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On the method of category in analytic manifolds

by
S. Balcerzyk (Torun) and Jan Mycielski (Wroctaw)

1. The following hypothesis may be considered as classical (see
W. Sierpifigki [4] and F. Hausdorff [3]):

(H) The sum of fewer than 28 wnowhere dense subsets of a complete
metric space is a border set in this space.

Clearly, if the continuum hypothesis is supposed, a positive answer
follows by the theorem of Baire on the sets of the first category. Then,
by the results of Godel, (H) is consistent with the present mathematical
knowledge, but it has not been proved even in the case where the space
is the real line.

It is the purpose of this paper to prove (H) for some special classes
of nowhere dense sets in analytic manifolds.

Several applications of theorem 1 of this paper will be given in
other works. This theorem is & refinement of a lemma of J. de Groot
and T. Dekker [1].

2. Analytic surfaces in analytic manifolds. All manifolds
congidered are supposed to be connected, real and analytic.

For two manifolds M and 4, a mapping f: M —A4 iz called analytic
if the local coordinates of f(p) in 4 are amalytic functions of the local
coordinates of p in M.

LeMMA. Let f, and f, be two analytic mappings of a manifold M inlo
a manifold A. If the set 8= {p: p e M, f{p)=1,(p)} has an interior point,
then S=M. ’

Indeed it can easily be proved that then the set § is open and closed
and non-empty. Hence 8=M since M is connected.

Definition. A set § is called an analytic surface in a manifold A
if there exist an open connected set ¢CM, a manifold 4, and two ana-
Iytic mappings f,,fs: C—A such that f,(p,) #/a(p,) for some p, e C, and

SC{p: peC, h{p)=1)}.

THEOREM 1. The sum of fewer than 2% analytic surfaces in an ane-
lytic manifold M is a border set in M.


Artur


296 8. Balcerzyk and Jan Myecielski

Proof. Liet {8;}ter, where T <2% be the family of analytic surfaces
in M and . .
Si={p: pek, fi(p)=g.(p)}

where f, and g, are analytic mappings of a connected open set V(I,)
(I, CV(K,)CH) into some manifolds 4,, and

1) ol % g:(p2) peeV(H).

The proof consists of three skeps.
of the problem.

1. We may suppose that I/ is the »-dimensional Euclidean space &
and K, are closed cubes in &" with faces vesp. parallel to the axes of
a, coordinate system.

In order to prove this let ns consider any sufficiently small open
neighbourhood U in M such that there exists a local system of analytic
coordinates in which all the points of U are expressed. Then let

for some

The first two give reductions

UAV(E)=KqguwEgu...

where K, are the required closed cubes in. U (such a repressmtation of
U~V (K;) exists because M is separable). By the lemma and (1) K,
contains such a point p, that f,(pu) # g;(ps). Then the problem reduces
to the surfaces Sy = {p: p € Ky, fi{p)=g¢,(p)} the number of which iy <« 2%,

2. We may suppose that A, is the real line (for every e 7).

This may be proved as follows:

We take a fixed ¢ ¢ T. 4, being separable, there exists such a de-
numerable system of open sets Uy, U,,...CA, that

00

2) 1e(8e) = g, (8 C LJI U;
and in every U; there exists a local system of amalytic coordinates
&,8, ... & in which all the points of U; are expressed, The sets

3) ) Vi= U A g7 (U)
are open in Jf, and consequently every ¥; may he decomposed.:
{4) Vi= Cj Vij
- J=1
where

() Vi are open connected subsets of .

By the lemma and (1) for every non-empty .V;; there exists such
& pyeVy that £,(py) # g.(ps)).
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Put f=[fly- 11y o=1d7,,07] where f¥ and g are the coordinates
of f, and ¢, on the axis {£8} (for the partial functions 7lV:, ¢Vi). Then
for every p;; there exists such a %; that

(6) 184 (i) # 9F(ps)
We put
kip

Sy ={p: p eV, fp)=gli(p)}

where ¥, /f4, gk depend of course on t.
[+] [=-
By (2), (3), (4) 8,CUU U Su;. By (5), (6) the sets Sy; are analytic
=1 j=1

surfaces in M and their number is <2, Then the problem reduces to
the surfaces S,;, and the funetions y&/, ¢i are real valued.

3. On account of preceding steps we can suppose that M=§&",

"A,= &, K, are n-dimensional closed cubes with faces parallel to the

axes of coordinates in &", and h,=f,—g¢, are real valued functions de-
fined and analytic in K, non-vanishing identically.
n=1. An analytic function non-vanishing identically has at most

denumerably many zeros; then (J§,<2%. Hence |8, is a border set.
teT 1eT

Let us suppose that the theorem is true for some &" and putb
n=m-+1.

Let VC&" be an opsn non-empty set.

For any real x we put
(7) C Pa={p: pe&, p=[&,..,&"al};
then

P,~ K, is a closed cube in P, or is empty.
There exists an », which fulfils the conditions:
(9) P AV £D.
(10) If te? and P,~K,#@, therc exists such a p, Py~ K, that
h(p) 0.
In fact, the set

A= {2 by Py~ Ky) = (0)}
is finite, because in otherwise it would have a limit point, and ly_e__shoulg
have % (K, =(0), contrary to the assumption. Consequently tsLJTX‘<2
and there existy a number

Tye{w: PynV :,éﬂ}\UTX, ,

. {E

and this #, satisfies (9) and (10).

Fundamenta Mathematicae, T. XLIV.


Artur


208 8. Balcerzyk and Jan Mycielski
_We put
‘ ={p: p erme” Ii(p) =

Then by (8) and (10} the sét S is an analytlc surface in P, = &".
Hence by the inductive hypothesis | 8} is a border set in. Py,. Then by (9)
v TteT

Porn¥ G USi=P,~ S,
‘teT L teT

i.e, V (Z“UTS,, which proves the theorem.

8. Convex suriaces in Euclidean spaces. The border of any
convex set in the n- dxmenqmna.l Euchdean space G" iy called a conver
surface.

THEOREM 2.

der set in"&"
" Proof. Let {S,} . 'where T<‘>”° be the family of convex surfaces.
It can easily be Venfled that f01 evely non- empty open seb VC&" there
exists such an x, that PxomV;éQ (see (7)) and Py 8y 18 a convex sur-
face. in P.,, or is empty, for every te T, Then the proof follows, by, an
eagsy induction with respect to ana.logous to the step 3 of the proof
-of theorem 1. : o

The swm of fewer than 2"" convex surfaces in & ‘is & bor-

4. Remarks and problems. 1. Analyzing the proof of theorems 1
and 2 it is easy to verify that the sum of fewev than 2% surfaces in &,
each of them being convexr or analytic, is a bovder set in &". A more na-
tural generalization wotld be of great interest. F. g., we do not know
whether the sum of fewer than 2% simple closed curves in the plane
must be & border sef.

2. Owr theorems concern only finite‘dimensional spaces. Generali-
zations for the infinite dimensional case are also needed. K. ¢., the fol-
lowing problem may perhaps be treated by such a generalized category
method:

Let @ be & set of continuous real functions and 6 <z QN
exist suech a continuous function 'f that

df Sl h)—f(w)
= mm

does . not exlst for every x-and every ¢ eQ‘?

This problem remains open. A positive answer would 1mp1y (by
means of the axiom of choice) the existence of a system of 2% mutually
non-differentiable functions. This has been proved in another (construc-
tive) way by J. de Groot [2].

. Does there
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