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On the existence of free subgroups in tépol(ié(}iﬁ groups
B v by ‘4" 4 \; ts o l

S. Balcerzyk (Torud) and Jan Mycielski (Wroctaw)

1, In this paper we prove the existerce of free algebraic subgroups
in some topological groups. Our chief results (theoremis 2 and 3) stite
the existefice of a free subgroup of the rank 2% in every compact, con-
nected, non-Abelian group and in every locally compact, connected non-’
-zolvable group!). ' : o i R

These problems arise in connection with some special constructions
on the sphere (see e.gy. [12], [13]). W. Sierpifiski [17] has proved that
the group of rotations of the sphere contains a.free subgroup of the
" rank 9%, His proof iy effective (i.c., does not use the axiom of choice).
This effective method is further developed by J. de Groot [53]. M. Ku-
ranishi [10] proves the existence of a free subgroup of rank 2 in every
semi-simple connected Lie group. Clearly our results generalizes all these
theorems, but we are using the axiom of choice and the result of Ku-
ranishi. A part of our reasoning (the proois of Theorem 1 and Lemma 1)
is analogous to a proof of the above mentioned theorem gf Sierpiﬁski
given by J. de Groot and T. Dekker [6].

The authors are indebted-to prof. J. Xog for some general ideas
of this paper. ; ‘

-

2, Notions -and notations. The rank -of a free group F [of an
Abelian free group IF] is the eardinal number of & set of free generators
of F and is, as we know, uniquely determined by F. e

A set of free generators of a subgroup of & group @ is called a free
set in G. S ’ ‘ l o '

The group generated by all-the commutators in-a groip & is hca.]led
the commutant of G. s A : '

":The clogure of ‘the commutant of & topological - group is called its
closed commutant (it is normal becanse’ the closure of a normal subgroup.
is normal). - ’ . ‘

1) These  results have ‘Been announced-in [2].
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A group @ is said to be algebraically solvable it the sequence of dif-
ferent comsecutive commutants in @ is finite and ends on {1} 2).

A topological group & is said to be solvable if the sequence of dif-
ferent consecutive closed commutants in & is finite and ends on {1).

Note that a topological group is solvable in this senge if and only
if it is solvable algebraically (see [4], p. 98), and that the closure of a sol-
vable subgroup of a topological group is a solvable group.

A topologieal group is said to be semi-simple if it has no closed gol-
vable normal subgroups except {1}.

A word is a function on a group of the form

,

k1 Ky
O(@yy.ee s i) = ] Bgy vou T

where s; ¢ {1,2,...,n}, k=1, wﬁ‘#wgfl‘“, and 9,m >1.

A group @ is said to be functionally free if for every word olx,y)
there exist such elements §,mel, that o(&,9)51 (this implies for every
word, o(zy,...,&,) the existence of such &,m ¢ @, that o(&n, &, v 1),

(2.1) A functionally free group is not solvahle.

In fact let «, ., be some variables with indices »=0 or 1, and let
Pa(®,..01 - y21,..1) b6 words defined by
n n

~1 1
Palos i) = wyyrg wy

Pnp1= ‘}71(?7,.(1’0,,..,0,0, e 10)s Pa(@0,,01y e 2“1,---.1,1)) :

If @ is solvable and # is the number of different consecutive commutants
in &, then g,=1 for every substitution from @.

Let us consider functions of the form

(2.2) (1) = agxhuataa, .., ohna,,

where ¢ € G, k; are integers #0, and the following broperty of a group G:
(A) If, for a function 7 and « (non emply) set V open in @&, T(x)=1 for
every weV, then t(z)=1 for every zeG.
It was proved ([14], Theorem 1) that
(2.3) Connected locally compact groups have property (A).
3. A general theorem. Our theorem concerning the most general
class of groups is the following

THEOREM 1. Every topological group G with property (A), functionally
free and such that @ and @ XG are not of the first category on themselves *),
CORLAINS a free subgroup of the rank 8.

*) 1 denotes the unity of the group.

®) See section 6 of thig paper. The sign x denotes the Cartesian product.
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Proof. Since & has property (A), we have
(3.1) For every word o(wy,u,), if o(£,&)=1 for every ¢ €V, & eV,
where V; and V, are some open (non empty) sets in @, then
o(&,6)=1 for every £,5eG4).
Now we shall prove that
(3.2) There exists a free subgroup of & of the rank 8.
For every word o(m,m:,): @ xG =G the set

{<ybadr o(b,d)=1, £,5eQ) = o {1)C @ X@G

is closed. Owing to @ being functionally free and by (3.1) o-Y1) is .
also a border set in G X @& Consequently the set (Jo—*1), where o

rung over the denumerable wet of all words with two arguments at

most, is of the first category in & x G. gignssegluently there exists a pair

Ebd e @ X GNU o(1). Heneo {£6,646,84,...) is a free set in @,

which proves (35). _

(3.3) It M is a free set in G and M =nw,, then there exists such a £ ¢ &M
that Mo {&} is a free set.

Let @ be the set of all funetions @(x) of the form (2.2) (¢: G—>Q),
with @, ¢ [M]®%). Then d=x,. The sets {& p(&)=1, £eGF=¢pH1)CG
are closed. For every ¢, M being infinite, there exists such a ¢ ¢ M that
ar e [M\{L}] (i=0,1,...,m). Then, M being free, p(s)s£1. Hence by pro-
perty (A), for every ¢e®, @-Y1) is a border set in G Oonsequ‘ently
Ue~Y(1) is of the first category in & and by hypothesis there exists a
?:G'\U @~(1), which proves (3.3).

(giietmx']y the statements (3.2) and (3.3) imply Theorem 1 (by means
of the axiom of choice).

4. Somme lemmas on Lie groups. The lemmas proved here are
special cases of the theorems given in the next section.

Lmyva 1. A connected functionally free Lie group G containg o free
subgroup of the ramk 2%09),

Proof. @ is a locally compact space, and by (2.3) G has the pro-
perty (A). Then by Theorem 1
(4.1) @ containg an infinite free set.

Now we shall prove that _ .

(4.2) If M iy a free set in G and n,< M <2%, then there exists such a
Ee N\ M that M} is a free set.

*) The proof iz immediate. In this connection see'[l4], Theorem 1.
*) [M] denotes the subgroup algebraically generated by M. ] -
¢) Prof. J. de Groot informs ns that he has alse obtained this result.
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We consider the set @ of all functions @ defined as in the proof
of (3.3). Then & <2%. The mapping ¢: ¢—@ is analytic (i. e., the local
coordinates of a point p(§) are: analytic functions of the loeal coordinates
of & —see [14], proof of Lemma 2). As in the proof of (3.3) we verify
for every o the existence of an element ¢ ¢ M for which @(£)5£1. Then
the sets g=Y(1)={£: p(£f)=1, £ e G} are .analytic surfaces in the analytic
manifold & (see [3]). Hence Utp"l(D is a border set in @ (by [3], Theo-

peq t i

rem 1), which proves the existence of a & satisfying (4.2).

Clearly {4.1) and (4.2) imply Lemma 1

LeMMA 2. A conneeted, semﬂ?-sim;nle Lie growp G #{1 },'(".0711,@')'.91..9 a free
subgroup of the rank 2%,

Proof. M. Kuranishi [1(5] pr'oves‘ the exi_s'teﬁce'of‘a. free group of
rank 2 in such a group &. Therefore @ is functionally free and go Lemma 2
follows from TLemma 1.

.. 5. Free groups in compact and locally compact groups.
Now we stafe our chiet theorems. - oo :

THEOREM 2. Every compact, connected, non-Abelian group G contains
a free subgroup of the rank 9%, ' ‘

- -Proof. By hypothesis &né™'n" =731 for some &,y @ Since @ is
compact, every neighbourhood of unity in ¢ containg such a closed nor-
mal subgronp ¥ that G*—=@/N is a Lie group (see e. g. [16], p. 326).
Then. we can.suppose that re¢ ¥ and consequently G* is not Abelian.
Hence we have

¥ =(4 X L)/F

(see [16], p. 479) where 4 is a connected compact Abelign grovip, L is
& semi-simple connected Lie group {1}, and F a finite, central; normal
subgroup of A'xL. - EE oo LR e

By Lemma 2 the group I contains a free subgroup W of the rank 2%
The natural mapping of 4 <L on G* is an “isomorphism. on W because
W~ F={1} (the only finite subgroup of a free group is-the unity group):
Then G* contains a free subgroup W* of the rank 2% and consequently @
also; q. e, d.

By (2.3) and Theorem 1 every counecte-d, locally compaet, fune.

tionally free group contains a free subgroup of the rank &;; but we ghall
Dprove more over: L. ) .
TerorEM 3. Every locally compact, connecled, won-solbablé,group ¢
containg a free subgroup of the rank 2%, . -
Proof. By a theorem of Gleason ([4], p. 101) @ has such a closed
normal solvable subgroup N, that G'=G/N .is. semi-simple. A funda-
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mental theorem of H. Yamabe [18] states that every locally compact
group; is a generalized Lic. group. For the connected, locally compaet
group -G'-this means: that (see e g. [117, p. 175 or [8], p: 541):

. Bvery neighbourhood. V. of the wnity of ('I’v\(eoutafzfn.s such @ closed noy-
mal subgroup N' that G'|N' is a Iie group.

Wae wsuppose that V has a compact closure. Then N' is compact.
It ](7’;—_{1} then ¢ ix a semi-simple Tie group and the theorem lioldsl
by Lemma 2. Suppose N'={1}. If N/ iy tolally disconnected, then N,
being a normal wubgroup of a connected group, is central and conge-
quently :Abelian, this iy not possible becanse ¢ is semi-simple. Let N*
be the component of unity in N'. Them N*s£{1} and is a copmact,
connected, normal subgroup of ¢, Hence, ¢ being semi-simple, N* is
non-Abelian - and, by Theorem 2, N* confaing a free subgroup of the
rank 2%, ' :

THROREM 4. Fvery locally compact, non '0'-(17'7)1(’-')787'071@1 group G oon-
tains a free Abelian subgroup of ihe rank 2%, )

Proof. Tt is proved in [15] that @ contains an infinite, connectéd,
closed Abelian, Eubgroup G*, There exists a homomorphism hoof G*
into the group K of rotations of the circle sueh that h(G*) {1} ?); and,
G* being conmnected, h(G*)==K. .Or K contains a free Abelian subgroup
of the rank 2%, and then G* and & also contains such a group. -

6.‘Remarks and problems. 1. Concerning the hypothesis of
Theorem 1 let ns note that we do not know whether the supposition
that G is not of the first category onto itself implies the same on the
product Gx G 9). o o

2. The hypothesis “@ i¢ locally eompact” in theorems 3 and 4 is
necessary because there exist comnected infinite groups every element
of which iy of order '2, and connected functionally free groups every
element of which is of finite order (see [7]).

3. Theorem 3 implies that if for a connected locally eompact group ¢
there exists sueh a word o that

0(51 7'“:5"1):: 1

i. e, @ is not functionally free, then @ is solvable, i. e., one of t}‘w words
#u i (2.1) vanishes identically on @ Can we evaluate n, 4. ., the
length of the sequence of different consecutive commutants of @ by
the length of o?
mlmown theorem of Van Kampen [9], see also [16]: p. 278.

8) A related problem was stated by A, Alexiewicz and W. Oxliez [1].

for overy  &,e.,Eme@,
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Some problems of definability in the lower
predicate calculus

by
A. Robinson (Toronto)

1. Introduction. The present paper!) arose out of the comsiders-
tion of the following problem. .

Let M be an ordered field such that every positive element of M
can be represented as a sum of squares of elements of the field and such
that there exists a uniform bound to the number of squares required
for the purpose. Let A’ be a finite algebraic extension of 3. Is there
a uniform bound to the number of squares required to express a totally
positive element of M’ as a sum of squares of elements of M'?

It will be shown in due course (section 5, below) that the answer
to this question is in the affirmative. Its investigation led to another
type of problem which can be introduced conveniently by means of the
following example.

Let

P(@)=Yo+ Y12+ ... 4 Yu"

be a polynomial of the variable z where Yos--- Y, are parameters which
take values in the field of rational numbers, E. Then the property of p (x)
of possessing (or not possessing) a real root may be regarded as a pre-
dicate of its coefficients, Q*(yy,...,¥,), say. We note that, as stated, this
predicate is not formulated within the field of the coefficients, R, but
with reference to the more comprehensive field of real {or real algebraic)
numbers, B*. However, Sturm’s test shows that there exists a predicate
@Yoy s ¥n), Tormulated within the language of the lower predicate cal-
culus in terms of the relation of addition, multiplication, equality, and
order, such that whenever @(y,,...,y,) holds in R, for rational yy,...,9.,
@*(¥oy.-,ya) holds in R*, and-conversely, whenever @*Yoy---»yn) holds
in B* for rational %,,...,¥x, @ (¥,,...,%,) holds in R.

*) This paper was written while the author was a Fellow of the Summer Research
Institute of the Canadian Mathematical Congress, Kingston, Ontario, 1956. The author
is indebted to A. H. Lightstone for suggesting a number of improvements in the pre-
sentation,
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