On the relations between Smith operations
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by
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Let K be a complex, I, the field of integers mod P, p being a prime.
The so-called Steenrod powers [4]

Sty=St*: H'(K,I,)—»H " E,I,) 4
are deduced from the consideration of the pth power K =K x... xK
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under the cyclic transformation !) Oy oy @p) = (Gp, 8y e, 8,_y), g;e K.
On the other hand, from K? under the transformation t, we may intro-
duce in a natural manner according to the theory. of P. A. Smith [3), [2]
a system of homomorphisms

Sw=Smy: H,(K,1,)~H, (K, 1,).

The question what relations exist between the Smith operations Smy
and the Steenrod powers St* haturally arises. The author discovered
formerly [6] that these two systems of opérations are actually equiva-
lent, in the sense that one is determined by the other, and found the
mode of their mutual determination. This furnishes s more natural and
simpler definition of Steenrod powers and makes if directly connected
with the theory of Smith. However, the original proof of the author
depends on the intrinsic axiomatic theory of Steenrod powers of Thom [B6],
which is quite complicated. We need therefore a direct proof without
the use of Thom’s theory, which is the object of the present paper.

§ 1. The de!iniﬁon of Smr
Let I be a finite simplieial complex, K=K x... xK its pth power
—

P
subdivided as a product complex, t: K”—XK” the transformation defined
by t{ay,...,a5)== (@, a1, ...;0,_1), a; ¢ K, where p is a fixed prime. Let

4: K—>EK° be the diagonal map, then 4(K) may be subdivided as K,

) For a complex K, X means the space of K.
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and the complex isomorphic to K thus obtained will be denoted by 4 (X).

Take a subdivision R? of K? such that 4(X) is a subcomplex of £” and
that ¢ is a cell map of R?. Let w be the corresponding chain mapping.
Then for any ;e C,(K) we have

. (w1® . ® ﬂ'/‘p) — (_l)rp(r1>|<...+r,._1)w(wp® 5H® ... ®mp—l) ,

where ¢ denotes also the chain mapping induced by ¢ in R?. Put as usual
d=1—t, s=1 -4t -+ ...+ 1" then for any x ¢ Z,(K,1,), 0s"=w(2Q... ®x)

P .
is always a d-cycle (i. ¢., a cycle 2 with de= 0) and according tq P.A, §m1th
[3), [2] we have a sequence (we shall eall it the sequence associated with x):
H

wXP =8y Xg -

(1) gy 1= 8w+ 5y, 1>0,
Ogy= dityi41 + o1, 120,

in which @/CA(K), z,CK?—A(K), and

(2) dim z;= dim @}=pg—j .

Put d=1-+2¢+ 36+ ...+ (p—1)¢""% then for coefficients mod p we have
for the operations d, dd=s. If we set

s for
Si:{d for

i even,
4 odd ,

then (1) may also be written as

. wLP = 82y + o4

e =811+ &ip1, 120

Detinition. Sup= A"k 1€ Lo (K, 1,)-

Remark 1. The cycle Sz is completely determined by x (as 'Well
as the subdivision £”) and los in the smallest complex |z| det.ermm?d
by ». Tt follows that aj= 0 for j < (p—1)¢, and Sex have a meanng only
for 0 <k<g. In particular, we have Sw=g for ¢=0.

ToMMA. S ZK 1) +Zg I, 1) 15 a homomorphism such that
() Se[BJAK,I)CB (K ,1,), k<dq,
(4) S [Z K, [CB(K,I,), ¢>0.
Proof. Counsider any ,y e Z (X ,I,). We have

o (@+y) —or’ — oy’ =82,
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wherc z=w(@®y®...Qy+...) is a cycle CK? — 4 (I{). Hence the sequence
assoclated with -+ y.will be obtained by adding the corresponding equa-
tions of the sequences associated with # and y. We have therefore S+ y)
=8x(x) +8i(y). Similarly we have Si(—2)=(—1)"Sw=—8z (cootficient
group I,). Hence §; is a homomorphism.

Let ¢ be a (g+1)-dimensional simplex of K: then Si(d0) is a cyels
in the complex determined by o and hencs for k <¢, Si(do) ~0 in this
complex, o fortiori ~0 in K. As 8, is already known to be a homomor-
phism, we get (3). '

Let ze Zy(I,1,), >0, By (1') we get

AT | . -
Syp=A"as,¢C(I,I,) and Oipy—1= Spglipg + Ly .

Hence KI(ap)=KI(~8,07,)=0mod p and we have A%, ~0 mod p

in K if Il is connected. The goneral case follows then from the fact
that S iy a homomorphism. This proves (4), q.e. d.
From the lemma ib-follows that 8, induces a system of homomou-
Pphisms i
Smg: Ho(K, 1) —~H, (K,I1,), ¢»k>0.
Furthermore we have ’ .
9 0, ¢=>0,
Sy H (K, I,) = { ey
in which 1 means the identity. :
Sinee I, is a field, we have, dual to Smy, a system of homomor-
phisms :
Sm*: HOME 1) >HYK, 1,)
such that
qu,'Hﬂ(K,I,,):{ b a0,
1, q=0,

where -1 is again .the identity.

" Remark 2. Let K be a complex, 1 a cell map of & with prime pe-
riod p suel that any face of acell fixed under ¢ is also & fixed coll of t.
The set of all fixed cells under ¢ then forms a (closed) subecomplex L.
Let g-and ¢ denote either d=1—¢ and s=1-+t+..+1" or s and d.
Algo, let HE be the special homology group of Smith determined from
the %-dimensional cycles x satisfying px=0. Then by Smith we have
some homomorphisms

i HYE, 1) ~HE (R,1,),
and ‘ A
v YK, 1) ~H(L,1,).

icm

On the relations between Smit), operations and Sleenrod powers 265

In particular it & is a subdivision B? of KP=F ... XK and t: B2 K"
as given at the beginning of thig section, such that L=4 (K), then fmf
any cycle wmod p of K, qar may be considered as a d-cyele mod p and
the d-homology class of wpr depends only on the homology eclass of
whenee it may be denoted by aX (however, ¢ is not necessarily a homoz
morphism). Then Sm, may be defined ag ’

Smy = Volly oo fhgfisfig

in which #ooceur (p—1)g—% times (g=dim ) alternatively as 4, and
Hay and g is d or s according as % is odd or even. .

§ 2. Relations beetwen Swi and St/
The Steenrod pth powers (» being a prime)
St': A'(EK,1,) ~H"™ (K, I,)

may be defined as follows: Form K? and its subdivision £” with 4(K)
as a subcomplex as in § 1. As in the original proof of Steenrod we may

show that there exists a system of homomorphisms *) {q,j are arbitrary
integers)

Ds Gy R?) >y (127)
satisfying the following conditions 3):
1° Do, j<o.
2° InD'e=Ine, ¢e (R
3% If Telw(o,...0.), o1¢ K, then DfrC|01...ap|.

. -l . : )
42 oY=y 3 oD gppivi e o+ (¢ DM — DY),

a=0

From 1°-4° we may get the following property of Deo:

(1) D"w(al...ap)zcrl...o'p, e K.

Proof. If } dim o;= 0, (1) is true by 2° and 3° Suppose that (1)
has been proved for Y dim o, <% Tet ore I, with dim oy=d;, ¢, +...+
+di=r;, 2 dim o;=k: then by 3° we must have Dw(s,...0,)=20,... 5,
where 2 is a certain integer. From (1) and the first formula of 4°, we get

29(03.1..0,) =800y ... 0) = D% (05.... )

=D'03(07...0) = Y (— 1) Do (0,...00;...0,) ,

) In the case of p=2, D! have heen introduced by R. Bott [1].

®) In what follows we write for simplicity 010, instead of 0:®..®0,, and thus
for the others.

Fundamenta Mathematicae, T, XTIV, 19


Artur


266 Wu Wen-tsiin

which, by the induction hypothesis, is

= D (~1)*0,...961... 0= (010, 0y) -

As 9(0y...0,)#0, we get A=1 and (1) is proved.

Let )

D;: O°H(E? R)—CYR?, R)

be the homomorphisms dual to D’ (R is a commutative ring with unit
element). D; must satisfy the following conditions corresponding to 1°-4°:

1° D;=0, j<O0.

2° It uwe C"(K?,R) takes the same constant value o e R on all ver-
tices of K®, then Dyu e O"(K?,R) takes the same value « on all vertices
of K.

3° D;cClw'e|, where ¢ e OY(K”,R), and o' is the dual of o.

p—1

I° Dyd=06D,; + 2 'Dajai™%, Dajyad=—0Dop41+ (tDet™ — Dyy)

here t stands also for the cochain mapping induced by the cell mapping ¢
in the complex K? or K”.
In particular for ¢ with te=c¢ and de=0, we have

(2) 6D,-c= —81Di_10 .

Let UeHYK,I,): then by definition St{,U=8t'U ¢ H*V(K,I,) is
the class uniquely determined by the cocycle A™'D¢,_y,_° (4 stands
for #®...®u), which is independent of the chosen cocycle u e U. It is
easy to see that this definition of St' coincides with the original one of
Steenrod.

In the above discussion the subdivision EB” of K? is rather arbi-
trary, subject only to conditions already -stated. Now take a canonical
subdivision K? of K? as follows. The complex K? will be formed by the

following three sets of cells: (a) 4(c), 0 € K; (b) 0y X... X0,, where o; ¢ K.

and 6y, ..., 0, have no verfices common to all of them; (¢} 4(s) o {0y X ... Xa,),
where a,0;¢ K, 0, X... X0, @ cell of type (b), and for each 7, ¢ and
o; span a simplex 7; of K (o,0; may have common vertices). The sym-
bol » means the join operation.

In the ecase (c) we have A(o)e(0yX ... X0, Clo(ryX...X 1,)]. Let
dimo=d, dim o;=d;, dim4(0)e (g, X ... X gp)=¢, dim (7, X .. Xr,,)—i then
g=ad-+d+.t+d+1, r<pd+d+...+d,+p, and consequently r< pq.
In view of 2°, 8°, it follows that for any cell & ¢ K” of type (¢) we have
DiE=0, j> (p—1)g. As the same is true for cells of type (a) or (b), with
j>(p—1)g, we have for any csOQ(fF),

De=0, j>(p-1)g,
Dle==¢, gq=0.
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Dually, we have for any ¢ e C*(H?,R),
(3) Dje=0, pj>(p—1)g,
(3" Dye=¢, ¢=0.

From (3) and 1° it follows that for any u e ZYK, 1 ») we have for either
p>2 or p=2,
~ D" = (Dt — Dipg) ¥ = 0 Dpjg 410" = 0,
or .
(4) dDy_yu" =0, weZ%K,L,).

THEOREM 1. The two sets of operations {Sm'} and {St'}, are equi-
valent to each other in the sense that either one may be determined by the
other. The mode of mutual determination is given by the following system
of equations:

0, k>0

5 A% =
) 1, k=0

M»

(—1) Sm* 8t/ = { (p=2 or pkodd),

j=

oz |0 k>0
(6) B*= Zm“*h&”:{f PP ESP
, k=

=

j=0
in which 1 means identity.

For example let us prove (6) as follows:

Let Ue«HYK,I), XecH.(K,L), r=q+2k Take ueU, zeX and
form the sequence associated with # as given in § 1 (1). By 4° and (2),
we then have?):

Sm* ¥ StV - X =StV U - Smgg oy X
=D _1yg—2; ¥ " Tlp_)rr2k—9;
= 0D(p_13g—9j % * T(ptyr42k—2j—1— 8D (p1)g—2;UP * T(p—1yr 4 2ksj
== = 5D p_1g—2j 147 * Ttp—1yr s ak—j—1 — 8 Dip_1)g—2j UF * Liptyryrt—2;
= —d8Dp_1yg-2j1 WP * B3+ 202j—2— 8 Dp—1yg—2 U7 * Bip_1yr4 20127
= +8D¢_1g-2j—2 H"’ * Lpyrrak—2j—a— S D 1395 UP " Xip1yrt2k-2) -

Adding together the above equations, we geb
Bk U X= S.D(p_l)q_gk_z’up " Bp—1yr—2— SD(I,_l)q’ll«p * Lpt)r-t2k -

Now take A? as the canonical subdivision of K7 so that, if we apply (4),
the last term in the above equation vanishes. Applying again 4° and

*) For a cohomology class U (or a cocycle u) and a homology class of the same
dimension X (or a eycle z) on coefficient group I,, U-X (or u-x) will mean the value
of U on X (or of w on x).

19%*
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§1 (1) and noting that xj=0, j <{p—1)», we may successively reduce
the resulting equations as follows:

k
B U'X=D(p_1)q_2k_2 ur. S;Z‘(p_l),-g:.D(p_l)q_gk_‘;’llp' SL(p—1)p—mg =10 =D.,2k,,'up~ S&y.

Bence for k>0, B*U-X=0. Since both X and U are arbitrary, we get
the first equation of (6). If #=0, then by (1) we get

B'U-X=Dyi" - szy=Dy’ - w3’ = 0" - D\ot”) =" - "= (- 0’ =u -,
since the coefficients considered are in the group I,. It follows that
B'U-X=U-X for any U,X, and we get the second formula of (6).

The proof of (5) is similar and will thus be omitted.

THEOREM 2. The sets of operations {Sm'} and {St'} may also be mu-
tually determined by the following relations:

0, k>0

=2 '
1, k=0 (p or pkodd),

k .

(5) JF= Z(—l ¥ St Sm/ = {
=0

0, k>0

; D)
1, k=0 (p=>2).

k
6)  B= M st Sm2f={
Proof. For example let us prove (5)_1'11 the case pk=odd. The proof
of other cases is similar. Suppose that (5) and (6) have been proved in
the case <%k—1. Let §; denote the homomorphism 0 or 1 according as
i>0 or =0: then by (5) and the induction hypothesis we have

D (1 sth s stP=— 3 (st5 Y sm 5]

i>0 j>0 >0
+2 (Stk—zj—i-l Z (—1) Sm¥-i-1 St’i)
i>0 >0 _

_ _Z (Z‘ Stk szj_z.-)‘ s +Z’ (2 (—1y Str-2+2 szj—i—l) St
i>0 i>0

- é; (2(wl)j gl Smj_zi) Qe 2 (2 R AL szj—2i) g1
i i>0

== D oS = Y 5 ST = St
i>0 >0

Hence 4*=0. As A°=B"—1, (5) is proved by induction on %.
Remark. Let f=((1/p)¢), be the homomorphism of Bockstein:

then ﬁSt”‘:—St;”‘“. Hence by comparing fB*=0 with (5) we know
that in case of pk being odd (5) may also be written as

k
A= D st 8mi 0.

j=0
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Similarly for pk odd (5) may also be written as

k
4*= Y sm I st =0.

pd
j=o
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