98 Sur les théorémes d’unicité

T élément 2(0) peut é&tre interprété comme valewr initiale de z. Cela
étant, les dewx conditions susvantes sont équivalentes: .

(i) Toute solution x de Véguation P(D)x = 0 dordre n, satisfaisant
aux conditions initiales ®(0) = Dz(0) = D" 'x(0) = 0, est nulle;

(i) Toute solution @y, ..., &, du systéme de n équations (3), satisfaisant
aux conditions initiales 2,(0) = ... = 2,(0) = 0, est nulle.

La démonstration de cette équivalence est plus élémentaire que
pour (I) et (II). o

L'inclugion ,,(II) entraine (I)"? se démontre trivialement.

Pour démontrer I'inelusion ,,(I) entraine (II)”, multiplions (3) par
Dt j=1,..,n)

Dwy = apy D+ F o P, (6,5 =1,...,n).
De ces égalités il vient, en tenant compte de (10),
L0) = a4 D 2y(0) 4.+ 05 DT 1,(0),
d’oli successivement
Dzyg0) =0, ..., D" '2;(0) =0 (i=1,...,mn).

Or, tout élément ; satisfait 4 I’équation d’ordre n, P(D)z = 0, ot P(D) =

= |ay—05 D] (cf. [3]). Done, d’aprés (i), on a #; =0 pour ¢ =1, ..., n,
ce que nous voulions démontrer.
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On determinants of Lezanski an.d Ruston

by
R. SIKORSKI (Warszawa)

1. Ruston [3], [4] has developed recently a theory of determinants
of linear equations

(1) 2+Tz = x4

in Banach spaces. His définition of determinants is given only for opera-
tors T belonging to the trace class and is based on the notion of the trace
of linear') operators. The definition of the trace and oi the trace class
is as follows.

Let X be a Banach space and 5 — its conjugate. Let & be the class
of all linear operators from X into X, and &, — the class of all finitely
.dimensional operators from X into X, i. e., & is the class of all operators
of the form?)

2) K= Y &aoo;
where &eZ, r;¢X (i =1,2,...,m). The norm of Kef is \
IEjl = sup (| Ea|l.
lizh<1

Besides the norm || || we shall also consider in R, the following norm:
m
I = infz,l’lmn-uwiu,
iz

where inf is taken over all representations (2) of the operator KeSf,.
It is easy to see that

3) 1K <IEI" for Kef,.

) The word “linear” always means “additive and continuous”.

*) We assume the following notation: the letters , ¢ (with indices, if necessary)
will always denote elements of X, and the letters &, 7 — elements of Z. The symbol &z
denotes the value of the functional £e = at the point xe X. The symbol &x -z, denotes
the product of the scalar &z with the element zye X. If K is an operator from X into X,
then Kx is the value of K at the point weX. Consequently, £Kxz denotes the value
of the functional £¢Z at the point KueX.
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Now we complete the space &, with respect to the norm | II*. The
completed space will be denoted by ®*, the norm in 8" by |[|I*. Clearly,

®, is dense in &".

It T*eR", K, eR, and |[K,—T*|*0, then, by (3), the sequence [Ka)
satisfies also the Cauchy condition Wl‘oh respect to the norm | [, <. e.
there exists an operator Te® such that [K,—T| - 0. The operator T
is uniquely determined by the element T e R*.

The set of all linear operators T'e & that can be obtained in the way
described above is called the trace class of X. The canonical transforma-
tion which maps the element T*eR* onto the operator T'eR is linear
and, by (3),

(4) 170 < 12

I T*eR, Eef®, K,e® and |K,—T"|"—>0, then the sequences
EEK,eR, and K, K e@ satisfy the Cauchy condition with respect to the

norm | ||*. Thus they determine some elements of & denoted by KT*
and T"K respectively. Moreover,
(8) BT = |T* K| < IE|- 177"
The #race of an operator K e, of the form (2) is the number
m
(6) tr(K) = D &,
=1

which does not depend on the representation of K in the form (2). If
TeR, and K e8, is of the form (2), then the superpositions T.K, KT belong

to &, and
ZEWT@

fe=l

Since [tr(K)| < |K|* for K ¢8,, the functional tr(K) can be extended
uniquely to a linear functional on R* denoted also by tr. Moreover,

(7) tr(TK) = tr(KT) =

(8) [be(T*)] <" for I"eR"
For every T*eR* and KeR

(9) tr(T* K) = e (ET"),

(10) [br (7" E)| < |2 1K)

by (7), (3) and (8)%).

) For the detaﬂed examination of the plopertles of the trace and the trace
class, see e. g. [3] and [4].
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Notice that the space & defined above in an abstract manner has
a simple interpretation. Each finitely dimensional operator K, determines
uniquely a funetional on the Banach space & (with the norm || |}), viz.
the functional

Py, (K) =tr(K,K) for KeR

It immediately follows from a general theorem of Schatten ([6],
Theorem 1.2) that the norm of the functional Fg, is equal to [h: A
The linear functionals Fp, (Ko eRy) will be called degenerate functionals
on . Obviously & can be interpreted as a subspace of the Banach space
of all linear functionals on R, viz. the closure of the set of all degenerate
functionals. According to this interpretation, any element T°eR* is
identified with the linear functional

F(E)=tr(T*K) for Kef.

The operator determined by the element T*¢R" is the operator Te8f
satisfying the equality

] F(E) = £&Tx,
for every operator Ke®, of the form

Ko = &a-x2y {(&ed, xgeX).

2. Independently of Ruston, Lezaiiski [1], [2] has developed another
determinant theory of linear equations (1) in Banach spaces (see also [8]).
His theory makes no use of the notion of the trace class.

Let X,5,R,K, have the meaning as above. The determinant
theory of Lezatiski can be applied to equation (1) if and only if the ope-
rator TeR satisfies the following condition ([8], p. 36):

There exists a linear functional ¥ on the Banach space & (with
the norm || [) such that
(11) F(K) = &Tx,
for every operator Ke®, of the form

Kz = §a-zg (&€l 26 X).

Lezanski’s determinant of (1) is uniquely determined by F.
Condition (11) determines uniquely the values of the functional F
on the class &, viz.

(12) F(E) =tr(TK) for Ke,.

Equation (12) immediately follows from (11), (2) and (7).
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Thus we infer that the determinant theory of Lezanski can be
applied to equation (1) if and only if the operator Te® satisfies the
following condition:

(*)  The functional

(13) tr(TK)

defined for KeR®, by (7) is continuous on the space K, with
respect to the norm || ||
In fact, if there is a linear functional F satisfying (11), then it is an
extension of (13), and (13) is continuous. Conversely, if (13) is continuous,
it can be extended to a linear functional F on & satistying (11).

3. The purpose of this paper is to explain the relation between the
determinant theories of Ruston and Lezaxski.

As T remarked in [8], p. 48, Lezanski’s theory is not weaker than
that of Ruston, namely:

TeeorREM I. If an operator T belongs to the trace class of X, then it
satisfies the condition (*).

In fact, T is then determined by an element 7%¢R*. Thus there
exists a sequence K,eR, such that |K,—T*|*—0 and [K,—T— 0.
Hence, for every operator Kef, of the form (2),

m m
wahﬂﬁmﬂﬂhﬁggﬁmm=éﬁm=Wﬂm-

Consequently, by (10), |tr(TK)| < [T K] for Ke&,, i.e. (13) is
continuous. )

Setting F(K) = tr(T*K) for K e in Lezanski’s theory (see e. g. [8]),
we obtain the same formulae as in Ruston’s paper [3]. There is a certain
difference between the definitions of Lezanski’s subdeterminants (see [87])
and Ruston’s [4] subdeterminants.

Now we shall prove that Lezariski’s theory is essentially more ge-
neral than Ruston’s theory, 4.e. we shall give examples of operators T'
which satisfy the condition (x), but do not belong to the trace class (see
§§ 5 and 6).

These ‘examples will be given in the case where X is the space L

of all integrable functions on the unit interval. The examples will be pre-

ceded by several simple lemmas.

4. In §§ 4, 5, 6 we assume X — L. Obviously & is the space M of

all measurable essentially bounded functions in the unit interval I = (0,1)

and ’

?

. .
loll = llell, = [|a(@)idt  for weL
0
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€1 = léllag = supess|(®)]  for  &eM.

M, will denote the set of all functions &e M which assume only
.2 finite number of values.
Let K(s,t) be a measurable function defined on IxI such that

1

1
(14) [ [16(6) K (s, t)a(t)|dsdt < oo * for every EéeM and weL.
00

Then, as is. well-known, the function K(s,?) determines a- linear
operator K from L into L which transforms any element zeL into the
element y = Kxel defined by the formula

1

y(s) = [ K(s, ya()dt.

[]

Any operator K of the above form is called an integral operator.
The function K(s, t) is called the kernel of K. The norm of the integral
operator K with the kernel K (s, t) is the number

1
(15) K| = supzessf]K(s,t)lds.
0

The condition (14) is satisfied if and only if the number on the
right-hand side of (15) is finite.
The kernel K (s,%) is said to be degenerate if it is of the form

m

(16) K(s,t) = ) zs)&t)
i=1

where 2;eL and &eM for i =1,2,...,m.

The class ®, of all finitely dimensional operators (2) from L into L
is the class of all integral operators with degenerate kernels (16).

Let R, denote the class of all operators K with degenerate kernels
K(s,t) of the form (16) where x;eM, and &eM, (i=1,2,...,m.
Obviously ®,C8K,.

(i) If K,eR, and ¢ > 0, then there ewists an operator K eR, such that
| Ey— K" < e _

The operator K, is determined by a degenerate kernel

m

Ko(s, 1) = D) wls)mild)

=1
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where y;eL and n;e M. Let ;e M, be such a function that

T il < 5
V=il < ol

and let z;¢ My be such & function that

&
lles — il < Sl

The operator K determined by the kernel (16) satisfies the conditiong
of lemma (i). In faet, K,—K is determined by the kernel

m

D w() =)+ X (yals)—ai(9)) £(1).

= i=1
Consequently,

m

W —E" < X llyill- lna— &l+ ) lya— sl 16 < e.

qe=1 =1

Let K. be the set of all integral operators K (from L into L) with
kernels K (s, t) such that the number

1
1K« = fsupess|K(s,t)]cls
;o

is finite. Obviously 8 C&. and | K| < ||E[s for Kef,.

(i) K« ts a Banach space with the norm | ||«.

Only the completeness of K, should be proved. The proof is a modi-
fication of the usual proof of the completeness of the space L.
Suppose ||K,—K,/ls—0 for n,m-> co. There exist an increasing

sequence {m,} of positive integers and a sequence {4,} of measurable
sets. such that |4,| < 1/2" and

sup:ess\KmnH(s, ) =Koy (s,8)] <1/2"  for sel—A,.

Let B, = Ap+4,,.,+... and B = B, B,... The series
772;: supless |Km"+1(s, 1) —Kp, (5, 1)]

converges for seI—B, and |B| = 0. Consequently, there exists a measur-
able function K(s,t) such that

supteslemn(s,t)——K(s,t)|—>0 for sel—B.
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Since

1
[ supess|E,(s, 1) —En (s, 0)ds <& for n,p>n,
0 13

thus, by the Fatou lemma,
1
[ supess | K,(s,0)—E(s,t)lds <e for n>n,.
H t

This implies that KeK, and |K,—K|l«— 0, q.e. d.
(iii) For every KefR,

K = |E}°.
Supposed K is determined by the kernel (16). We have
m m 1
__\j 1ilng filg, = :21 supess | £(t) [ o)) ds

1 m
= fZ sup ess|2,(s) &(t)] ds
b i=1 ¢

1 m

> f su])essz () E4(t)] ds
] LI |
1

>fsupesle(s, t)lds = | Kl .
AR

The representation (16) of the operator K being arbitrary, we obtain
17 K[ > 1Kl for KeS,.
Let Kef,. The kernel K (s,t) of K can be represented in the form

(16) where x; are characteristic functions of some pairwise disjoint
measurable subsets of I. Hence we have

1Bl = 3 el il > 1K),
ic1
This proves that
(18) K]« = |E||" for KeQ,.
It follows from (i) that, for any operator Ke®,, there exists a se-
quence K,e®, such that |K—K,|*— 0. Since |[E—K,ll«+—0 by (17)
and ||K,lls = ||Eu* by (18), we obtain

K" = lim | K" = lim [[Kplle = [1E],

which completes the proof of (iii).
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Tt immediately follows from (i), (ii), (iii) and the definition of the
trace class that

(iv) 4 lLnear operator T from L imto L belongs to the trace class of L
if and only if there ewists a sequence of operators K,eR, such that
K, —Tls > 0.

The space K" can be interpreted as the subspace of the Banach space R,
(with the norm | |l+), viz. the closure of Ky tn K*. The norms || {I*, || |« are
equal®).

Lezanski [1], p. 267, has proved that

(v) If TeRs, then

(19) ltr (TE)| < [Tl K| for

Consequently, T satisfies the condition (*).

KeR,.

5. There exist operators T ¢ K. which are not completely continuous®).
An example of such operators has been given by J. von Neumann (see [9],
p. 322). We quote here another, simpler example due to C. Ryll-Nardzewski.

Let {rn(s)} be the Rademacher orthogonal system, and let T be the
integral operator with the kernel

e

(20) T(s,t) = 3 m(s)mit)

-

N=

where (1) is the characteristic function of the interval (1/(n-1), 1/n).
In other words,

BEP

n-+1 < n’

Clearly, TeR. since the kernel 7'(s,t) is bounded.

Let a,(t) = n(n+1)g,(t). We have |2,/ =1 and Twx, = 7,.

The set of Rademacher functions 7, is not compaet in L since
[a—7mlly, = 1 for # = m. This proves that the operation T' is not comple-
tely continuous. )

EBach operator belonging to the trace class is completely continuous
since it is the limit (in the norm) of a sequence of finitely dimensional
operators (for the case X = L — gee (iv)). Hence we infer that the inte-
gral operator T with the kernel (20) satisfies the condition (x) (see (v))
but does not belong to the trace class of L. Consequently, the Lezanski
theory can be applied to the operator 7, but the Ruston theory camnot.

T(s,t) = rp(s) for

‘) During the print of this paper C. Ryll-Nardzewski has proved that &* is
identical with &.. .

‘) On the other hand, if T'e R+, then the superposition 77 is completely conti-
nuous. See [9], p. 323.
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Incidentally we have proved
THEOREM IT. There exist linear operators which satisfy the hypothesis (%)
of the determinant theory of Lesariski but are mot completely continuous.

6. The examples given in § 5 are rather complicated. Now we.shall
prove that there exist very simple and natural operators which satisfy
the Lezaniski theory but do not satisfy the Ruston theory. As an example
of this type we quote here the integration operator T':

8
Tz =y where y(s)=[a(t)di,
0

i. e. the integral operator I' (from I into L) determined by the kernel
1 if
0 if

0<t<s <1,

T(s,t) =
&8 { 0<s <t <1,

The proof will be preceded by the following lemmas.

(vi) Let I = A;+...+A, be a decomposition of the unit interval I into
disjoint measurable sets. For every sel except a finite number °), there emists
a positive integer § = i(s) <r such that

[Aig(0,8)[>0 and [dyy(s,1)| > 0.
For suppose that it is not so. Then there exists an infinite set B C I
and a set C of positive integers 7 < r such that, for every seB,
[4::(0,8)] = [4;] and |43 (s,1)] =0 for deC,
[4;-(0,8) =0 and [4g(s,1)] = |4y for 4eC.
Hence it follows that the set
2, s
ieC
differs from the interval (0, s) only by a set of measure zero. Conse-
quently,

s=10,9) = D[4 for

1eC

seB,

which is impossible since-the right-hand side-is-constant and the left-hand
side is not.

(vii) For every operator KeK, with the kernel (16), where x;e L and
&ieM,, we have |[T—Kll« > %.

&) More exactly: except a number < 27,
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Let I = A,+...-+A4, be a decomposition of I into disjoint measu-
rable sets such that each function & is constant on each set 4;
(G=1,2,...,m;4=1,2,...,7). Let i(s) have the same meaning as in
Lemma (vi). The function K(s,%), considered as a function of one
variable 1, iy constant on A;. On the other hand,

1 for
0 for

tG-Ai(c)(Oy $),

T ={ 16 A5, 1).

Since these sets have a positive measure, we infer that
supess | T'(s, 1) —K(s, {)] = 4,
2

which implies (vii).
TEEOREM III, The integration operator has the property (*) but does
not belong to the trace dlass of L7).

The first remark immediately follows from (v) since [[Tfs << oco.
The second remark follows from (vii) and the first part of (iv).
By a similar meéthod we can prove that if f is a bounded function
continuous in the interval (—1, 1), except a point s (—1 <s§y < 1)
where
lim f(s) = lim f(s),
8->8y— 88+
then the integral operator I' with the kernel T'(s,t) = f(s—1t) belongs
to K. and, consequently, satisfies the condition (*) but does not belong
to the trace class of L. The hypothesis about f can be weakened.
In particular, if g is a continuous function on <0, 1) and ¢(0) %0,
then the integral operator y = Tz defined by the convolution formula

8

y(8) = [g(s—t)w(t)ar

0

(xeL)

belongs to K., but does not belong to the trace class of L. This example
shows that the trace class of L is rather small.

7. Consider now the case of the space I of all absolutely convergent
series. Its conjugate is the space m of all bounded sequences.

’) During the print of this paper I observed that Theorem III is an immediate
consequence of a more general theorem of A. Grothendieck.(cf. A. Grothendieck,
Produits tensoriels topologiques et espaces mucléaires, Memoires of Amer. Math.
Soc. 1955, p. 59).
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Bach linear operator K from I into I is uniquely determined by an
infinite square matrix {xy}, .e., it is of the form

Kz = {é'xﬁa,} for @ = {o}el.

The necessary and sufficient condition for a matrix {xi,-} to determine
2 linear operator K from ! into l.is that

(21) sup D' |uyl < o0,
7 i3 )

Number (21) is then the norm || K| of K.

Let

I = D) sup .
i=1 7

Obviously | K| < [K|ls.

Just as in §§ 4-6, let &, be the space of all operators K such that
[lE|lx < oo. Let & be the set of all finitely dimensional operators, and
let R, be the set of all operators K of the form

m
Km:Zfiar-ei,
Tl
where £;em and e; is the i-th unit vector of I, i. e,
e, =1{1,0,0,0,...},
e =10,1,0,0,..},

Obviously, & C & C K,.
(viii) For every ¢ > 0 and K,eR, there is an operator K eS8, such that
1K, —E|* < e
(ix) The set K is a Banach space with respect to the norm || |-
(x) For every KeSf,
1B = 1K
(xi) If TeRs, then

[br(TE)| < |TIIE]  for  KeSy.

The proof of (viii), (ix), (x), (xi) is similac to that of (i), (ii), (iii}, (v)
respectively.
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(xii) The set K, is dense in Ry (with respect to the norm | [l).
In fact, if KeQ, is given by a matrix {x;} and K, is given by the
matrix
%10y %12y %139 .-
n1y Kngy Kngy e
07 O? 07
07 07 07
then K,eR;, and ||K,—K|x— 0.
In the case of the space ! the determinant theories of Ruston and
Lezanski-arve equivalent. More exactly,
THEOREM IV. The following conditions are equivalent for any linear
operator T from 1 imto 1:
(a) T belongs to the trace class of
(b) |IT)le < o0 (i.e. TeRs);
(e) T satisfies the condition (x).
The space K" is identical with the space K¢ and || |* = || |». If Te8K
is determined by the matriz {vy), then

tl‘(T) = Zaj Tii .
i=1

Similarly to (iv), we can prove on account of (viii), (ix), (x) that
the space K" can be identified with the subspace of R, which is the
closure of & in K,. By (xii), this subspace is identical with the whole
space K. Thus proves also that conditions (a) and (b) are equivalent.

By (xi), (b) implies (¢). To prove the converse implication suppose
that the operator T determined by a matrix {7y} satisties the condition ().
Let |[F]| be the norm of the linear funetional ¥ (K) = tr(TK) for K8,
(see (13)).

Let & = {riy} for i = 1,2, ... Clearly, &em. For every & > 0 there
exists & sequence 2; = {ay;}el such that |zl =1 and &z > )&, —e.
The operator K (from 1 into 1) determined by the matrix

Uu1y Q1) «eny Gy, 0,0,0,...
By Gagy +ovy Oagny 0, 0,0, ...

belongs to K& since, for every zel, Kw is a linear combination of elements
L1y vy Tp. Moreover
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K] = sup 3 fan] = sup gl = 1
i N=1 1

and

i=17=1

F(K) = tr(TK) =227iiaii =Z§i$i
=1

m
2 D illon—me = 3 5up [ry] —me.
g=1

i=1 7

The number &> 0 being arbitrary, we obtain

m
IP) > Y suplryl  for m=1,2,..,
i- 7

which implies ||Tls < ||F] < co.
Notice that this inequality together with (xi) proves that [|F|| = ||T}..
It is easy to see that s

G(I) = D7 (TeRe)

i=1

is & linear functional on the space R, (with the norm Il 1l+), and that
G(T) = tr(T) for TeR,. Hence, by (xii), G(T) = tr(T) for every TeR..

8. In the case of the Hilbert space H the ‘determinant theories of
Lezafski and of Ruston are also equivalent.

TerorREM V. The following conditions are equivalent for every linear
operator T from the Hilbert space H into H:

(&) T belongs to the trace class of H;

(b) T satisfies the condition (*);

(e) T' is the superposition of two operators, T, and T,, belonging to the
Schmidt class®).

Theorem V is only another formulation of some theorems of von
Neumann and Schatten (see [7], Theorems 2.1, 2.2 and 2.3; see also [3],
Theorems 5.11, 5.12, 5.13).

Notice that the norm of functional (13) on the space 8, of all fini-
tely dimensional operators from H into H is equal to ||(TT)"| where T
Is the operator associated with T (see [7], Theorem 2.1).

f) An operator T from H into H belongs to the Schmidt class if
00
2 N(Tw, 3P < o0
i1

for every orthogonal normed sequence {@4}.
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The integration operator T' in the space I? of all functions integrable
in the second power on (0, 1) does not satisfy the hypotheses of the de-
terminant theories of Lezanski and of Ruston. In fact, let us consider
the operatior K R, (from L? into L?) of the form (2) where &(t) = sin2sxj¢
and x;(s) = cos2xjs.

‘We have ||K|| =1 (see [6], Lemma 3.3) and

r(TEK) Zl'ofl

The positive integer m being arbitrary, we infer that

sup [tr(T'K)| = oo,
K<l
Kefy

1

o 1
__j—Zl‘;

sin 2n]t

2 L%

4. e. the condition (x) is not satisfied.
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Sur I'espace linéaire avec dérivation

par

J. MIKUSINSKI (Warszawa)

1. Soit ¥ un espace linéaire sur un corps commutatif @ de caracté-
ristique 0. Soit D - ndomorphisme, assujetti & la condition suivante:
) Quel que soir n naturel, toute équation P(D)x =0 dordre n
(P(D) =D"+a, ;D" '+...4+a)) a au plus n solutions Ulinéairement
indépendantes.

Dans un travail antérieur [1] j’ai démontré que s'il existe un autre
endomorphisme 7 tel que
(1) DTz = TDz+z,
la proposition suivante a lieu:

(IT) 8i wne équation Py(D)z = 0 a exactement p, solutions linéaire-
ment indépendantes et une autre équation Py(D)x = 0 en a evactement p,,
Véquation Py(D)Py(D)x =0 a exactement p,--p, solutions linéairement
indépendantes.

Done, I'existence d*un endomorphisme 7 satisfaisant & la condition
(1) est une condition suffisante pour que la proposition (II) ait lieu.

Le but principal de cet article est de démontrer que cette condition
est aussi nécessaire, pourvu que tout élément de F soit une solution d’une
équation P(D)zx = 0.

La condition (II) exprime que, si I’on multiplie deux équations, les
nombres de leurs solutions linéairement indépendantes s’ajoutent. Lors-
que ’endomorphisme D est interprété comme une dérivation, 'endomor-
phisme T joue formellement le réle d’une multiplication par un argument
par rapport auquel on effectue la dérivation.

2. Soit Q(&) = &40, 8" +...+b, un polyndme irréductible
dans @. Posons ’
0 1 ¢ o
0 0 1
Be=| v,
0 0 0 1
—by —b; —b, —bg_,

Studia Mathematica XVI.
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