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Since ‘
Lim (2k,/9,) =0,
Hh=00
the neighbourhood
U = E{lyl <
v

satisfies the condition (*x), 4. ¢. is bounded.

COROLLARY. From the proof of Theorem 3 it follows divectly that if
in an F-space a norm has the property Wy, then an equivalent norm has it
also.

Remark 1. The above theorem is fulse in the case of the .F'-spaee.
An example is provided by the space K of all the sequences o = (&)
almost all clements of which vanish, the norm heing

1 &

lell = > <% TH&

k=1l

It is easily verified that the sequence 9, = n iy a rate of growth for
the norm |j2. . -
“Since K, being a B;-space, is not a' B*-space (see [6]) there are not
any bounded neighbourhoods in K.
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Spaces of continuous funections 1))
(On multiplicative linear functionals over some Hausdorff classes)

by
Z. SEMADENI (Poznan)

8. Mazur [5] has proved that with every bounded sequence {arn}
a real number Lim z, can be associated in such g way that Lim z, is

n
equal to the usual limit of a subsequence of {a‘n}, consequently

(1) lima, < Lima, < EE.’I‘,,,
(2) Lim (az,+by,) = aLim 2y + b Limy,,
(3) Lim (2,y,) = Lim 2y Lim y, .

In this note a construction of generalized limits for some classes
of functions is given. This construction is non-effective, just as those
of Mazur; it is based on the theorem of Kakutani‘on the representation
of abstract (3)-spaces. It is easily seen that this limit can also be derived
from the theorem of Tychonoff, but I think that the way which T have
chosen leads to more consequences.

The generalization of the theorem of Mazur to the case of real-valued,
bounded. functions defined on <0, 1) is trivial, e. g., we can put

Limes 2 (t)

= Lima(t,)
1ty n

where Lim denotes an arbitrary limit of Mazur and tn—>1ty. The functional
“Limes” constructed in the Theorems 1, 1a, 1b and 2 satisfies also some
additional conditions. Tt can be considered as a solution of the following
problem: given a space of equivalence classes of functions how to assign
in a reasonable way the value to every function at every point.

The second part of this paper contains some applications (the exis-
tence of certain multiplicative measures and a negative solution of two
questions concerning the extension of linear functionals)
Studia Mathematica XVI.
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i imi topological space and R

1. The generalized limits. Let E be a . .
a o-ideal of boundary sets (i. . 4 e R and BCA imply BeR, 4,¢R imply

for n =1,2
0

Ay eR,

n=1

no open non-empty set belongs to R). The faimil‘y H of all se‘ng 'of form

Gud (where @ is open and AeR) is multiphca.tlve'and o-additive,
Denote by H the class of all real-valued functions x(¢) on F such

that the sets {t: & < #(t) < b} belong to H for every a and b. I-Iayus.d'orff

([3], p- 235) has established that H is closed with respect to addition,

multiplication, supremum and infimum of two elements. Next, denote by

supg 2 (t)
E

the least upper bound of the totality of numbers « such that the se
{t: z(t) > a} belongs to R. In particular, supg m(t). denotes the us_ua,
essential supremum and supp(f) denotes the essential supremum with
respect to the sets of Baire's first category. We introduce also- the
R-essential limdt in £, in the following manner:

limp2(t) = inf[limx(t)], limga() = —limg[—x(t)].
ty ARty E:ﬁ) (BN
leB—-4d

Lemma 1. For any zeH the sets

A4 = {t: limg 2(7)
71
belong to R.

Proof. According to Alexiewicz ([1], p. 64) a function x(t) belongs
to H if and only if the set D of its points of discontinuity belongs to R.
It follows that 4e¢R and BeR, because AuBCD.

In the class X, of bounded functions of H we introduce the reflexive,
symmetric and transitive relation a;~m, when {t:@y(t)  x,(t)} e R, and
we identify R-equivalent fumctions. Denote by w,y, ... the classes of
equivalence under the relation ~, corresponding to elements iy, Yo, ...
Evidently the space X = X,/~ is a Banach space with the norm

# limgz(r)}  and B = [t:a(l) # lirrilRJ:(r)}
7>t P

llell = supg |#y(2)].
B

In X we introduce a partial ordering by the relation: » < 4 if and only
if the set {¢: #o(t) > y(t)} belongs to R for ayex and yey. If @Ay =0
then the set {t:|a,(t)+y,(t)| 7 (1) —yo(t)|} belongs to R; it follows thab
#Ay =0 implies |o4y| = lw—y|. Similarly 23>0 and y =0 imply
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llevyll = llzll v lyl, therefore X is an (M)-space with a unit element
(see [3]). Denote it by 9% (B, R) and by @ the set of all linear functio-
nals defined on X which satisfy the conditions

4) lél=1 @) >0for >0, apAy =10 implies £(x)- &(y) = 0.

By the theorem of Kakutani X can be linearly, isometrically and
isotonically mapped on the space ¢ (2) of continuous functions defined on
2 (which is compact in a weak topology).

TEEOREM 1. Suppose that B satisfies the first axiom of countability
at @ certain poini iy B, and suppose that there exists a base {U.} of neighbour-
hoods of t, and a sequence of continuous funetions @, from E into U, such
that no ¢,(E) belongs to R (n =1, 2,...). Then to every e X = Y (H,R)
corresponds a generalized limit

Lim x(t) = &1y(2)
Lt

such that

(3) limzolt) < gyfa) < ER»W),
(6) fGlantby) = a- & (2)+b-&(y),
(7) . &glmey) = &) - &(),

(8) Sp(2Vy) = max[£(x), &,()].

If this Uimit exists for mzy toe B, then the function u{t) = &) s
R-equivalent to 2, i.e.,

(9) {t: &x) £ () e R Jor  ages.

Proof. Choose an arbitrary fixed fe2, We pub m,(f) = o (pn(t))
for te B and &,(z) = &(x,). Evidently £,e9. Every limit point &, of the
set {&,} satisties (6), (7) and (8); (5) follows from the identity

ERm(t) = limsupp(z),
ity f-s00 Uy
and (9) results by lemma 1.
Now, we specialize the space E and the family R to obtain some
applications of theorem 1.

a) Let ¥ be the interval (0,1> and R the family L of sets of Le-
besgue’s measure zero. Then
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TERoREM la. To every function (1) Riemann-integrable in {0, 1>
corresponds @ measurable function u(t) = &) satisfying (6), (7), (8),
limg, 2(7) < &) < ]iH}L #(7),
_r——b_f T
and such that z(t) and w(t) are equal almost everywhere.
b) Let E be a complete metric space and R the family B of sets of
the first category. Then ' . ‘ .
TamorEM 1b. To every bounded function (1), point-wise discontinuous
in B, corresponds a function u(t) = Zy() satisfyiﬁ.g (6), (7), (8),

(10)

limp x(7) < &(2) < E@B 2(7)

(11) .
>t
and .
(12) «(t) end u(l) are equal ewcept a se of the first category.

Lemva 2. Let X denote the space of all bounded functions satisfying
the condition of Baire (in @ wide sense), with the norm

[lzll = supzia ().
E

For arbitrary xeX the set

= {t: limp a(z) # limp (7))}

T vt

is of the first category’). .

Proof. Let us notice first that it is sufficient to prove this lemma
for the functions taking only the values 0 and 1, because the simple
functions (4. e., the functions with a finite set of values) form a dense
set in X, and from the inequality

|E1,-Tt13w(r>—ﬂr§3y<r>| < lo—yll

it follows that the operations Eﬂw(r) and limgax(v) are continuous in X.
>t =3
Let H be an arbitrary subset of F satisfying the condition of Baire,
i. ., H=(GuP)—Q where & is open and P,Q of the first category. 1ts
characteristic function yz(t) is B -equivalent to the characteristic function
of @. Since the set
{t: 1w yo(x) # i 1o()}

Eaas]

is contained in the non-dense boundary of @, 4 is of the first category.

1) This lemma is an immediate corollary from a theorem due to C. Kura-

towski (sec. C. Kuratowski, Topologie I, Warszawa 1948, p. 308).
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THEOREM 2. For every bounded function satisfying the condition of
Baire in a complete metric space B there ewists o funetion wu(t) = £,(x)
such that (6), (7), (8), (11) and (12) hold.

The proof is analogous to the proof of Theorem 1.

The method presented here may be applied to other functional
Spaces, but the second part of Theorem 1 is not true in all cages.

2. Multiplicative measures. Let us consider the space X of hounded
sequences @ = {#;, &y, ...} with the norm

llel] = sup 1@l

the ordering @ <y if 4, < yu for n = 1,2, ... and the unit ¢ = f1,1,...1
By the above mentioned theorem of Kakutani X is strongly equivalent
to the space C(2) (where 2 is given by (4)). Every functional

(13) En('”) = Tp

obviously belongs to 2. Any limit point & of the sequence {€,} satisfies
(1), (2) and (3), whence it follows that &, is a limit of Mazur. Conversely,
each functional which satisfies (1), (2) and (3) is a limit point of {&:}
because it belongs to £ and by (1) it is none of the functionals (13). In
other words: the Stone-Cech compactification B(N) of the countable
isolate set N consists of the functionals (13) and of the limits of
Mazur.

Let 8 denote a subset of ¥ and yg its characteristic function. Given
Ee2, we put m(s) = &(ye).

It is easily seen that (a) m(S) >0, (b) m(S1uSy) ='m(81)+m(82)
if 8in8, =0, (c) m(81n8;) = m(8y)-m(8), (d) m(N)=1, (e) it § is
finite and & is no of (13), then m(8) = 0.

Thus m(8) is a finitely-additive and multiplicative set function
defined on all subsets of N. The condition (¢) can be interpreted as
a stochastical independence. Conversely, to every measure of such kind
there corresponds a multiplicative functional

E(x) = fmdm.
¥

In other words the functional & is multiplicative if and only if 4 is
multiplicative on nought-or-one sequences.

This procedure may be generalized. Let X be the space of Baire-
-functions in E (see Theorem 2). For an arbitrary Baire-set ACE and
§€2 we establish that my4) = £(y4) is a finitely-additive and multi-
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plicative measure vanishing on sets of the first category. The general
form of linear functional over X is the integral

= fw(t)dm,
B

and |f|| = Varm,;. More generally, we can consider Hausdorff classes
E

corresponding to arbitrary Boolean algebras.

THEOREM 3. The following conditions are equivalent for linear functio-
nals over the space O(2) of continuwous functions defined on a O-dimensional
compact space 2:
1° fe®2 (i.e. E(m) = x(ty) for fived tye2);
2° & s multiplicative and & # 0;
3°  the measure m, does not vanish everywhere and for A, BCQ open-and-

-closed, we have mAnB) = my(A)-mgB);
4° m(R) =1, mg =0, and A~B = 0 implies my(A) mg(B) = 0.

Proof. The implications 1°— 2°, 2°— 3°, 3°— 4° are trivial, we shall
prove only 4°—1° From the obvious £>=0 we have (/& = &(e)
= my(E) = 1. Suppose that z;,y,€ X and Ay = 0. For any n» there exist
simple functions a,eX and y,eX such that |jg— x| <1/n, [y —y,l <1/
and 2, Ay, = 0, moreover, there exist sets 4,,...,4,, and By,..., B,
such that 4x~B; =0 for 4,k =1,2,...,m,

m
= Z b"’ZBlc'
k=1

m
T, = Z xa, A0d Y,
k=1
Then

Ey,) = 2 apmg( Ay Z’ bymy(B;) = S’ apbym Ap~By) = 0.

k=1 j=1 k= 1

Passing to the limit we obtain &(z)-&(y) = 0, whence fe.

TEEOREM 4. A compact space 2 4s O-dimensional if and only if the
condition Ee2 is equivalent to the following: if xeC(2) wnd x(t) take only 0
and 1 as the values, then either &(x) = 0, or &(w) =

Proof. Necessity. Since every positive function ze X can be approx-
imated by non-negative simple functions, we have & > 0 and [[&] =1
(if &+ 0). Suppose that E,CQ2, E,C Q and F,~F, =0. Then every
number mg(E), my(Hp) and m[Q—(ELB,)] is equal to 0 or 1, whence
from my(Ey)+my(B,)+m [ Q— (B,uB,)] there follows my(Ey)my(B,) = 0.
By theorem 3 (proposition 4°) £e®.

Sufficiency. Suppose that there exists a connected set ECQ con-
ftaining two different points ¢, and ¢,. Then the functional
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z(t)+ 2 (1)
) = ——F—

&

does not belong to 2, and 5(x) = 0 or n(x) = 1 holds for any nought-
-or-one continuous function zeX.

3. Extension of linear functionals, Similarly to Theorem 1 we can
prove the existence of a generalized left-hand limit, &, and a right-
-hand one, #;, in the space X of Riemann-integrable functions, at any
point £€0, 1. Let X, denote the subspace of X of continuous functions
on {0, 1>. The functionals & and #; are equal on #,. There follow
two propositions:

1° A norm-preserving exiension of linear functional from an M-sub-
space X, on M-space X is not necessarily unique (even if X, and X
have the same unit).

However, by a theorem of M. Krein and 8. Krein ([4], p. 7) it follows
that if £, is an open-and-closed subset of 2, then every linear functional
has a unique norm-preserving extension from X, = C(Q,) to X = C(Q);
this is also easily deducible from the integral representation of functionals.

20 If Xy = C(£) is an M-subspace X = C(RQ2), then ”Q%C

op
necessarily satisfied even, if every functional &e2, has an extension £feR2.

Q is not
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