon-
tinuity of f and the bicompactness of G(L/K). Theorem 1 is thus proved.
3. In this section we shall generalize theorem 1 as follows:

THEOREM 2. If L is a normal, algebraical extension of K, then there
s an ordinal 7, such that the space G(L{K) is homeomorphic to the Gartesian
product P,., T, where each T, is a space with exactly two elements.

Proof. If L is separable over K, then theorem 2 follows from theo-
rem 1 and the well-known fact that spaces Py, Z, and P,.,T, are
homeomorphie. )

If L is not separable over K, then we denote by K, the field of in-
variants of G(L/K), i. €., the set of elements a of L such that oa)=a
for each ¢ in G(L/K). Since L is a separable extension of K, (see [2],
P- 145 or 1), p. 45-46), theorem 1 is applicable to the group G(L/K,)
and thus it is sufficient to show that the spaces G(L/K) and G(L/K})
are homeomorphic, This, however, is obvious, sinee hoth spaces contain
exactly the same elements, are bicompact, and sets which are open in
G(L/K} are open in G(L/K,). :
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On a problem of W. Sierpinski
on the congruence of sets

by
E. G. Straus (Princeton, N. J)

1. Introduction

W. Sierpifiski [5], [6] has raised the question. of the existence in
Buclidean n-dimensional space E, of point sets v».*hlch are congrueflt to
several subsets obtained by the removal of a single pom't. In [5] he
proved that a set § in F; can contain at mo.st one Pomt p. 80 that
S—{p}==~8. He also gave a wrong proof of the existence in 1?2 of a set 5"
containing two points p,q so that S—{p}=8 ——{g‘j,‘—_—S..’T}.nsFerror Was
recognized by J. Myecielski and discussed by W. Sierpinski [7]. In. sec(i
tion 2 we prove that no such set exists, and _tha.t the above-ment%on;
result for F, is therefore valid for F,. In segtlon 3 we show that in I3
there exist sets S congruent to every mamnc'ml proper subset.; th@t ;s
S« S—{x} for all x. This has been aecqmphshed by J. nycleliskl 1[ 1
arza our proof is included only because 1t.may be somewhat simp eré
We shall call such sets Sierpinski sets. This completes the solution o
Sierpinski’s problem. o ‘
S1eI'pll?nirslleﬁly Eve discuss the underlying group—theoret_mal '1dea;s. ';‘he aiuﬂ;cln
wishes to express his thanks to the referee, J. Mycielski, for his valuable
corrections and improvements.

2, The two-dimensional case

TueoREM 1. A point set S in the Euclidean plane E, can contain
at most one pont p so that S—{p} is congruent to 8.

Proof. Assume that there are two points p,ge 8 so that S=8—
—{p}=8—{q}. Let p,p be isometries so that pS=8-—{p}, v&§=8—{¢}.
Then the following relations must hold:

I° pref, yreS for every zed,

2 @p-lye§ for every x#p, xelS; ¢7lpé s,

30 ylze S for every s+#4q, vel; plgé S
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