Spaces of continunous functions (I)
.(My~spaces)

by
7. SEMADENI and P. ZBIJEWSKI (Poznain)

We know many necessary and sufficient conditions for a Banach
Tattice to be equivalent to the space of continuous functions on a certain
compact Hausdorff space; we believe that the most important are those
found by S. Kakutani [2] and M. and 8. Krein [4], namely:

(1) @Ay =0 imples |o+yl| = llz—yl,

(2) >0 andy >0 imply [l Vv yll = max ([, lyl)

(3) the unit exists

(the strong or order unit, 4. e. the element ¢ such that |z <1 is equi-
valent to VvV (—2z) < e). !

In this note the procedure of Kakutani is extended to the space
of continuous functions on & ¢-compact

Q= U ‘Qny
n=1
which, provided with the almost wuniform convergence, is a Bj-space;
we also generalize further results of Kakutani concerning the general
form of linear functionals and the topological uniqueness of .

Part 1. Representation

1. Definitions. The functional |[z]| is called an M-pseudonorm if it
is a B-pseudonorm?) and satisfies (1) and (2); it is called an M-norm
if the condition |jz] = 0 implies « = 0. .

A normed vector lattice X is called an M*-space if the metric in
X is determined by an M-norm. A complete M*-space is called an
M-space.

1) Notation and auxiliary notions on Bj-spaces are taken from [5].
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We shall say that an M*-space X has a wunit if there exists in X
a strong unit e. A vector lattice X is called an M;-space if it is a B;-space
under a sequence of M-pseudonorms. A complete Mg-space is called an
My-space.

If |jz}] is an M-pseudonorm in the vector lattice X, by the quotient
space X /||| we shall understand the space X /Ml in the usual linear and
metric sense, with an order relation > defined in the following way:
2| Z y/I| if and only if there ewist z;ex/||| and y1€y /Il such ihm;
2y 2= Y-

Since conditions (1) and (2) imply Izl < llyll when |z] < ly], we see
that the set {m: llzl) = 0} is an l-ideal in the sense of G. Birkhoff and
therefore ([1], p. 222, Theorem 9) X /||| is also a lattice. Moreover, we have
- LE]&?IA 1. If |zl is an M-pseudonorm in a wector lattice X, then X |||
is the M -space and (z V y)[I1l = /|1 v (@/I1)-

This enables us to introduce a definition of unit. An M;-space X
will be called an M*-space with unit if there exists an element eeX and
a sequence of M-pseudonorms |z, Hal, ... determining the topology
of X such that the coset /|||, is a unit in X, =X/, for n =1, 2, ...
In this case we shall call e the unit under the pseudonorms ||zl , || ,
or, shortly, the wnit in X. T

Let X be an arbitrary B,-space. By X* we shall denote the Space
of all linear functionals.over X and by X, the set of functionals of order n
(t. e. continuous with respect to the pseudonorm

max [z];).
i=1,...,7
Evidently X, C X;,, and
' X, =U X,

n=1

]

(see [6], p.139, Theorem 2.2.1). Since

maX |jzf; =0
i=1,...,n

and £eX, imply &(z) =0, the space X is equivalent to the conjugate
space of X, = X/|I,-.

LevMMA 2. The topology induced on X, by the weak fopology of X*
(i. e. the topology with the system of neighbourhoods

Uléps 215 ..., 3 8) = {EEX*: |5(-’Ei)—§o(ﬁ7¢)l<£} for i=1,..

o n)

is equivalent to the weak topology of X, considered as the conjugate space
to X,. Moreover, X, is closed in X*.


GUEST


132 7. Semadeni and P. Zbijewski

2. Examples?). We now give some examples of M -spaces.
1° The space X = Cp(—o0, oo) of all functions «(t) continuous in
an infinite interval, with pseudonorms

lolly, = max |2(¢)]
¢=nny

and the usual order. The function e(t) = 1 is the unit.
1* The same space has no unit under the equivalent pseudonorms

llzly, = n- max |z(t)].
¢-n,m

1* The same space with the pseudonorms

1 for t<n

n—t  for

where

= max |z (z) enlt)l on(t) =

{~n,n)
Here every quotient space X, is incompléte and “without unit.
2° The space of all real sequences {,} with |z, = j@,]. The sequence
{1,1,...} is the unit.
3° A countable product
oo
X=PX,

n=1

of M-spaces X,,X,,... If 2 = {ml,mz, } (where x,eX,), then |z|, =
= |@g]l. The space X has a unit if and only if every space X,, has a unit ¢,.
In this case the unit of X is e = {e;, ;,...}.

4° The space X of all functions continuous on (—oo, oo) such that

lime(t) =0,
t—-ro0

with pseudonorms

2l = sup |2(2)].
{—n,00%.
X has no unmit.
B° The linear lattice spanned on all polynomials defined in <0, 1>
such that 2(0) = 0 is an M*-space without unit.

6° The linear lattice spanned on all polynomials in (—oo,
an Mg-space with a unit.

oo) i8

%) Detailed analysis of these examples will he published later.
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7° Let Q be a o-compact Hausdortf space and let
oo
2= Q,
=1
where the 2, are compact. The space Cy( Q) of continuous functions defined

on £ is an M;-space with pseudonorms

(4) [l = max|z ()|

. n

and unit e(z) =1%).
8° Let Q be o-compact, {f,} and {t,} (ae) two sets of points of Q

and {4} (ae?) a set of real numbers. The space

(5) Oyl Q25 1y, tgy Ay, ae )
of all functions continuous on Q2 sueh that z(t.) = A,2(%,) for ae is an
M;-space with pseudonorms (4). If, for certain e, A, %1 and t,, i,
are limit points of L2, then there exists no unit under these pseudonorms.
9° The space X of all functions continuous on <0, 1> and such that
bt
lim‘v( )

n
t>0 b

=0 for n»n=1,2,...,

with pseudonorms

(1)

b

[l = sup
01

has no unit. Moreover, X cannot be equivalent to a space (5) under any
equivalent system of pseudonorms.

3. Representation. In this section we obtain the necessary and suffi-
cient conditions for a given M -space X to be equivalent to one of the
spaces Co(Q) and Cy Q;t,, b, Ay, ae?).

LeEMMA 3. The completion ¥ (in the usual sense) of an M*-space ¥
is an M-space.

Proof. We shall prove only axiom (1), i.e. that yAz = 0 implies
ly+2ll = ly—=| for any y,ze¥. Let

y = limy,

N->00

and 2 = limg,

N—~>00

where y,¢Y and z,¢ Y. Since

[¥n— (?/n/\zn)]/\[zn_ (y1z/\7n)] =0,

2) Og(2) is complete (metrically) if Q is locally compact.
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we have
”[:’/‘n—(yn/\zn)]'{'[zn_ n/\g'n)]” = ”[yn"‘
Passing to the limit we obtain

(yn/\zn)] - [2’,,, - (?/n/\en)]”-

lle+yll = lim ||y, — 2 (YnA2p) +-24ll = lim [ly, —2ll = [ly—2]|
N—>00 N—+00

because
lim ya/\z,

n-r00

Levma 4. If |lafh, (o], -

= yAz = 0.

are M-pseudonorms, then

lell =max ol (n=1,2,..)

forms the equivalent system of M-pseudonorms. ‘

The proof is trivial. By this lemma we may restrict ourselves to the
consideration of only Mg-spaces with monotone pseudonorms, ¢. e. those
satisfying the condition [z, < [|#lly. for » =1,2,...

Now, denote by @, the set of all functionals &eX, satisfying the
following conditions:

(6) &> 0; w/Ay =0 implies &(z)-£(y) = 0;
(7) Nélh, = 1.+

Denote by 2, the closure of @, in the weak topology. Put

D = U @, and

=1

2= U”n-

N=1

Evidently (by lemma 2) 2 is o-compact in the weak topolégy induced
from X*. Any £¢2 of order n is also of order m--1, moreover for £e®
we have

sup &(x
12l 4 1<

1élly = sup &(z) =
Il <1

= l&lm1-

If for every £e2 the condition &e X, implies ||&], = [Ellpsr, We say
that the pseudonorms |z, [|#ls, ... are consistent. In other words: the con-
sistency of pseudonorms is equivalent to the inclusions @, C £,,,
(n=1,2,..)

TEEOREM 1. Every My-space X with monotone and consistent pseudo-
norms s equivalent in the linear, metric and lattice sense to a dense subset
of & space ¥ = 0y(2;1,,1,, 4, ae2) (see example 8°).

Proof. For every £,e2—® there exists a £,¢® such that & = A, &
and 4, < 1, namely A, = ||&,]| (see [2], p.1001). Putting

(8) ' z(£) = £(x) for (feR

and every xeX.~
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we define a one-to-one mapping ¢ of X into ¥; it i3 clear that the
function (&) is continuous on £, and that

p(z+y) = e(@)+(y),

llelle = ?&Xlw(f)l = llo(®)lx,

>y implies x(£&) > y(&) for all 55!) i.e. p(x) = p(y).

By Lemma 1, Lemma 3 and the theorem of Kakutani ([2], p. 998,
Theorem 1) we see that if z(&) > y (&) for all &, then z/||-[,, = ¥/l|-|l, for
arbitrary n. But #/||-|l, = y/l|‘l means that there exist =, and y, such
that llz—2ulln = Iy — Ynlls = 0 and 2, >y, . Since |zl < llall, for n < m,

we see that |lx—a,l, = 0 for m > n. Hence
¢ = lima,
>0
and similarly
y = limy,.
Nn—-00

From the continuity of the order relation we obtain x = y. It remains
to prove that for every x,¢Y and ¢ > 0 there is a yep(X) such that
lle—y|l < e. Choose n such that 1{2" < ¢/2; then the fumection #%(f) can
be approximated on £, by a certain y, = g(x,) so that [lz—uy,l < ¢/2,

whence
e R S N T e 1
=3 S e
I — P 1t lra—ale | e P Tl & P *3

This completes the proof.

COROLLARY. If the pseudonorms are consistent and X is complete,
then any quotient space X, = X /|||, is complete.

LemMA 5. Let |z| be an M-pseudonorm. If eeX is such that ef|-||
8 a unit in X/||-| and x| <1, then [e— (eva)| = 0.

Proof. If flzll < 1, then z/|-|| < /||, whence e/||-|| = w/[-IVe/ll| =
=aVell-|.

LeEmMMA 6. If e is a unit under the pseudonorms |xlly, ||zlk, ..., then e
18 a unit under the pseudonorms
flzlly = max ||l
i=1,..,7
Proof. If |jafl <1, then |a]; <1 for i=1,2,...,n and, by

Lemma 5, lle—(eV#)l; =0 fori =1,2,...,n, whence |e—(eVa)n = 0.
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THEOREM 2. For any M space with a unit there exists a o‘-cothact
Hausdorff space

o0
2= s,
n=1

such that X s linear and lattice-isomorphic wzth the space Co(2) of con-
tinuous functions on 2 and if z— x(t) in this isomorphism, then

max |lz|l; = max |z(t)|.

i=L..,m 16y,

Proof. If the unit exists, then condition (7) can be replaced by
£(e) = 1. It follows that the existence of the unit implies the consistency
of psendonorms. Moreover, then all &, arve closed (i.e. &, = 2, and
® = 2), and the set U of indices is empty. Therefore by Theorem 1,
(8) is the mapping from X onto Cy(2).

COROLLARY. If the unit exists and X is complete, then all X, are also
complete.

Part II .Linear functionals over Co(Q2)

1. General form of the linear functional over ¢, (2). By the theorem
of Kakutani ([2], p. 1012, Theorem 10) about the general form of linear
functionals in M-spaces and a theorem of Mazur and Orlicz ([6], p. 139,
th. 2.21) we get

THEOREM 3. Every linear functional on the Mg space X = Cy(2)
can be represented by the integral

) t(2) = [a(t)du,

2
where p is a c-additive set funciion of bounded variation defined for Borel
subsets of 2 and vanishing outside a certain Q,. Moreover, £eX) and

Hf”’m = Va‘T/‘

2

for  m >mn.

2. Weak convergence in (,(Q). We prove

THEOREM 4. The sequence [arm] CX = Cy(2) is weakly convergent
o a9 (1. e &(@) = limé(ay) for each &6 X*) if and only if
M0

(10) sup o, < oo (n=1,2,..),
M=12,...
(11) I (1)~ o(8)  for every teQ?)

‘) A generalization of a theorem of Banach (see S. Banach, Théorie des opé-
rations linéaire, Warszawa-Lwéw 1932, p. 224)
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Proof. The necessity of (10) follows from the Banach-Steinhaus
theorem, (11) is trivial. The sufficiency is an immediate result of the
integral representation (9) and the Lebesgue theorem on term by term
integration. :

TBEEOREM 5 (The generalized theorem of Dini). If ape X, T = Ty
for m =1,2,... and x, are weakly convergent to x,, then x,, are strongly
convergent to xq, i.e.

lm {lory, —#olly =0 for n=1,2,...
M0

Proof. Given integer n and & > 0, write
FGD = {te Qy: lan () — ()] > ¢}

Since FW = F& D FRP,, and
20
NEFD =0,
=1
from the compactness of 2, follows the existence of an m such that F@® =0,
whenece ||x, —xll, < &

Part III. Topological properties of Q

In this section we establish the topological invarience of o-compact 2
under some tranformations of C,(2) and soms connections between the
properties of @ and C,(Q). The method used is a generalization of that
of Kaplansky (see [3], p. 617-620, and also [1], p. 175-176) who used
it in the case of compact 2.

1. Topological uniqueness of Q. We remark first that if .Q s
completely regular and o-compact, then the M;-space Co( Q) determines
topologically 2. .

In fact, if C(2,) = C(2,), then 2, = 2, = 2, = 0.

- top top top
Let X be a lattice Co(2) of real-valued continuous funetions defined
on o-compact 2. Denote by I the family of sets I C X satisfying the
following conditions:

(12) xel and y < o imply yel,
o0 o0
(18) if w,el and V x, exists, then lenel,
n=1 Ty
oo o0
(14) if y,e X—I and A y, exists, then /\lynEX*I-
- =1 n=
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In other words, J is the family of o-prime o-ideals. :

We shall say that an ideal IeJ is associated with a point te 2 when
the conditions wel and y(¢) < #(t) imply yel.

Lemma 7. If Q s locally compact, then every ideal IeJ is associated
with a certain point te L.

Proof. Suppose that I is not associated with any point tef. In
particular, for any tef, there exist functions a;(r) and Y«r) such that
#el, yeX—I and at) > yi(t). The sets G(xy,yy) = [v:a(7) > 7))
consist of an open covering of the compact set £,, whence there exist
a finite number of points 4, ...,?, and corresponding pairs of functions
@1y Y1y -+ oy Ty Ym Such that oyel, y;e X—I (i =1,...,0) and

m m m
'Qn c _LJ]G(a'iy :’/i) C G( V“‘i, /\ "/1)
i= J i=1

i=1 i=

By (13) the function

m
p = \@;

i=1
belongs to I and by (14)
by = A
i=1
belongs to X—I (n =1,2,. .), moreover On(t) = by(t) on 2,. We put

\lyy  m =g and
1

I~

n

n :z\=/1ai7 by :i = hy;
then g,el and %,e X —1,

Suppose that wy, ..., u, and »,,..., 2, ave already defined so that
WnEI’ 'Dne-X_Iy In Zuny hn <'Un7 ”n(t) =un—l(t) for te'Qn—h Q’ﬂ(t) =
= Un1(t) for teQ, ;, and wu,(t) > v,(t) for te 2,. We put

Unt1 = G A(Va V 0,) and v, = hup1 V(U Ay).

Evidently u, eI, ty€X—~1 (from (12)), g, 2 Uppy =2 Uy and
b1 < vppq < 9,; moreover Un1 (8) = Up(?) and v, (t) = v, (t) for te,,
Upy1(t) = vyyq () for 16821,

The sequences {u.,,} and {'un} are convergent with respect to the norm

= max |z(t)|
. ol L e
) | el Z 5 Trmaxo ()
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Let v, = limw, and v, = limgy,. Since {u,} and {»,} are monotone,
we have
-] oo
Uug= \ %, and vy= A 7.
n=1 n=1
Next, by (13) eI and by (14) v,e X —1I. This contradicts (12), for u, = v,.

LeEmMA 8. Any ideal Ied is associated with only one poini of 0.

LEMMA 9. Two ideals IedJ and I,ed are associated with the same
point te 2 if and only if ;N I, contains an ideal Ized.

Lemwma 10. Let 2, be a fized function from X, and 8 any subset of Q.
Then & point t belongs to S if and only if a certain ideal Iyed associa-
ted with t contains the intersection J(S,z,) of the totality of all ideals
Ied containing x, which are associated with points of S.

THEOREM 6 (The generalized theorem of Kaplansky). If a space
X = 0y(2) of continuous functions on & locally compact and c-compact
Hausdorff space Q can be mapped on a space ¥ = Cy( D) in a one-to-one
and order preserving manner, then £ = &,

top
The proofs of Lemmas 8-10 and of Theorem 6 do not differ from the
proofs given by Kaplansky [3] (or by Birkhoff [1], p.175); they are
true in completely regular spaces.

2. Other cases of the invariance of locally compact and os-com-
pact Q. In the previous section it has been proved that the lattice Cy(£2)
determines 2 (to within the homeomorphism); we now give other results
of the same kind.

TEEOREM 7 (The generalized theorem of Gelfand and Kolmogorov).
The ring Co(R) of continuous functions determines 2 topologically 5).

Proof. We put « >y if and only if there exists a funetion ze¢ X such
that. #—y = 2%. Thus the points of 2 and its neighbourhoods can be
constructed in terms of addition and multiplication only.

THEEOREM 8 (The generalized Banach-Eilenberg theorem). If X =
= 0)(2) can be mapped onto ¥ = Cy(P) in a one-to-one manner so that
all pseudodistances are preserved (i. e. if x1—y1 and T Y, then
max (1) —a,(t)] = max [y (t)—ys(t)| for any n), then

ey, ey,
Q=0
top

Proof. Let ¥ = f(z) be a transformation of X into ¥ such that
1 (@) — f (23 ln = |lry — 23]l for % = 1, 2, ... We can suppose that f(0) = 0.
In particular |f(;)—f{@s), = 0 if and only if [z —@yfl, = 0. This means

5) This theorem is due to E. Hewitt (Trans. Amer. Math. Soc. 64(1948), p. 88-89).
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that the mapping § = f,(8) (where zeX /|||, = €(2,) and FeY /|l =
= 0(®,)), defined as § =7,(Z) when y =}(z) for zex and yef, is an
isometry between C(2,) and €(®,), hence a linear isometry. Let ¢ be
the unit in X, 4.e. the function e(t) =1 on Q. The partial function
e(t) = e|Q, is an extreme point of the unit sphere in ¢ (£2,), whence
fu(€n) is an extreme one in C(®,). It follows that f(e) is a function
taking only the values 41 on ¢ and —1 on @, where @ and @' are
open-and-closed subsets of @. Hence if we define & > 0 when

X

Tell, ~°

<1 for

==

n

e, =0 or

we preserve the order on ¢’ and invert it on @', Thus X and ¥ are lattice

isomorphic and, by theorem 6, Q = &.
top

Remark. If for every = there exists a mapping f, from X on ¥
preserving the pseudodistance [z, — ||, then it may happen that there
exists no mapping f preserving all pseudodistances simultaneously. This
is connected with the well known fact that the conditions 4, C By,
4,C By, 4, = A4, and B, = B, do not necessarily imply the existence

top top
of & homeomorphism between B, and B, transforming A4, on 4,. More-
over, the conditions 2, =@, (n=1,2,...) do not imply Q@ = @, even

o top
if 2 and @ are locally compact (e. g. the set Q of all integers and the
set @ of all numbers 1/n with 0).

3. Metrizability of Q. We have

LemmA 11 (The generalized Stone-Weierstrass theorem). Let X,
be the smallest ring spanned upon a set A C X = 0olQ); X, is dense
in X (in the metric (4)) if and only if A separates 2 (i.6. for any
Ly 6 Q () # ty) there exists a function ze A such that 2(t) # 2 ().

THEOREM 9. Q being locally compact and a-compact, the space Cy2)
is separable if and only if Q is metrizable (or, which is equivalent, if
satisfies the second countability axiom,).

Proof. Necessity. If X is separable, 80 is X/||.l|, = 0(£4,) too;
let {x,,} be a sequence dense in ¢(£,) and U, a neighbourhood of a point
tye 2,,. There exists a function %o(t) continuous on 0, equal to 1 at ¢,
and 0 outside Us. If [|yo— oyl < 1/3, then the set @, = {t: 2m(t) > 1/2}
is a neighbourhood of ¢, contained in U,. It follows that the family {Gm},
m=1,2,..., forms the base in Q,, whence 2, is metrizable.

Sllffi_ciency. Let {Rm} be the base in 2. For each pair R,, R, such
that B,;~R, =0 there exists a function Yum(t) equal to 0 on R, and to
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1 on R,,. The family {y,,m} separates £2, therefore the set of all polyno-
mials over {y,,} with rational coefficients is countable and dense in X.

4. Direct product. We have

THEOREM 10. If X = Co( Q) is a direct product of lattices X, and X,
(see [1], p. 13), then 2 is the sum of two open-and-closed subsets 2, and Q,
such that X; = Co(2,y) and X, = Cy(2,).

The proof iz not different from that of Kaplansky ([3], p. 620).

TEHEOREM 11. If X, = Co(2y), X, = Co(2y) and if X is the dire(jt
product of X, and X, in the By-sense, then X is a space Cy(R2) and Qs
homeomorphic to 200, (2, and 2y are regarded as disjoint).

Proof. This immediately follows from Theorem 8.
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