On Poisson and composed Poisson stochastic set functions

by
A. PREKOPA (Budapest)

Introduction

Several investigations has recently been made concerning Poisson
and composed Poisson stochastic processes. The ordinary Poisson process
is conceivable as a sequence of points, distributed at random on the time
axis and this idea can be generzlized to more than one-dimensional spaces.
The latter case occurs in making a blood-count, in counting stars, ete. In
[8], [4], (6] and [15] conditions are given ensuring the Poisson character
of the distribution of the number of points in a set A of the one, resp.
at least one-dimensional Euclidean space. In [8], [14], [1] and [13]
similar problems are considered for the one-dimensional Euclidean space
and the main purpose is to prove that under some conditions the random
variables &,— &, (b <ty) have composed Poisson distributions.

We say that a random variable & has a composed Poisson distri-
bution if its characteristic function f(u) can be written in the form

(1) J(u) = exp Y Cye*—1),
k=1

where Oy, (y, ... are non-negative constants,

oo
ch << oo
k=1

and A, 2, ... is a sequence of real numbers. It is easy to sec that if the set
A =0,4,7,... forms a semi-group with respect to addition, and if
Py=P(f=1), k=0,1,2,..., then

Zoo:Pk = 1.
k=0 .

T]}is statement follows from (1), if we take into account that & can
be written (or & can be represented in another probability space) as

(2) £= D) Mty

k=1
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where £, &,... are mutually independent randem wvariables, having
Poisson distributions with the parameters C;, €, ...

In [3] the problem of random point distribution in an abstract space
is considered and in [12] the notion of a stochastic set funetion, and
especially the notion of a composed Poisson stochastic set function are
introduced.

In the present paper I give the conditions ensuring the Poisson
and composed Poisson character of stochastic set functions or, in other
words, of an abstract process, and prove some theorems concerning
their structure.

Let H be an abstract space and R a ring of sets!) consisting of some
subsets of H. Let us suppose that to every element 4 of R there corre-
sponds a random variable £(4) for which the following conditions hold:
1. If 4,, 4,, ... is a sequence of pairwise disjoint sets of R, then the random

variables £(A;), £(4s), ... are independent.

IO. If 4 = i AxeR, then P(E(A) = ¥ £(4y) = 1.
i1 =1

A random variable-valued set function £(4), satisfying conditions
I-1I is called a completely additive stochastic set function. For the sake
of brevity we often say only that conditions I-II are satisfied.

ITI. The random variables E(A), AeR, can only assume the values of
a countable set of real numbers 3y = 0, 21, 7s,...; this sei is inde-
pendent of the special choice of A and with respect to conditions X-11
we suppose that it is an additive semi-group.

If for the stochastic set function &(4), satisfying conditions I-IT,
a certain additional condition is fulfilled, for instance, if for every sequen-
ce By, B,, ... of pairwise disjoint sets of R the series

D3

§(By)

=
I

1

converges with probability 1,then £(4) can be extended to S(R) (see [12],
Theorem 3.2)2). By the extension of the latter we mean a construction

1) A class of sets R is called a ring of seis if A--BeR, 4—BeR, whenever
AeR, BeR.

2) A ring € is called a o-ring if for every sequence A,, 4,,... of & we have

[o=]
Z.Akeg.
k=1

If R is a ring, then & (R) denotes the smallest o-ring containing R. If 4AeR, then
AR is the ring containing those sets B for which Be®f, BC 4.
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of a stochagtic set function £*(4) defined on the elements of S(R) that
satisfies on S(R) conditions I-II, and has the following property:

P(£(4) = E(A) =1, if AeR.

We shall suppose that in conditions I-IIT R is a o-ring.

In some theorems we shall use the following conditions:

IV. There is a positive number ¢ such that |4) =0, k=1,2,...

V. There is a sequence of divisions 3, = [AM, AP, ..., A} such that
the (n--1)-st division is a subdivision of the n-th one, and if heH,
hye H, hy 5 hy, then there is an N for which hye A, hye AT, where
DN
In section 1 some definitions and lemmas are formulated.

Tn section 2 conditions are given under which- the random variables
£(A) have composed Poisson distributions. In section 3 some structural
theorems are proved concerning a composed Poisson. stochastic set fune-
tion. In section 4 theorems are proved concerning random ‘point distri-
butions.

1. Preliminary lemmas

DeriNiTion 1. Let R be a ring of sets and a(4) a real-valued seb
function on the elements of R. If for every paip A,, A, of disjoint sets
of R (for every sequence 4,, 4,,... of disjoint sets of R, for which

Angk

is an element of R) the relation
o]

3) a(4) Sa(d)+a(dy)  (a(d) < D a(dy)
k.

!

=

holds, then the set funchion a(4) will be called subadditive (completely
subadditive).

DEFINITION 2. A set function a(4) defined on R is said to be of
bounded variation if there is a number K such that for every finite se-
quence A;, A,, ..., 4, of pairwise disjoint sets of R the relation

“) D la(d) <X

=1

holds. If A;CAeR,i=1,2,..., then the smallest K for which relation (4)
holds will be denoted by Var,(4).
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The following two lemmas, the first of which is almost trivial, are
proved in [11]:

Lemma 1. Let a(Ad) be a real-valued, non-negative, completely sub-
additive set function of bounded variation defined on the elements of & ring
of sets R. Then the set function Var(A) is a bounded measure®) on R.

LeMmA 2. Let a(A) be o real-valued, non-negative and subadditive set
function, defined on the elements of a ring of sets R. If there is a number ¢
such that a(4) < C, for AeR and for every sequence B, B;, ... of pairwise
disjoint sets of R the condition

D a(By) < oo
o
is fulfilled, then the set function «(A4) is of bounded variation.

Though the following notions and theorems are special cases of
known general notions and theorems (see e. g. [2], Chapter 8), nevertheless,
for the reader’s convenience we repeat them separately.

DEFINITION 3. Let a(A4) be a set function defined on the elements
of a ring of sets R. We say that the total of the set function a(A) ewists
in the set BeR, if we can find a number #(B) such that for every ¢ > 0
there exists a division of the set B into pairwise disjoint sets

Ay, 4,, ..., 4, of R for which

(3) | aldo—p(B)| <e
=1

and also ’

r
(6) |
i=1 k=1

where 3 = {4y, k=1,2,...,1; i=1,2,...,7} is an arbitrary sub-
division into pairwise disjoint sets of the ring R of the division
3 ={4;,i=1,2,...,7}.

The number 3(B) will be called the fotal of «(A) on the set B and will
be denoted in the following manner:

B(B) = [a(dd).
B

gl

a(44)—B(B)| < e,

It is easy to see that the total — if it exists — is always uniquely
determined.

?) A finite-valued, non-negative set function m(4), defined on a ring of sets R,
is called a measure if for every sequence Bj, Bs,... of disjoint sets of R, for

oo o0
which B = 3 BpeR, the relation m(B)= ) m(Bg) holds and m(0) = 0.
k=1 ¥=1

Studia Mathematica XVI. 10
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The following lemmas can be proved in a simple manner:

LeMmA 3. If a(A) is @ set function defined on the clements of a ring
of sets R and ils totals on B eR and on ByeR ewist, where By By = 0, then
its total exists also on By+B; and

[ a(@d)= [at@d)+ [a(dd).
By+By By By
LemMA 4. I ay(4) and ax(A) are two set functions defined on the ele-
ments of a ring of sets R and the totals of both exist in BeR, then the total
of ay(A)+ag(A) exists also on BeR and

[ (m(dd)+ ap(dd)) = [ @)+ [ aad).
B B B

LEMMA 5. If a(4) is a subadditive set function of bounded variation
defined on the elements of a ring of sets R, then the total of a(A) exists for
every BeR and .

[ a(d@4) = Var,(B).
B

2, Composed Poisson stochastic set functions

In this section we shall give conditions under which a completely
additive stochastic set function will be of composed Poisson type. The
method by which the theorems stated below are proved, is based essen-
tially on two facts ensured by our conditions: the set function 1—Py(4)
is of bounded variation and Varl_Po(A) is a bounded, atomless measure
on R. First we prove a general theorem, and in special cases we shall
verify the fulfilment of the conditions introduced here.

TaEOREM 1. Let us suppose that the stochastic set function E(4), de-
fined on the elements of the o-ring R, satisfies conditions I, IT, III. Suppose
furthermore thai the following conditions are fulfilled:

VI. Var,_p (H) < oo. B
VII. If AeR and 1—Py(4) > 0, then there .cxist such sels A e AR,
A6 AR, 4,4, = 0, that 1—Py(A;) > 0, 1—Py(4,) > 0.

Under these conditions the logarithm of f(u,B) can be written for

every BeR in the form

(1) logf(u, B) = 3 Oy B) (¢ 1),
k=1
where
8) CiB) = [Pydd), k=1,2,..;
B

icm
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moreover

[ (1—Py(ad))
B
exists also and

(9) J(1—Pyad) =

B

[\48

O(B) < co.

1

k

The set functions (8) and (9) are bounded, aiomless measures on the
o-ring R.

" Proof. Let Dy, D,, ... be a sequence of pairwise disjoint sets of R

and
D =)D,
k=1

Condition II implies that

78

1—Py(D) < D, (1—Po(Dy))-

&
[
-

It follows hence and from Condition VI that the conditions in
Lemma 1 are fulfilled for a(4) = 1—P(4). Thus Var,_p(4) is a bounded

measure on R. The measure Var,_Po(A) is also atomless. Let us suppose

the contrary and denote by EeR an atom. Then there exists a set De ER
such that 1—Py(D) > 0. Clearly D is also an atom and thus for every
D’'e DR we have either Varl“po(D’) = Var,_p(D)>0 or Var,_p(D') = 0.

According to Condition: VII there exist such sets D;e DR, D,e DR,
D, D, = 0, that

0 <1—PyDy) < Var;_p(D1), 0 <1—Py(Dy) < Vary_p(Ds).

Thus if D' =:D,, we must have Var, p(D;) = Var,_p (D) >0,
but this is impossible as Var,_p(Ds) > 0 and
Var,_p,(Dy)+Var,_p(Ds) < Var,_p(D).

Using the intermediate value theorem of atomless completely addi-
tive set funetions (ef. [7], p. 51, Theorem 5.6.1), we can choose for every &
a decomposition 3’ = {4, 4,, ..., 4,} of the set B into pairwise disjoint
sets of R, where
(10)

Since

Var,_p(dy) <& k=1,2,..,7.

r

flu, B) = [[f(u, 42)

k=1
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and for every AeN
[1—f(u, 4)] < 2(1—Py(4)),

we find that if ¢ < 1, then
- 1
(1) i, B = [ [1F(0, 4] = 57
le=1

Hence logf(u, B) exists. Taking into account the definition of f(u, B),

(12) f(u, B) = D) Py(B)é™,
k=0
we conclude that f(u, B) and by (11) also logf(«, B) are almost periodie
funetions.
Let Cy(B), Cy(B), ... denote the Fourier-coefficients of logf(u, B).
Applying the Taylor expansion of the function logz, we find that

(13)  |10g7(u, B)= 3 (f(u, 4)—1)]

Tl

< ) 1f(n, A =11 <4 ) (1—Py( 4y
i=1

i=l
: .
< 4max (1 —Py(4;)) 2 (1—Py(4;) < K max Var,_p(4;) < Ke.
1<igr =1 1<i<r

Multiplying both sides of (13) by e~*4*/2T, integrating from —T
to T, and taking the limit 7 - oo, we obtain

o
|0uB)— Y PuA)| <Ke it k=1,2,..,
(14) b

._T ) — ;{4,, it k=0.
|Cu(B) g(Po(A@) )| <Ke it 0

It follows from (10) and (13) that (14) is true even if we replace
the division 3' = {4,, 4,..., 4,} by any of its subdivisions, whence
CB) = [ Pydd), k=1,2,..,

B

(15)
: Co(B) = [ (Py(dd)—1).
B

icm
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Relations (10) and (13) imply also
logf(u, B) = [ (f(u,dd)—1)%).
B

The almost periodic function f(x, B)—C,(B) has non-negative
Fourier coefficients. Hence ([5], p. 64-65)

E Ci(B) < oo.
k=1
Thus

f(u, B)— Co(B) = Y C1(B) e,
k=1
For # = 0 we obtain
—Co(B) = D Cy(B),
k=1
whence -

o0
f(u; B) = > Cy(B) (¢4 —1).
=1
We have proved relations (7), (8) and (9) in Theorem 1. Now we
shall prove the remaining assertions relative to the set functions Cy(A4)
and Ci(4), k¥ =1,2,... By Lemma 5, Var,_p,(4) = —0y(4), whence
—Cy(4) is an atomless measure on R. Since, for every 4 eR, Py(d) <
<K< 1-Py(4), k=1,2,..., it follows that

(16) Od) < —Cy(4), AeR.

By Lemma 3 the set function Ci(4) is additive. It follows hence
and from relation (16) that Ci(4) is also compléﬁely additive on R.
Relation (16) implies also that (x(4) is an atomless measure on R. Thus
Theorem 1 is proved.

In the following theorem we replace Condition VI by another one,
which is fulfilled in all the interesting practical cases.

TareOREM 2. Let us suppose that for the stochastic set function E(A)
conditions I, II, IIX, IV and VI are fulfilled. Then all the assertions in
Theorem 1 hold.

Proof. We have only to show that Vary_p,(H) < co. We shall carry

out the proof fay using Lemma 2. The set funetion 1—Py(4), AeR, is
bounded, non-negative and subadditive, since if 4 = A4,+4,, 4;eR,

) This means that this equality holds for the real and imaginary parts
separately.
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AR, 4,4, = 0, then the event £(4) #% 0 implies that at least one of
£(4;) # 0, &(4s) # 0 holds. Let By, By, ... be a sequence of pairwise
disjoint sets of R. According to condition II (R being a o-ring) the series

0

Zf(Bk)

k=1

converges with probability 1, whence, by the three series theorem of
Kolmogorov (cf. [9], § 5),

D L—PoBy) = D P(IE(By) >
k=1

k=1

@)<oo.

Thus all the conditions of Lemma 2 are fulfilled, and this completes
the proof of Theorem 2.

3, Structural properties of abstract composed Poisson stochastic set functions

In this section we suppose the fulfilment of Conditions I, II, III,
V, VI, VII®). Moreover, we assume that for fixed we2° the number-
-valued set functions’) £(w, 4), 4 eR, are completely additive set functions
Let »(B), BeR, denote the number of points 7 e H to which correspond
discontinuities of magnitude 1,. We are going to prove some theorems
concerning the random variables »,(B).

THEOREM 3. For every BeR the random variables vi(B), k =1, 2, ...,
have Poisson distributions with the expectations Cx(B), k=1, 2, ...

Proof. As can be seen from the proof of Theorem 1, there exists
a sequence of divisions 3,, = {4, A{™, ..., A"} of the set B into pairwise
disjoint sets of R such that
an  Van_p(Af) <e/n,

1=1,2, .,y n=1,2,..,

where ¢ = Var,_p,(B) and

(18) hmZPk APy = f

Tr00 1=1

K(d4d) = Ci(B).

*) We observe that (as it is proved in Theorem 2) conditions I, II, III and IV
imply the fulfilment of VI.

¢) £ denotes the space of elementary events.

?) These set functions will be called sample functions.

icm°
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We may suppose that at the same time 3, has the property deseribed
in Condition V. Let us define the random wvariables

1, it £4M)
0, if £(4M)

: A
(AP = "

hS

I

Let yu(u, A/™) and yw,(u, B) denote the characteristic functions of
uu(AM) and vk( ), respectively. Clearly
ulu, Af%) = 14 (€™ —1) Py(A{")
(19) i
#, B) = lim (u, AM).
il JHm II:[ Pt {

-

Taking into account (17) we get
ln
iH [+ (e

“DPAP)] - exp (e~ 1) Pyl

|1 (€™ —1) Py(4{™) — exp((e™—1) Py A{)|

N

Me I

. N 4e
< [e*“—172PE(4f) < o

-~
[

1

if » is large enough. It follows hence and from relations (18), (19) that
yi(u, B) = exp(C(B)(e™—1)}, g.e. d.

THEOREM 4. For every BeR, the random wvariables v(B), vy(B), ...
are independent.

Proof?). We prove that for every fixed s the variables »(B),
3(B), ..., %(B) are independent. Let 3, = {4, A, ..., A"} be a se-
quence of divisions of the set B, having the property described in Con-
dition V and satisfyl'ng the relations

hmZPkm 1) = [ Pud4) = C4B),

00 [ o]

(20)
Var,_p(4f") <efn,

1=12,..,0L; n=12,..,

where ¢ = Varl_Po(B)r.

8) The idea of this proof was proposed by A. Rényi.
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Clearly

(21) P(vy(B) = 1, m(B) = fy ..., va(B) = jy) = lim By s

In I Iy, '
=UmP (> m(Af) =i, ) mlA) = sy ey 3 malAf™) =)
N—>00 =1 i=1 1=1
On the other hand, comparing the coefficients of

exp (7' (i et ..., V‘s))

it is easy to see that the multidimensional characteristic funetion of
the distribution on the right-hand side of (21) has the form

(n), iU Higuat . Tgug)
) 2 .P11,7g..“,as°’
91725000578

(22)

In

= [[{Pu(Af?) 614 PyAl) 6+ .+ Py(AP) s 4
I=1

F1=Py(4)+1=Py( A7)+ ... 41— P,(4{"))
71»
= [ {L-HP(A) (61 —1) 4Py AP) (™2 —1) -+ ... +-P,(A) (67 —1 )}

i=1

Taking into aceount (20) and (21), we obtain from (22)

Z P(vl(B) =1, %(B) =g, ..., 5({B) = ]'8)e’£(’1“1+3’2”2'|'w+ia"a)

71795008
= exp (Cy(B) (6" —1)+-0y(B) (¢™2—1) +...+0y(B) (s —1)).

As exp(0x(B)(¢™—1)) is the characteristic function of ve(B) (k =
=1,2,...), our theorem is proved. :

Obviously »(B) is a completely additive stochastic set function
on R, or, in other terms, conditions I-IT hold. We have seen that they
side are of Poisson type. Finally we prove

TEEOREM 5. If B, B,,... is an arbitrary sequence of sets of R, then
the random variables v(By), v(By), ... are independent and if BeR, then

(23) £(B) = Y hn(B),

k=1
w.here the sum of mutually independent random variables on the right-hand
side converges with probability 1 regardless of the order of summation.
Proof. If .the sets By, By, ... are identical or disjoint, then w(B,),
vo(By), ... are independent. In the general case we consider the, first s

icm°
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sets and form the disjoint sets El BirB,-,+l -+ By,. The number of
these sets is 2°. Since the random variables v B, ... EirBir+1 .- By)
are independent, where %k runs through the set of the positive integers
1,2,...,s and iy, %,..., 1, proceeds through all the combinations of r
elements of 1,2,...,s, and furthermore the variables »(B,), 7(B,),
-.+y %5(Bs) can be represented as sums of disjoint sets of the variables
mentioned above, cur first assertion holds.

The convergence of the series in (23) is a consequence of formula (7),
since

'pk()‘kuy B) = exXp (Ok(B)(e"‘k“_1>)

is the characteristic funetion of the random variable Jxvi{ B); moreover,
the infinite product

flu, B) = ﬁ‘l’k(;~kuﬁ B)
k=1 *

@

converges absolutely and is also a characteristic function (see for instance
[4], p. 115, Theorem 2.7).

Remark. Since the expectation of »(B) is equal to Cyx(B), relation
(9) implies that the sample fanetions have finite numbers of disconti-
nuities with probability 1.

4. Application to random point distributions
and the Poisson stochastic set function

In this section we specialize the set {4,}. We suppose that {4} is
identical with the set of the non-negative integers and thus the situation
can be described as follows: we throw a finite number of points at random
on the set H so that the numbers of random points in disjoint sets belong-
ing to R are independent. If &(4), AeR, denotes the number of points
in the set 4, then conditions I-IV naturally hold. Thus we obtain

THEOREM 6. If for the set function £(A4), AeR, defined by a random
point distribution Condition VII holds, then for every BeR

De

(24) logf(u, B) = }' Cy(B)(e™*—1),

&
I
i

where the set functions Cy(B) have all the properties described in Theorem 1.
Proof. Our statement immediately follows from Theorem 2.
Hence we can obtain conditions ensuring the Poisson character

of a random point distribution. This is expressed in
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TumoreM 7. If RN is a o-algebra and for the set function £(A), AeR,
defined by a random point disiribution, condition VIL and one of the
following three conditions hold,

(a) [ Pyad) = [(1—Pyaa)),
H H
(b) Varp,(H) = Var,_p(H),
(c) [Pyad) =0 jor Ek=23,..,
H

then the random variables £(B), BeR, have Poisson distributions with the
parameters 8[ Py(dd), BeR.

Proof. If for a random point distribution Condition VII holds,
then (a), (b) and (c¢) are equivalent. In fact Py(4) and 1—Py(4) are sub-
additive set functions, whence by Lemma 5, (a) and (b) are equivalent.
The equivalence of (a) and (¢) is ensured by relations (8) and (9). Thus
it is sufficient to consider (c). Our statement follows at once from Theorem 3
if we observe that (¢) includes ’

OuB)= [Pydd) =0 for k=2,3,..., BeR.
B

If in the random point distribution there are only single points,
i.e. if we have »,(B) =0, k = 2,3, ..., for every Be%R, then we hope
to obtain Poisson distributions for the variables &(B), BeR. However,
we need for our proof condition V concerning the space H. The proof
of that condition being unnecessary or a counterexample would be de-
sirable. Our result is contained in

TEEOREM 8. If in a random point distribution there are only single
points, and furthermore if Conditions V and VIL are fulfilled, then for every
BeR

A4(B)

(25) P(£(B) = k) = o e B =0,1,2,...,

where A(B) = C1(B) is the average number of points lying in B and

(26) MB)= [P(dd).
B

Proof. Since »(B) =0 for k = 2,3,..., by Theorem 3 we have
C(B) = M(vk(B)) =0 for k=2,3,...

Applying Theorem 6 and taking into account the result in Theorem 1
concerning the connection of ¢\(B) and Py(4), we obtain the statements
of Theorem 8.

icm
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