Abelian groups that are direct summands of every
abelian group which contains them as pure subgroups

by
J. Lo§ (Torun)

It is a well known theorem of Baer [1], that an abelian group &
is a direct summand of every abelian group containing it if and only
if @ is & divisible group, . e. if @=n@ for every positive integer n. It is
easy to see that divisibility of & is a necessary condition. A direct sum-
mand is & pure subgroup and only divisible groups are pure subgroups
of every abelian group containing them. It is also known that there
exist groups which are not divisible but are direct summands of every
abelian group which contains them as pure subgroups. E. g., according
to & theorem of Priiffer, all groups of bounded order have this property.

It is the object of this note to characterize the class D of those
groups which are direct summands of every abelian group which contains
them as pure subgroups. The main result is contained in the folowing:

TEEOREM 1. A group G belongs to D if and only if G is a direct sum-
mand of a group H which admits a compact topology.

The above-mentioned theorems of Priiffer and Baer follow from
this result, but not directly.

1. Lemmas. A subgroup & of an abelian group H is pure if for
any integer » and any element z in H, na=yg e G implies ny=g with
y in G

The following three lemmas are known:

(1.1) If for every prime number P and every positive integer n,

Pr=geG implies py=g with y <@, then & is a pure subgroup.

(1.2) Let F be a subgroup of G and G a subgroup of H. If F is pure in H,
then F is pure in G.

(1.3) If G is a pure subgroup of the abelian group H and H|Q is a direct

: (discrete) sum of cyclic groups, then G is a direct summand of H.

A subset 4 of the group H is called a selection in H /G, if for every
class h+@ there is exactly one element @ in A with a+G=h-+G. If 4
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is a subgroup of H and a selection in H/@, then A is called a represei-
tation of H|G.

(1.4) The subgroup G is a direct swmmand of the abelian group H if and
only if theve exists o vepresentation of H/G.

Let 7' be an arbitrary set and for every £ in 7 let G be a group.

The set of all fanctions ()=, defined on T with values z, in G is cal-

led the complete direct sum of the groups G, and is denoted by 3* @,

¢
If G=G, for all ¢ in T, then the complete direct sum is denoted by 6.
The following lemma results directly from the definition:
(1.8) If Gr=A+B, for all ¢t in T, then

So=3 4435,
t t t
A topological group G is compact if

(1.6) Tor every sequence of non—émpty, closed sets GOF,DF,D...OFD...,
& < a, the intersection of all F; is non-empty: (M Fe5£0.
£

From the well known theorem of Tychonoff on the product (in our
case the complete direct sum) of compact spaces it follows that:

(1.7) If G, are compact topological groups, then %G, is also a compact
t
topological group in the product topology.
It is also known that the product topology has the following pro-

perty:
(1.8) If @ is o topological group, then the sel

Z(t,8,7)={zeG: 1,+a—x,=g}

(where g e @) is closed in G
An example of a eompact abelian group is the group K of all com-
plex numbers 2 with [z]=1. All finite groups are also compact groups
in thé discrete topology. Therefore:
(1.9) A complete direct sum of finite groups and of groups of the type K
admits @ compact topology.
The additive group of rational numbers B*, and the Priiffer groups
(e admit no compact topology, but it is known thab
(1.10) Both Rt and C,e (for every prime number p ) are direct summands
in I
Finally we note a lemma on class D:
(L11) If H is in D and G is a divect summand of H, then G is in D.
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Proof. Let H=G+6¢ and let @ be a pure subgroup of P. Evidently
H is a pure subgroup of F+G' and as H is in D, then we have B g

=F'4+H=F+G+@&. This gives us FP=F+4@ as desired.
2. Now we shall prove the following theorem:
i

(21) If G s a pure subgroup of H and G admit a compact topology,
G is a direct summand in H.

Proof. We denote H/G by % and let 4 be a selection in §. The
group G4 is concerned as a compact topological group in the produet
topology of @. ‘

For # in G* we denote by 24 the set of all elements a—z, with ¢
in A. Tt is clear that each selection of $ may be written in the form x4

" with a suitable # in G4, For a subgroup H,/G=§, of § we denote by
B(H,) the set of all elements # in ¢© such that 24 ~H, is a representa-
tion of §,. It is easy to see that

then

(2.2) R($H)7£0 if and only if @ is a divest summand of H,.

(2.3) If .950C551C...C555C...,5<a, are subgroups of §, then B(DH)OR(SH,)
O..OR($:)2..., and QR(sﬁs):R(LEJ De)-

Lemma (2.2) follows from (1.4) and (2.3) direct from the definitions.

Let Hy/G=$, be, as before, a subgroup of $, and let a,b,¢ be ele-
ments in 4 ~H, with (@a+G)+ (b+G)=¢4-G. Then a+b-—e=g and g is
in @ It follows from (1.8) that the set Z{a,b,0)={x e G': o+ Tp — =g}
is closed in @*. But B($,) is the intersection of all Z (a,b,0) with
9=%;+ap—. in G and therefore E(9,) is a closed set of G4. Thig yields
the following lemmas:
(2.4) For every subgroup 9, of $,

In order to prove (2.1

B($Hy) s a closed set in G

) we proceed by induction with respect to

the power of the generators of 9. If § is finitely generated, then (2.1)

follows from (1.3). If the power of the generators of $ is &;, then § is

& union of a sequence 50C51C...C55C...,£<a, of subgroup: §=(J &,
g

where $; are groups with the Power of generators <w,. From the as-
sumptions and (2.2) it follows that R($He)540 and from (2.3), (2.4), (1.6)
and (2.2) it follows that @ is a direct summand of H.

8. In this section the following theorem +ill

be proved:
THEOREM 2. Each abelian group G may be embedded in o complete
direct sum H of groups of type Cp (p is a prime and a=1,2,... or o),

n such a way that G is pure in H
This theorem is a generaliz
thod being a modification of

ation of a result of Birkhoff [3], the me-
Birkhoff’s method.
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Prootf of theorem 2. It is known that for every eleme]}t gin @
there exists a maximal subgroup &, in G which does not cF)ntam g, and
that in such a case group /G is of. type .Opa and g+G, is of oid%r p}i
By p-height of an element g in ¢ (p.ls a p'l‘{me gumber) wi denote tsulc;
a positive integer H,(g)=mn, that ¢ is divisible in & by v but not by
potis if such a number does not exist, then H,(g)==co. It is easy to ‘s;e
fhab’ in the type Cp« of group G/@, o is not smaller than H,,(g)+1.G Ge
shall prove that if Hy(g) < oo, tht;]; (m;:l_lla @, may he found that G/G,
i is pe (e with a= .
B pr;(ln;(:\.lzj 01ff 1]]~‘},,,1ZZ):P-7L<00, then I'ingthe group H=G/p*+@ all elements
are of 01‘(ier <prit and F=g4(p"tQ) p.reeisely of order. 11 ]I:et
- = G /p" 1@, be a maximal subgroup of § which does not co.nta]m 7; then
g;g—-gé/as;bpa, g+, is of order p and as § is & group with orders of
elenfents bounded by p*1, then a<n-1 and fn.mlly a:=n+1.we have
Let P(g) be the set of all prime numbers p with Hy(g) < ce.

demonstrated that

(3.1) For every g in G and p in P(g) there ecxisis a homomorphism h(@)
© Gy, such that a=H,(g)+1 and h(g)70.

Now let {), 1eT, be a class of homomorphisms of &, such that
(1) For each t in T, h(G)=Cp. :
(2) For each g in G there exists a h, with h(g)#0. .
(3) For each g in & and p in P(g) there exists a homomorphism
i d a=H,g)+1.
ho(@)=Cpe with h(g)==0 an » -
' The existence of such a class follows from (3.1) and from the pro
erties of maximal groups @G,. . . i e assien
! Now we form the complete direct sum H= ; k(@) and w gh
i i = eac
to each element g in G the element m=¢(_g) in ‘H mthh%—htl(fg; f)(;rgiven
element ¢ in 7. It follows from (2) that ¢ is an isomorp 1sn;). B € en
z=p(g) in ¢(@) and y in H such that pky=a?. If p is noh hg( NS
H—(p :‘ioo if p is in P(g) then for some suitable 1 we a.;re_ . gthe ,i
hpc(%g))—:-C’ u’ and a=H,(g)+1 (this follows fron} (3)), as p ‘z{fé hen
: 1E . I:_h(g) This gives k < H,(g). Therefore in both casesh e P
prfjt(;—lefrtx;u‘t(]’ 'in @ with p*g’=¢ and in consequence we fage 11111 «il ZW
=g(g). From (1.1) it follows that p(@) is a pure su}ll)gm;%foof L
of (1) H is a complete direct sum. of groups Cps. The p
is finished.
i d
dmit a compact topology an
¢ of theorem 1. Let H a e
let; ; ;]él::g’t ];)rom (2.1) it follows that H belongs to D and from (1.11)
it follows that G also belongs to D.
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Now let & belong to D. In view of lemma 2 & i3 a pure subgroup
of the complete direct sum H=)"* Gpg,. G is in D therefore H=@ 1§
t

For ¢ in 7' with o, <oo et Gi= {0} and for ¢ with a,=oco let @ be such
a group that C’,,r:,—{—G,:K (see (1.10)). We have

2 Cnt6)=3"Cpt D 6= 1 Y 6=+ + ey,
t t & t t

therefore ¢ is a direct summand of Z*(Gpg,—}-G’,). But from (1.9) it
t
follows that %*(Cpe+6,) admits a compact topology.
t 3

5. Corollaries. Let {h,) be a family of homomorphisms which ful-
fils conditions (1)-(3) and let ¢ be the isomorphism of @ in H— 26
4

defined above. We have the following corollary:

(5.1) G belongsio D if and only if o(@) is a direct summand of H.
From (1.5) and (1.7) it follows that if each G, is a direct summand
In a group which admits a compact topology, then ¥, is also such
t

a group. Therefore from theorem 1 we have:
(5.2) If each G, belongs to D, then Z*G, also belongs to D.
¢

As we know, for every compact topological group H and every na-
tural number n, the subgroup nH is closed in H. Therefore if & admits
a compact topology, then =H also admits a compact topology. If
H=G+6G", then nH=nG-+n6". This yields the following corollaries:
(5.3) If G belongs to D then for every m the group nG also belongs to D.
(5.4) If @ belongs to D and Tiy3Ray .. 15 & Sequence of non-negative integers,

then the group (V(ny...n) @ also belongs to D.
k

The group (Dp"G consists of those elements of G which are of in-

finite p-height. Therefore:

(8.5) If @ is in D, then the sub

group of elements of infinite p-height is
also in D.

6. Another proof of (
essential to our reasoning,
8. Gaesdlyi.

Let U be a system of equations of the form

2 Nysls = ¢,

sel

2.1). The proof of lemma (2.1), which ig
can be simplified by a theorem due to
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where te T, g€ G, n, ave integers and for fixed #, n,,20 for a finite
number of s in T only. The system U is of power m, if T is of power m.

Let V be a subsystem of system U. By a solution of V in @ we under-
stand an element # in G7 such that each equation of ¥ is satisfied by ay.
Gacsalyl [4] has shown that:

(6.1) A subgroup G of H is pure if and only if every finite system U (with
coefficients g, in &) solvable in H is also solvable in G.

(6.2) A subgroup G of H is a direct summand if and only if every sy-
stem U solvable in H s also solvable in G.

It is easy to see that if & is a topological group, then ‘r.he set of a.ll
solutions of a system V is elosed in G7. The set of al} §01utlons of U 1’:‘
obviously the intersection of all sets of solutions of finite subsystems ¥
of U. Therefore if G admits a compact topology,.then @ has the fo}low-‘
ing property, which we call the finite intersection property for linear
equations: . - ’

If every finite subsystem of U is solvable in @, then U is solvable in G.

Now we turn to the proof of (2.1). Let @ be a pure subgroup of #
and let @G admit a compact topology. Iti follo‘ws from (6.1) t».hat every
finite subsystem of a system U solvable in H is a139 solvable in G, au:;d,
gince @ has the finite interseetion property for h1.1ea;r equations, aio
the whole system U has a solution in @; therefore it follows from (6.2)
that @ is a direct summand in H.

In fact we have proved a more general .theorejm, namely, that everg
group with the finite intersection property is a direct sum‘m&nd Qiheilcle
group in which it is a pure subgroup. .Therefore every group wi he
finite intersection property is in D. It is ea.sy'to see that the cony erli.
also holds, and thus we have another characterization of the gr'm%p 111 ~.

THEOREM 3. A group G is in D if and only if G has the finite inter-
section property for linear equations. .

7. Remark. I. Kaplangky in his book 55] has cons@ered thedalflf-
braical structure of compact groups (. ‘34—“1-,(;'1)(; f;p??oﬁngo%ﬁerzyﬁ

i ' algebraically compact groups. In 2] S.
ﬁzzlzlllloi)\fnmiiﬁ the :ﬁrgebraimlly compact groups of Kaplansky are pre-
cisely those which are in D.
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On algebraically compact groups of I. Kaplansky
. by
S. Balcerzyk (Torun)

In his paper [2] J. Lof considers a class of abelian groups, that are
direct summands of every abelian group which contains them as pure
subgroups. This class is denoted by D. Zos has proved the following
propositions, giving an interesting characterization of this class:

(1) A group G belongs to D if and only if G is a direct summand of a group
which admits a compact (= bicompact) topology.
(2) A group G belongs to D if and only if @ is a direct summand of group H

of a form
O
7Y 3 0,

P €Ty

In his book [1] Kaplansky introduces the notion of algebraically
compact (abelian) group.

The purpose of this paper is to prove that class D is identical with
the class of algebraically compact groups. It gives another proof of
Kaplansky’s theorem, stating that every group which admits a compact
topology is algebraically compact.

For a prime integer p let R, be the ring of p-adic integers, and M
a R,-module with no element of infinite height, (i. ¢., the module satis-
fies the condition ﬁ};"ﬂI = {0}). Taking submodules p*M as neighbour-

n=1
hoods of 0 we get a p-adic topology in M.

Let us repeat Kaplansky’s definition:
An abelian group @ is algebraically compact if it has the form

G=C+) D,
p

C being a divisible group and D, a module over E,, with no element
of infinite p-height and complete in its p-adic topology (complete direct
sum over all prime integers).

The algebraical structure of algebraically compact groups is fully
known.
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