Sufficient conditions for all integrals of a stationary
system to be determined in the bilateraly
unbounded interval

by J. JASTRZEBSKA - OLECH (Krakdw) (*)

Let us consider the system of differential equations
3 dyldi = F(y),
where y = (yy, ¥sy ..., ¥,) 18 2 n-dimensional vector and

F(y) = (fl(yu vy Yn)s FelWss ooy Yndy -y Ful¥as ceey 'Z/n))
is the continuous vector-funection for y belonging to & domain Q of n-di-
mensional Euclidean space R". The function F(y) does not depend on #.
Such a system is called a stationary one.

A stationary system is called a dynamical one if it satisfies the con-
dition of uniqueness and if each of its solution is defined for —oo <t
< oo,

The two systems, (1) and

(2) dyldt = @(y),

are equivalent if there exists a scalar-function 7(y) which is continuous
and positive for y belonging to @ and satisfies

(3) Gy) =r(y)Fy)

for every y from Q.

The trajectories of two equivalent systems and the direction of mo-
tion on them are the same, only the velocities being changed.

The purpose of this paper, the subject of which has been suggested
by T. Wazewski, is the presentation of a sufficient condition for every
solution. of (1) to be defined for —oo < ¢ < -+oo. This condition will
be formulated and proved in section 2 (see theorem 1); before that we shall
prove two lemmas (see § 1). Applying theorem 1 we shall prove in gec-
tion 3 the following theorem A (see [2], p. 28, theorem of R. B. Wino-
grad). .

(*) The author wishes to express her sincere gratitude to Professor T. Wazewski
'f_or his generous help in the preparation of this paper.
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THEOREM A. Let system (1) satisfy the condition of umigueness in
domain Q. There ewists a dynamical sysiem filling up oll the space which
is equivalent to system (1) in domain Q.

§ 1. Let H denote a closed set of poinfs of space R". Put

141yl if H is empty
@) ply, H) = { A ’
oy, H) if H is non empty,
—
where |y| = Dl is the norm of vector y and p(y, H) is a distance of
i=1

point y from the set H. The function wu(y, H) is continuous with respect
to y. The equality u(y, H) = 0 is fulfilled only when y belongs to H.
The function wu(y,H) defined as above possesses the following

property:
in the case H = 0, if

if

wly, H) » oo lyl = ox,

in the case H £ 0, u(y,H) - o{y, H) - occ.

For our purposes one can define u(y, H) in such a manner that (a)
is not satisfied — a theorem analogous to theorem 1 obtained in such
a way should be less general.

Lemma 1. If the function ®(1) = (p.(t), ps(2), ..., palt)} has a conti-
nuous derivative for te(a,b), then

(5) D, p(®(), H)| < |'(0)  for  tela, b)().
The proof of this lemma proceeds directly from the inequality
ju(P, H)—u (@, H)| < |P—Q| true for every P, Q.
LeMMA 2. If @(t) possesses a ‘continuous derivative for te(a, b) and if
(6) o' < K for te(a,b),
where K is an arbitrary positive constant, then there exisls
(7) lli_fl;@(i)

and this limit is finite.

i LOFN L)

(") By D4L(1) we understand h—};,ull»o i " and similarly
P lim L{t+h)—L®)
L) = T,
D4 L) hro B0 7
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Proof of lemma 2. Let ¢, belong to interval (a, b). Suppose H is com-
posed only of one point &(#;) — hence by lemma 1 and assumption (6)
we get

D000, 2w) <IPW <E  for a<i<b;

therefore _
—K < D,o(®(1), 8(1) < K.

Let L(1) = Ki-+o(®(1), B(t)) and - Ly(t) = Ki—o(D(1), D(4)). By the
last inequality we obtain
B+L(t) = K+B+Q((p(t)y dj(tl)) =20,
E+L1(t) = K—l')+g(¢(i), qj(t1)) = K—‘I_)+9(¢(t)7 @(tﬂ) = 0.

From the theorem of Zygmund (see [3], p. 203) we obtain that L()
and L,(¢) are non-decreasing in (@, ) — hence we have the inequality

—K (ty—1;) < Q(Q(%)y (b(tl)) < K(t,—1y)
where ¢, > ¢, and ¢;, t, belong to (a, ). Thus (see p. 221)
Q(Qj(ts)y q)(tﬂ) = |D (1) — D ()| < Klty—1,] ty, tae(a, b).

On the basis of the last inequality and Cauchy’s condition of convergence
we obtain (7). This completes the proof of lemma 2.

for

§ 2. THEOREM 1. Suppose we are given a system of differential equa-
tions

dyldt = F(y), ¥ = Y1, Yss vy Yn),

where F(y) is a continuous veclor-function for y belonging to domain 22).
Let A(z) be a continuous and positive function for 0 < 2z << oo such that

(8) A0) =0,
de
© ujﬁé} =oc (e3> 0).
Let every iniegral of each of the following equations
(10,)  dz/dt = A(z), (10,)  defdt = —A(=)

be defined for —oo <t < 400 (¥).
(*) We do not assume that system (1) satisties the uniqueness condition,
(*) For example the function

ez

142

zlnz  for
0 for

#0,
= ()

M2 A = or l(z):{

0o

fulfils those conditions.
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Under these assumplions a sufficient condition for every solution of
(1) to be defined for —oo <t < 4o is that
(1) ) < AMuty, H))  for y belonging to 2,
where H is the boundary of Q and u(y, H) is defined by (4). (H may be
an empty set.)
Proof of theorem 1. Let 2, be a set of points (¢, y) such that y be-
longs to 2 and —oo << ¢ < 4o and let Y (1) be an integral of (1) valid
in (a,b), the right-hand end of which reaches the boundary of 2,(%).

Let us suppose, for the indirect proof, that b < co. From lemma 1
and from (11) we obtain the inequality .

(12) [Denly®), H) <y’ = Ply)] < a(uly ), &)
for @ <<t < b, H being the boundary of 2. By (12) we get

(13) ~i{uly 1), H)) < Dy plyt), B) < 4uly®), H).

Let us denote by ¢(t) the upper right-hand integral of (10,) and by (&)
the lower right-hand integral of (10,) fulfilling the initial condition
e(to) = p(t,) = ,u(y(to), H) > 0 where {, i3 an arbitrary number belon-
ging to the interval (a, b). The functions ¢(t) and v (t), due to (8) and (9),
are defined and positive for te(—oo, +o0). By the fundamental theorem
about differential inequalities (see for example [4], p. 124, théoréme 2),
(13) implies

(14) p() <uly®), H) <o) te(ty; ).

Since the functions ¢(f) and y(t) are continuous and b is finite, there
exigt positive constants m and M such that

(1) 0<m<puly),H) <M

The function A(2) is continuous, and consequently we can chose a constant
K such that ‘

for

for te(t, b).

(16) My <K for =ze(m,M).
But (16) and (16) imply ’
n Mply@), H) <E  for  te(ty, b);
therefore from (1) and (11) we have

ly'(t) < K for te(t,, b).

() We say that the integral y = y(t) defined in interval {a, b) reaches the bouu-
dary of @,, with its right-hand end if b = oco or if b-< co and there exists a sequence
in < b, t, —> b such that the sequence of points (in, y{ts)) tends to the point belon-
ging to the boundary of 0,.
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Hence, on account of lemma 2 we may state that there exists a limit

limy(¢) = 8 and at the same time that § is finite. Moreover, since u(y, H)
1—=b 3 . . .
is the continuous function of y, (15) implies the inequality

0<m <pu(S,H <M.

In other words § belongs to 2. (8 cannot belong to the boundary of
because (S, H) %0, § cannot belong to the exterior set of Q too
because it is obtained as a limit of points belonging to 2.) The point
(b,8) has a_positive distance from the boundary of £,, but this
eontradicts the assumption that ¢ (f) with ity right-hand end reaches
the boundary of £, whence b = oco. Quite similarly we can prove that
a4 = —oo. Thus theorem 1 is proved.

Remark 1. Assumption (8) and (11) imply that if we put F(y) = 6
for y belonging to the complementary set of 2, we extend gystem (1)
over the whole space R"; each integral of such an extended system being
defined for —oo <1 < “4o0.

§ 3. Now we shall demonstrate how theorem 1 implies theorem A.
Let A(2) be an arbitrary continuous and positive function defined for
0 <z < oo satisfying (8) and (9) and such that each integral of (10,)
and (10,) is defined for —oo < t < 4o0. .

Let

1-++ly| if H is empty,
wy, 1) = -
ey, H) if H is non empty

and let 7(y) = Alu(y, H))/(1+|F(y)|) where H denotes the boundary of £.
It may easily be seen that function r(y) is continuous and positive in Q
and that it satisfies the inequality

(18) @) 1IF ()] < A(u(y, H)).

The system dy/dr = G (y), where G(y) = r(y) F(y) for y belonging ‘

to 2 and G(y) = O for y belonging to the complementary set of Q, fills
up all the space R™ Tt is equivalent to system (1) (which satisfies by the
hypothesis — see theorem A — the uniqueness condition) in domain @,
and owing to theorem 1 and remark 1 it is dynamical.

Remark 2. The considerations of § 3 remain valid if we replace
function r(y) by a continuous function ¢(y) which satisfies the inequality

{19) 0<gly) <r(y) for yeQ.

As follows from a certain result of A. Bielecki (see [1], p. 38, théors-
me 1), there exists a function ¢(y) of class ¢ (or even an analytical one
28 may be deduced from the lemma 6 of [5]) which satisfies inequality (19).

Hence we have the following strenghtening of theorem A.
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TeEOREM B. Let system (1) satisfy the condition of uniqﬁeness i do-
main Q. There exists a positive function g(y) of class C* (or even an ana-
lytical function g(y;) for yeQ such that the system

dyldv = g(y) P (y)
18 a dynamical one.

References

[1] A. Bielecki, Sur une généralisation dun théoréme de Weiersirass, Ann.
Soc. Polon, Math. 10 (1931), p. 33.41.

[2] B. B. Hemunuui u B. BéCrenanoB, Kavecmsennas meopus duggbe-
penyuasbror ypasuenwii, Mockpa-Jlennnrpan 1949.

[3] S. Saks, Theory of the inlegral, Warszawa-Lwéw 1937.

[4]1 T. Wazewski, Systémes des équations et des inégalitds différentielles aux

deuxiémes membres monotones et lour applications, Ann. Soc. Polon. Math. 23 (1950),
p. 112-166.

[5] H. Whitney, Adnalytic extension of differeniiable funciions defined in closed
sels, Trans. of the American Math. Soc. 36 (1934) p. 63-80.

Regu par la Rédaction e 25, 1. 1956

Annales Polonici Mathematicl 15


GUEST




