

Spaces of continuous functions (I) (Mo-spaces)

bу

Z. SEMADENI and P. ZBIJEWSKI (Poznań)

We know many necessary and sufficient conditions for a Banach lattice to be equivalent to the space of continuous functions on a certain compact Hausdorff space; we believe that the most important are those found by S. Kakutani [2] and M. and S. Krein [4], namely:

- (1) $x \wedge y = 0$ implies ||x+y|| = ||x-y||,
- (2) $x \ge 0$ and $y \ge 0$ imply $||x \lor y|| = \max(||x||, ||y||)$,
- (3) the unit exists

(the strong or order unit, *i.e.* the element e such that $||x|| \le 1$ is equivalent to $x \lor (-x) \le e$).

In this note the procedure of Kakutani is extended to the space of continuous functions on a σ -compact

$$arOmega = igcup_{n=1}^\infty arOmega_n,$$

which, provided with the almost uniform convergence, is a B_0^* -space; we also generalize further results of Kakutani concerning the general form of linear functionals and the topological uniqueness of Ω .

Part 1. Representation

1. Definitions. The functional ||x|| is called an M-pseudonorm if it is a B-pseudonorm¹) and satisfies (1) and (2); it is called an M-norm if the condition ||x|| = 0 implies x = 0.

A normed vector lattice X is called an M^* -space if the metric in X is determined by an M-norm. A complete M^* -space is called an M-space.

We shall say that an M^* -space X has a unit if there exists in X a strong unit e. A vector lattice X is called an M_0^* -space if it is a B_0^* -space under a sequence of M-pseudonorms. A complete M_0^* -space is called an M_0 -space.

If ||x|| is an M-pseudonorm in the vector lattice X, by the quotient space $X/||\cdot||$ we shall understand the space $X/||\cdot||$ in the usual linear and metric sense, with an order relation \geqslant defined in the following way: $x/||\cdot|| \geqslant y/||\cdot||$ if and only if there exist $x_1 \in x/||\cdot||$ and $y_1 \in y/||\cdot||$ such that $x_1 \geqslant y_1$.

Since conditions (1) and (2) imply $||x|| \le ||y||$ when $|x| \le |y|$, we see that the set $\{x: ||x|| = 0\}$ is an l-ideal in the sense of G. Birkhoff and therefore ([1], p. 222, Theorem 9) $X/||\cdot||$ is also a lattice. Moreover, we have

LEMMA 1. If ||x|| is an M-pseudonorm in a vector lattice X, then $X/||\cdot||$ is the M^* -space and $(x \vee y)/||\cdot|| = (x/||\cdot||) \vee (y/||\cdot||)$.

This enables us to introduce a definition of unit. An M_0^* -space X will be called an M^* -space with unit if there exists an element $e \in X$ and a sequence of M-pseudonorms $\|x\|_1, \|x\|_2, \ldots$ determining the topology of X such that the coset $e\|\cdot\|_n$ is a unit in $X_n = X\|\cdot\|_n$ for $n = 1, 2, \ldots$ In this case we shall call e the unit under the pseudonorms $\|x\|_1, \|x\|_2, \ldots$ or, shortly, the unit in X.

Let X be an arbitrary B_0 -space. By X^* we shall denote the space of all linear functionals over X and by X_n^* the set of functionals of order n (i. e. continuous with respect to the pseudonorm

$$\max_{i=1,\ldots,n}||x||_i)$$

Evidently $X_n^* \subset X_{n+1}^*$ and

$$X_n^* = \bigcup_{n=1}^{\infty} X_n^*$$

(see [6], p. 139, Theorem 2.2.1). Since

$$\max_{i=1,\dots,n} ||x||_i = 0$$

and $\xi \in X_n^*$ imply $\xi(x) = 0$, the space X_n^* is equivalent to the conjugate space of $X_n = X/\|\cdot\|_n$.

LEMMA 2. The topology induced on X_n^* by the weak topology of X^* (i. e. the topology with the system of neighbourhoods

$$U(\xi_0; x_1, \ldots, x_n; \varepsilon) = \{ \xi \in X^* : |\xi(x_i) - \xi_0(x_i)| < \varepsilon \}$$
 for $i = 1, \ldots, n$

is equivalent to the weak topology of X_n^* considered as the conjugate space to X_n . Moreover, X_n^* is closed in X^* .

¹⁾ Notation and auxiliary notions on B_0 -spaces are taken from [5].

2. Examples 2). We now give some examples of M_0 -spaces.

1° The space $X=C_0(-\infty,\infty)$ of all functions x(t) continuous in an infinite interval, with pseudonorms

$$||x||_n = \max_{\langle -n,n\rangle} |x(t)|$$

and the usual order. The function e(t) = 1 is the unit.

1ª The same space has no unit under the equivalent pseudonorms

$$||x||'_n = n \cdot \max_{\langle -n,n \rangle} |x(t)|.$$

1b The same space with the pseudonorms

$$\|x\|_n^{\prime\prime} = \max_{\langle -n,n\rangle} |x(t)\,\varrho_n(t)| \qquad \text{where} \qquad \varrho_n(t) = \left\{ \begin{array}{ll} 1 & \text{for} \quad t\leqslant n-1, \\ n-t & \text{for} \quad n-1\leqslant t\leqslant n. \end{array} \right.$$

Here every quotient space X_n is incomplete and without unit.

2° The space of all real sequences $\{x_n\}$ with $||x||_n = |x_n|$. The sequence $\{1, 1, \ldots\}$ is the unit.

3° A countable product

$$X = \Pr_{n=1}^{\infty} X_n$$

of *M*-spaces X_1, X_2, \ldots If $x = \{x_1, x_2, \ldots\}$ (where $x_n e X_n$), then $||x||_n = ||x_n||$. The space *X* has a unit if and only if every space X_n has a unit e_n . In this case the unit of *X* is $e = \{e_1, e_2, \ldots\}$.

4° The space X of all functions continuous on $(-\infty, \infty)$ such that

$$\lim_{t\to\infty}x(t)=0,$$

with pseudonorms

$$||x||_n = \sup_{\langle -n,\infty \rangle} |x(t)|.$$

X has no unit.

5° The linear lattice spanned on all polynomials defined in $\langle 0, 1 \rangle$ such that x(0) = 0 is an M^* -space without unit.

 $6^{\rm o}$ The linear lattice spanned on all polynomials in $(-\infty,\infty)$ is an $M_0^{\bullet}\text{-space}$ with a unit.

7° Let Ω be a σ -compact Hausdorff space and let

$$\Omega = \bigcup_{n=1}^{\infty} \Omega_n$$

where the Ω_n are compact. The space $C_0(\Omega)$ of continuous functions defined on Ω is an M_0^* -space with pseudonorms

$$||x||_n = \max_{\Omega_n} |x(t)|$$

and unit $e(t) \equiv 1^3$).

8° Let Ω be σ -compact, $\{t'_a\}$ and $\{t_a\}$ ($\alpha \in \mathfrak{A}$) two sets of points of Ω and $\{\lambda_a\}$ ($\alpha \in \mathfrak{A}$) a set of real numbers. The space

(5)
$$C_0(\Omega; t_a, t'_a, \lambda_a, \alpha \in \mathfrak{A})$$

of all functions continuous on Ω such that $x(t'_a) = \lambda_a x(t_a)$ for $a \in \mathfrak{A}$ is an M_0^* -space with pseudonorms (4). If, for certain $a \in \mathfrak{A}$, $\lambda_a \neq 1$ and t_a, t'_a are limit points of Ω , then there exists no unit under these pseudonorms.

9° The space X of all functions continuous on (0,1) and such that

$$\lim_{t \to 0} \frac{x(t)}{t^n} = 0 \quad \text{for} \quad n = 1, 2, ...,$$

with pseudonorms

$$||x||_n = \sup_{(0,1)} \left| \frac{x(t)}{t^n} \right|,$$

has no unit. Moreover, X cannot be equivalent to a space (5) under any equivalent system of pseudonorms.

3. Representation. In this section we obtain the necessary and sufficient conditions for a given M_0 -space X to be equivalent to one of the spaces $O_0(\Omega)$ and $O_0(\Omega; t_a, t_a', \lambda_a, a \in \mathfrak{A})$.

Lemma 3. The completion \tilde{Y} (in the usual sense) of an M^* -space Y is an M-space.

Proof. We shall prove only axiom (1), i. e. that $y \wedge z = 0$ implies $\|y+z\| = \|y-z\|$ for any $y,z\in \tilde{Y}.$ Let

$$y = \lim_{n \to \infty} y_n$$
 and $z = \lim_{n \to \infty} z_n$

where $y_n \in Y$ and $z_n \in Y$. Since

$$[y_n - (y_n \wedge z_n)] \wedge [z_n - (y_n \wedge z_n)] = 0,$$

²⁾ Detailed analysis of these examples will be published later.

³⁾ $C_0(\Omega)$ is complete (metrically) if Ω is locally compact.

we have

$$||[y_n - (y_n \wedge z_n)] + [z_n - (y_n \wedge z_n)]|| = ||[y_n - (y_n \wedge z_n)] - [z_n - (y_n \wedge z_n)]||.$$

Passing to the limit we obtain

$$||z+y|| = \lim_{n \to \infty} ||y_n - 2(y_n \wedge z_n) + z_n|| = \lim_{n \to \infty} ||y_n - z_n|| = ||y - z||$$

because

$$\lim_{n \to \infty} y_n \wedge z_n = y \wedge z = 0.$$

LEMMA 4. If $||x||_1$, $||x||_2$, ... are M-pseudonorms, then

$$||x||_n^* = \max_{i=1,\dots,n} ||x||_i \quad (n=1,2,\dots)$$

forms the equivalent system of M-pseudonorms.

The proof is trivial. By this lemma we may restrict ourselves to the consideration of only M_0^* -spaces with monotone pseudonorms, *i. e.* those satisfying the condition $||x||_n \leq ||x||_{n+1}$ for n = 1, 2, ... and every $x \in X$.

Now, denote by Φ_n the set of all functionals $\xi \in X_n^{\bullet}$ satisfying the following conditions:

(6)
$$\xi \geqslant 0$$
; $x \wedge y = 0$ implies $\xi(x) \cdot \xi(y) = 0$;

$$\|\xi\|_n = 1.$$

Denote by \mathcal{Q}_n the closure of \mathcal{Q}_n in the weak topology. Put

$$\Phi = \bigcup_{n=1}^{\infty} \Phi_n$$
 and $\mathbf{Q} = \bigcup_{n=1}^{\infty} \mathbf{Q}_n$.

Evidently (by lemma 2) \mathfrak{A} is σ -compact in the weak topology induced from X^{\bullet} . Any $\xi \in \mathfrak{A}$ of order n is also of order n+1, moreover for $\xi \in \mathfrak{A}$ we have

$$\|\xi\|_n = \sup_{\|x\|_n \le 1} \xi(x) \geqslant \sup_{\|x\|_{n+1} \le 1} \xi(x) = \|\xi\|_{n+1}.$$

If for every $\xi \in \mathbf{2}$ the condition $\xi \in X_n^*$ implies $\|\xi\|_n = \|\xi\|_{n+1}$, we say that the pseudonorms $\|x\|_1$, $\|x\|_2$, ... are *consistent*. In other words: the consistency of pseudonorms is equivalent to the inclusions $\mathbf{2}_n \subset \mathbf{2}_{n+1}$ $(n=1,2,\ldots)$

THEOREM 1. Every M_0^* -space X with monotone and consistent pseudonorms is equivalent in the linear, metric and lattice sense to a dense subset of a space $Y = C_0(\mathbf{2}; t_a, t_a', \lambda_a, a \in \mathfrak{A})$ (see example 8°).

Proof. For every $\xi_a \epsilon \mathbf{g} - \Phi$ there exists a $\xi_a' \epsilon \Phi$ such that $\xi_a = \lambda_a \cdot \xi_a'$ and $\lambda_a < 1$, namely $\lambda_a = \|\xi_a\|$ (see [2], p. 1001). Putting

(8)
$$x(\xi) = \xi(x) \quad \text{for} \quad \xi \in \mathbf{Q},$$

we define a one-to-one mapping φ of X into Y; it is clear that the function $x(\xi)$ is continuous on \mathcal{Q} , and that

$$\begin{split} \varphi(x+y) &= \varphi(x) + \varphi(y), \\ \|x\|_k &= \max_{\xi \in \Omega_k} |x(\xi)| = \|\varphi(x)\|_k, \end{split}$$

$$x \geqslant y$$
 implies $x(\xi) \geqslant y(\xi)$ for all $\xi \in \Omega$, i. e. $\varphi(x) \geqslant \varphi(y)$.

By Lemma 1, Lemma 3 and the theorem of Kakutani ([2], p. 998, Theorem 1) we see that if $x(\xi) \geqslant y(\xi)$ for all ξ , then $x/\|\cdot\|_n \geqslant y/\|\cdot\|_n$ for arbitrary n. But $x/\|\cdot\|_n \geqslant y/\|\cdot\|_n$ means that there exist x_n and y_n such that $\|x-x_n\|_n = \|y-y_n\|_n = 0$ and $x_n \geqslant y_n$. Since $\|x\|_n \leqslant \|x\|_m$ for $n \leqslant m$, we see that $\|x-x_m\|_n = 0$ for m > n. Hence

$$x = \lim_{n \to \infty} x_n$$

and similarly

$$y=\lim_{n\to\infty}y_n.$$

From the continuity of the order relation we obtain $x \geqslant y$. It remains to prove that for every $x_0 \in Y$ and $\varepsilon > 0$ there is a $y \in \varphi(X)$ such that $||x-y|| < \varepsilon$. Choose n such that $1/2^n < \varepsilon/2$; then the function x(t) can be approximated on \mathbf{a}_n by a certain $y_n = \varphi(x_n)$ so that $||x-y_n|| < \varepsilon/2$, whence

$$\|y_n-x\|=\sum_{k=1}^n\frac{1}{2^k}\frac{\|y_n-x\|_k}{1+\|y_n-x\|_k}+\sum_{k=n+1}^\infty\frac{1}{2^k}\frac{\|y_n-x\|_k}{1+\|y_n-x\|_k}<\sum_{k=1}^n\frac{\varepsilon}{2^{k+1}}+\frac{1}{2^n}<\varepsilon.$$

This completes the proof.

COROLLARY. If the pseudonorms are consistent and X is complete, then any quotient space $X_n = X/\|\cdot\|_n$ is complete.

LEMMA 5. Let ||x|| be an M-pseudonorm. If $e \in X$ is such that $e/||\cdot||$ is a unit in $X/||\cdot||$ and $||x|| \le 1$, then $||e-(e \lor x)|| = 0$.

Proof. If $||x|| \le 1$, then $x/||\cdot|| \le \epsilon/||\cdot||$, whence $\epsilon/||\cdot|| = x/||\cdot|| \cdot ||\cdot|| = x \vee \epsilon/||\cdot||$.

LEMMA 6. If e is a unit under the pseudonorms $||x||_1$, $||x||_2$, ..., then e is a unit under the pseudonorms

$$||x||_n^* = \max_{i=1,\dots,n} ||x||_i.$$

Proof. If $||x||_n^* \le 1$, then $||x||_i \le 1$ for i = 1, 2, ..., n and, by Lemma 5, $||e - (e \lor x)||_i = 0$ for i = 1, 2, ..., n, whence $||e - (e \lor x)||_n^* = 0$.

Theorem 2. For any M_0 -space with a unit there exists a σ -compact Hausdorff space

$$oldsymbol{arOmega} = igcup_{n=1}^\infty oldsymbol{arOmega}_n$$

such that X is linear and lattice-isomorphic with the space $C_0(\mathbf{2})$ of continuous functions on $\mathbf{2}$ and if $x \to x(t)$ in this isomorphism, then

$$\max_{i=1,\dots,n} \|x\|_i = \max_{t \in \Omega_n} |x(t)|.$$

Proof. If the unit exists, then condition (7) can be replaced by $\xi(e) = 1$. It follows that the existence of the unit implies the consistency of pseudonorms. Moreover, then all Φ_n are closed (i. e. $\Phi_n = \mathbf{a}_n$ and $\Phi = \mathbf{a}$), and the set $\mathfrak A$ of indices is empty. Therefore by Theorem 1, (8) is the mapping from X onto $C_0(\mathbf{a})$.

COROLLARY. If the unit exists and X is complete, then all X_n are also complete.

Part II. Linear functionals over $C_0(\Omega)$

1. General form of the linear functional over $C_0(\Omega)$. By the theorem of Kakutani ([2], p. 1012, Theorem 10) about the general form of linear functionals in M-spaces and a theorem of Mazur and Orlicz ([6], p. 139, th. 2.21) we get

Theorem 3. Every linear functional on the M_0 -space $X=C_0(\Omega)$ can be represented by the integral

(9)
$$\xi(x) = \int_{\Omega} x(t) d\mu,$$

where μ is a σ -additive set function of bounded variation defined for Borel subsets of Ω and vanishing outside a certain Ω_n . Moreover, $\xi \in X_n^*$ and

$$\|\xi\|_m = \underset{\Omega_n}{\operatorname{Var}} \mu \quad \text{for} \quad m \geqslant n.$$

2. Weak convergence in $C_0(\Omega)$. We prove

THEOREM 4. The sequence $\{x_m\} \subset X = C_0(\Omega)$ is weakly convergent to x_0 (i. e. $\xi_0(x) = \lim_{m \to \infty} \xi(x_m)$ for each $\xi \in X^*$) if and only if

(10)
$$\sup_{m=1,2,...} ||x_m||_n < \infty \quad (n = 1, 2, ...),$$

(11)
$$x_m(t) \rightarrow x_0(t)$$
 for every $t \in \Omega^4$.

Proof. The necessity of (10) follows from the Banach-Steinhaus theorem, (11) is trivial. The sufficiency is an immediate result of the integral representation (9) and the Lebesgue theorem on term by term integration.

THEOREM 5 (The generalized theorem of Dini). If $x_m \in X$, $x_m \geqslant x_{m+1}$ for m = 1, 2, ... and x_m are weakly convergent to x_0 , then x_m are strongly convergent to x_0 , i. e.

$$\lim_{m\to\infty}||x_m-x_0||_n=0\quad \text{ for }\quad n=1,2,\ldots$$

Proof. Given integer n and $\varepsilon > 0$, write

$$\overline{F_m^{(n)}} = \{t \in \Omega_n \colon |x_m(t) - x_0(t)| \geqslant \varepsilon\}.$$

Since $F_m^{(n)} = F_m^{(n)} \supset F_{m+1}^{(n)}$ and

$$\bigcap_{m=1}^{\infty} F_m^{(n)} = 0,$$

from the compactness of Ω_n follows the existence of an m such that $F_m^{(n)}=0$, whence $||x_m-x_0||_n<\varepsilon$.

Part III. Topological properties of Ω

In this section we establish the topological invarience of σ -compact Ω under some tranformations of $C_0(\Omega)$ and some connections between the properties of Ω and $C_0(\Omega)$. The method used is a generalization of that of Kaplansky (see [3], p. 617-620, and also [1], p. 175-176) who used it in the case of compact Ω .

1. Topological uniqueness of Ω . We remark first that if Ω is completely regular and σ -compact, then the M_0^* -space $C_0(\Omega)$ determines topologically Ω .

In fact, if
$$C(\Omega_1) \equiv C(\Omega_2)$$
, then $\Omega_1 = \mathbf{\varrho}_1 = \mathbf{\varrho}_2 = \Omega_2$.

Let X be a lattice $C_0(\Omega)$ of real-valued continuous functions defined on σ -compact Ω . Denote by I the family of sets $I \subset X$ satisfying the following conditions:

(12) $x \in I$ and $y \leqslant x$ imply $y \in I$,

(13) if
$$x_n \in I$$
 and $\bigvee_{n=1}^{\infty} x_n$ exists, then $\bigvee_{n=1}^{\infty} x_n \in I$,

(14) if
$$y_n \in X - I$$
 and $\bigwedge_{n=1}^{\infty} y_n$ exists, then $\bigwedge_{n=1}^{\infty} y_n \in X - I$.

⁴⁾ A generalization of a theorem of Banach (see S. Banach, Théorie des opérations linéaire, Warszawa-Lwów 1932, p. 224).

In other words, J is the family of σ -prime σ -ideals.

We shall say that an ideal IeI is associated with a point $t \in \Omega$ when the conditions $x \in I$ and y(t) < x(t) imply $y \in I$.

LEMMA 7. If Ω is locally compact, then every ideal $I \in J$ is associated with a certain point $t \in \Omega$.

Proof. Suppose that I is not associated with any point $t \in \Omega$. In particular, for any $t \in \Omega_n$ there exist functions $x_t(\tau)$ and $y_t(\tau)$ such that $x_t \in I$, $y_t \in X - I$ and $x_t(t) > y_t(t)$. The sets $G(x_t, y_t) = \{\tau : x_t(\tau) > y_t(\tau)\}$ consist of an open covering of the compact set Ω_n , whence there exist a finite number of points t_1, \ldots, t_m and corresponding pairs of functions $x_1, y_1, \ldots, x_m, y_m$ such that $x_t \in I$, $y_t \in X - I$ $(i = 1, \ldots, n)$ and

$$\varOmega_n \subset \bigcup_{i=1}^m G(x_i, y_i) \subset G(\bigvee_{i=1}^m x_i, \bigwedge_{i=1}^m y_i).$$

By (13) the function

$$a_n = \bigvee_{i=1}^m x_i$$

belongs to I and by (14)

$$k_n = \bigwedge_{i=1}^m \nu_i$$

belongs to X-I $(n=1,2,\ldots)$, moreover $\sigma_n(t)\geqslant b_n(t)$ on Ω_n . We put

$$g_n = \bigvee_{i=1}^{n} a_i, \quad h_n = \bigwedge_{i=1}^{n} b_i, \quad u_1 = g_1 \quad \text{and} \quad v_1 = h_1;$$

then $g_n \epsilon I$ and $h_n \epsilon X - I$.

Suppose that u_1, \ldots, u_n and v_1, \ldots, v_n are already defined so that $u_n \epsilon I$, $v_n \epsilon X - I$, $g_n \geqslant u_n$, $h_n \leqslant v_n$, $u_n(t) = u_{n-1}(t)$ for $t \epsilon \Omega_{n-1}$, $v_n(t) = v_{n-1}(t)$ for $t \epsilon \Omega_{n-1}$ and $u_n(t) \geqslant v_n(t)$ for $t \epsilon \Omega_n$. We put

$$u_{n+1} = g_{n+1} \wedge (v_n \vee v_n)$$
 and $v_{n+1} = h_{n+1} \vee (u_n \wedge v_n)$.

Evidently $u_{n+1}\epsilon I$, $v_{n+1}\epsilon X-I$ (from (12)), $g_{n+1}\geqslant u_{n+1}\geqslant u_n$ and $h_{n+1}\leqslant v_{n+1}\leqslant v_n;$ moreover $u_{n+1}(t)=u_n(t)$ and $v_{n+1}(t)=v_n(t)$ for $t\epsilon\,\Omega_n,$ $u_{n+1}(t)\geqslant v_{n+1}(t)$ for $t\epsilon\,\Omega_{n+1}$.

The sequences $\{u_n\}$ and $\{v_n\}$ are convergent with respect to the norm

(15)
$$||x|| = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{\max_{\alpha_n} |x(t)|}{1 + \max_{\alpha_n} |x(t)|}.$$

Let $u_0 = \lim u_n$ and $v_0 = \lim v_n$. Since $\{u_n\}$ and $\{v_n\}$ are monotone, we have

$$u_0 = \bigvee_{n=1}^{\infty} u_n$$
 and $v_0 = \bigwedge_{n=1}^{\infty} v_n$.

Next, by (13) $u_0 \in I$ and by (14) $v_0 \in X - I$. This contradicts (12), for $u_0 \geqslant v_0$. LEMMA 8. Any ideal $I \in J$ is associated with only one point of Ω .

LEMMA 9. Two ideals $I_1 \in J$ and $I_2 \in J$ are associated with the same point $t \in \Omega$ if and only if $I_1 \cap I_2$ contains an ideal $I_2 \in J$.

LEMMA 10. Let x_0 be a fixed function from X, and S any subset of Ω . Then a point t belongs to \overline{S} if and only if a certain ideal $I_0 \in J$ associated with t contains the intersection $J(S, x_0)$ of the totality of all ideals $I \in J$ containing x_0 which are associated with points of S.

THEOREM 6 (The generalized theorem of Kaplansky). If a space $X=C_0(\Omega)$ of continuous functions on a locally compact and σ -compact Hausdorff space Ω can be mapped on a space $Y=C_0(\Phi)$ in a one-to-one and order preserving manner, then $\Omega=\Phi$.

The proofs of Lemmas 8-10 and of Theorem 6 do not differ from the proofs given by Kaplansky [3] (or by Birkhoff [1], p. 175); they are true in completely regular spaces.

2. Other cases of the invariance of locally compact and σ -compact Ω . In the previous section it has been proved that the lattice $C_0(\Omega)$ determines Ω (to within the homeomorphism); we now give other results of the same kind.

THEOREM 7 (The generalized theorem of Gelfand and Kolmogorov). The ring $C_0(\Omega)$ of continuous functions determines Ω topologically ⁵).

Proof. We put $x \ge y$ if and only if there exists a function $z \in X$ such that $x-y=z^2$. Thus the points of Ω and its neighbourhoods can be constructed in terms of addition and multiplication only.

THEOREM 8 (The generalized Banach-Eilenberg theorem). If $X=C_0(\Omega)$ can be mapped onto $Y=C_0(\Phi)$ in a one-to-one manner so that all pseudodistances are preserved (i. e. if $x_1\to y_1$ and $x_2\to y_2$, then $\max_{t\in \Omega_n}|x_1(t)-x_2(t)|=\max_{t\in \Omega_n}|y_1(t)-y_2(t)|$ for any n), then

$$\Omega = \Phi$$
.

Proof. Let y=f(x) be a transformation of X into Y such that $\|f(x_1)-f(x_2)\|_n=\|x_1-x_2\|_n$ for $n=1,2,\ldots$ We can suppose that f(0)=0. In particular $\|f(x_1)-f(x_2)\|_n=0$ if and only if $\|x_1-x_2\|_n=0$. This means

⁵⁾ This theorem is due to E. Hewitt (Trans. Amer. Math. Soc. 64(1948), p. 88-89).

that the mapping $\tilde{y} = f_n(\tilde{x})$ (where $x \in X/\|\cdot\|_n = C(\Omega_n)$ and $\tilde{y} \in Y/\|\cdot\|_n = C(\Phi_n)$), defined as $\tilde{y} = f_n(\tilde{x})$ when y = f(x) for $x \in \tilde{x}$ and $y \in \tilde{y}$, is an isometry between $C(\Omega_n)$ and $C(\Phi_n)$, hence a linear isometry. Let e be the unit in X, i.e, the function e(t) = 1 on Ω . The partial function $e_n(t) = e|\Omega_n$ is an extreme point of the unit sphere in $C(\Omega_n)$, whence $f_n(e_n)$ is an extreme one in $C(\Phi_n)$. It follows that f(e) is a function taking only the values +1 on Φ' and -1 on Φ'' , where Φ' and Φ'' are open-and-closed subsets of Φ . Hence if we define $x \ge 0$ when

$$\|x\|_n=0 \quad \text{ or } \quad \left\|rac{X}{\|x\|_n}-e
ight\|_n\leqslant 1 \quad \text{ for } \quad n=1,2,\ldots$$

we preserve the order on Φ' and invert it on Φ'' . Thus X and Y are lattice isomorphic and, by theorem 6, $\Omega = \Phi$.

Remark. If for every n there exists a mapping f_n from X on Y preserving the pseudodistance $\|x_1-x_2\|$, then it may happen that there exists no mapping f preserving all pseudodistances simultaneously. This is connected with the well known fact that the conditions $A_1 \subset B_1$, $A_2 \subset B_2$, $A_1 = A_2$ and $B_1 = B_2$ do not necessarily imply the existence top top top a homeomorphism between B_1 and B_2 transforming A_1 on A_2 . Moreover, the conditions $\Omega_n = \Phi_n$ $(n = 1, 2, \ldots)$ do not imply $\Omega = \Phi$, even top top top of all numbers Ω and Ω are locally compact Ω the set Ω of all integers and the set Ω of all numbers Ω of all numbers Ω with Ω .

3. Metrizability of Ω . We have

LEMMA 11 (The generalized Stone-Weierstrass theorem). Let X_0 be the smallest ring spanned upon a set $A \subset X = C_0(\Omega)$; X_0 is dense in X (in the metric (4)) if and only if A separates Ω (i. e. for any $t_1, t_2 \in \Omega$ ($t_1 \neq t_2$) there exists a function $z \in A$ such that $z(t_1) \neq z(t_2)$).

THEOREM 9. Ω being locally compact and σ -compact, the space $C_0(\Omega)$ is separable if and only if Ω is metrizable (or, which is equivalent, if Ω satisfies the second countability axiom).

Proof. Necessity. If X is separable, so is $X/\|.\|_n = C(\Omega_n)$ too; let $\{x_m\}$ be a sequence dense in $C(\Omega_n)$ and U_0 a neighbourhood of a point $t_0 \in \Omega_n$. There exists a function $y_0(t)$ continuous on Ω_n equal to 1 at t_0 and 0 outside U_0 . If $\|y_0 - x_m\|_n < 1/3$, then the set $G_m = \{t: x_m(t) > 1/2\}$ is a neighbourhood of t_0 contained in U_0 . It follows that the family $\{G_m\}$, $m = 1, 2, \ldots$, forms the base in Ω_n , whence Ω_n is metrizable.

Sufficiency. Let $\{R_m\}$ be the base in Ω . For each pair R_n , R_m such that $\bar{R}_n \cap \bar{R}_m = 0$ there exists a function $y_{nm}(t)$ equal to 0 on R_n and to

1 on R_m . The family $\{y_{nm}\}$ separates Ω , therefore the set of all polynomials over $\{y_{nm}\}$ with rational coefficients is countable and dense in X.

4. Direct product. We have

THEOREM 10. If $X = C_0(\Omega)$ is a direct product of lattices X_1 and X_2 (see [1], p. 13), then Ω is the sum of two open-and-closed subsets Ω_1 and Ω_2 such that $X_1 = C_0(\Omega_1)$ and $X_2 = C_0(\Omega_2)$.

The proof is not different from that of Kaplansky ([3], p. 620).

Theorem 11. If $X_1=C_0(\Omega_1)$, $X_2=C_0(\Omega_2)$ and if X is the direct product of X_1 and X_2 in the B_0 -sense, then X is a space $C_0(\Omega)$ and Ω is homeomorphic to Ω_1 , Ω_2 (Ω_1 and Ω_2 are regarded as disjoint).

Proof. This immediately follows from Theorem 8.

References

[1] G. Birkhoff, Lattice Theory, New York 1948.

[2] S. Kakutani, Concrete representation of abstract (M)-spaces, Ann. of Math. 42 (1941), p. 994-1024.

[3] I. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc. 53 (1947), p. 617-622.

[4] M. Krein et S. Krein, L'espace des fonctions continues sur un bicompact de Hausdorff et leur sous-espaces semiordonnés, Mat. Shornik 12 (1943), p. 1-38.

[5] S. Mazur et W. Orlicz, Sur les espaces métriques linéaires I, Studia Math. 10 (1948), p. 184-208.

[6] - Sur les espaces métriques linéaires II, ibidem 13 (1953), p. 137-179.

Recu par la Rédaction le 23, 7, 1956