Les ANNALES POLONICI MATHEMATICI constituent une continua-
tion des ANNALES DE LA SOCIETE POLONAISE DE MATHEMATIQUE
vol. I-XXV) fondées en 1921 par Stanistaw Zaremba,

Les ANNALES POLONICI MATHEMATICI publient, en langues des
congrés ihternaﬁonaux; des travaux consacrés & 1’Analyse Mathématique,
la Géométrie et la Théorie des Nombres. Chaque volume parait en quelques

(2-3) fascicules.

PRINTED IN POLAND

WBOCLAWSKA/),D‘R'"U“J&‘ARNIA NAUKOWA

icm°®

ANNALES
POLONICI MATHEMATICI
V. (1958)

Polynomial Hausdorff transformations

I. Mercerian theorems

by Z. POLNIAKOWSKI (Poznan)

1. In 1906 J. Mercer proved the following theorem:

If my = SobsT S
n4-1

hypothesis limp, = s implies lims, = s.

, >0 and p, = as;+(1—a)m/n, then the

n N v
G. H. Hardy showed that the assumption « > 0 may be replaced
by rea > 0. The theorem remains true under the hypothesis « > §, if
we replace m, by the transform

o0
ty = 20,7,,«5',,,

v=0

where (c,,) i & matrix of a reenlar transfermation.
If a < 4, then the cenclusion of Mercer’s theorem ceases to be true
in general. In the case of Euler’s transform

n

by = 2_”‘2: (:) s,
and a < 4+ we may give an example of a divergent sequence {s;} such
that the corresponding sequence with terms p; = asp-+(1—a)e, con-
verges.

In 1938 H.R. Pitt {6] proved the Mercerian theorem, by use of
the Mellin transformations, in the case of Hausdorff transforms giving
a necessary and sufficient condition of the equivalence of the regular
Hausdorff method to the ordinary convergence.

In some cases theorems of this kind may be proved by a more ele-
mentary method. We prove (theorem 1A) by the use of Cauchy’s theorem
for sequences that the Hausdorff transformation with u, = W,(n)|W(n),
where W(2) is a polynomial of degree k and W,(2) a polynomial of degree
1<k, is regular if and only if the real parts of all the roots of the
equation W(2) =0 are negative. W
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2 7. Polniakowski

From this we obtain Mercerian theorems for Cesaro and Holder means
of iritegral order and, more generally, for Hausdorff means with u,
= 1/W (n), where W (z) is a polynomial. In the case of the Cesiro mean

M, k=1,2,... (e for W(z)= (x+7°)), there exists a constant o
such that the assumption limp, = s, where p, = as,--(1—a)cl?,
n
implies lims, = s if and only if a > a.
€n
Holder mean ¥ (i. e for W(z) = (z+1)%) there exists a constant aj
with the analogous property. The sequences {a;} and {a;} are non-
-negative, increasing for & > 2 and tend to the limit 4. We give the asym-
ptotic representations of these sequences.

Using theorem 1A we prove also the following Tauberian theorem:
If hmc(") =3 and hmm(snmsnﬂ) =0 then hmsn =s.

Similarly in the cage of the

In all these theorems we suppose thzut 8] < co; the congidered
sequences are complex.

In section 3 we prove analogous theorems for the. difference
transform #(x) of the function f(z) defined as

=2MmmW)

and the differential transform defined by the formula

Zﬂn_‘f(m

The author is very much obliged to Professor W. Orlicz for his
suggestions and remarks in the course of preparing of this paper.

2. We now introduce the following notation: We denote by (a,)
and [a,] respectively the infinite matrices

ay a, 0...0...
ay 0 a

Pl oema [

ay 0 n

.

Furthermore let (¢,,) denote any infinite triangular matrix, i. e. a matrix
satisfying the condition ¢,, =0 for » > x. We set § = (a,,), Wwhere

Gpy = (—1) (’:) for n,» = 0,1,2,... Let us remark that &* =1 (here I
denotes the unit matrix of infinite order; the product of two matrices
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is formed by the multiplication of the rows by the columns). This follows
from the fact that for every » we have (¥") = é6(¢") if y = 1—2 and
(@) = §(y") = &*(a™), since & = 1—y. .
The k-th difference A*a, of the sequence {an} is defined as usnal by
&
k
Aa, =Z(“1)”(v)“"+v for  k=0,1,2,..., Ag

v=0
then (4%a,) = 6(an), (a,) = §(4™a,) and
1y (”) Ay

(1) a =D (—
If ¢, *Zen, ,, we shall say that the sequence {s,,} is transformed

LI
= A ay;

r=0

into the sequence {t } by means of the transformation with the matrix
C = (¢y,)- In the matrix form this may be written as (t,) = (¢u)(Sn)-
Finally, we denote by R the class of polynomials W(z) with
complex coefficients, such that the real parts of all the roots of the
equation W(z) = 0 are negative. '
2.1. In the sequel we shall use the following theorem essentially
due to Cauchy:

TEEOREM A. Let {sn}, {an), {ba} be given sequences. The hypothesis
lims, = s implies hm (an/bn) = s if

) [ba| 00 and 2|Ab] Kb,

or

1) a,—>0, b,—>0, b,#0 for infinitely many indices n and
214b,) < K |by,| (where the constant K does not depend on n),
="

2) Aay, = 8, 4b,.

Let us notice that 1a) or 1b) imply the inequalities b, # 0 for n > N
and 4b, % 0 for infinitely many ». The inequalities in 1a) and 1b) are

- satistied in the case of monotone sequences.

2.1.1. Suppose that
1) the sequence {b,} satisfies the hypothesis 1a) or 1b) of theorem A,
2) by #%0 for n =0,1,2,...,
3) lims, = ¢
n
Then there exists a sequence {in} which is a solution of the difference
equation

Ab,_q
(2) A%, 1+

bn—l
and tends to the limit s.

(@n—8p) =0 for m=1,2,..,
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In the case 1a) every solution {w,} of (2) tends to s, in the case 1b)
@y = Fn+0/bn, where ¢ is @& constant.

Proof. We seek the solution of (2) in the form #, = ¢,/b,. Substi-
fution into (2) gives the difference equation for ¢,

Aty = Sy Aby_y, w21,

Suppose first that {b,} satisfies 1a); then

n—1 n-1
\
Cp— €y = —Z de, = ——2 8,414b,.
. p=0 pal
Hence the general solution of (2) in this case is
N1

¢ 1
8,41 4b,,

B

v=0
where ¢ is a constant.

If {b,) satisfies 1b), then the series }'4b, and >'8,,.14b, are con-
vergent and

&2 g 1 i’
Tl :Z AG,, =st-l-1 Abv? L. =—b_ +T Sr1 Abw?
n n :

y=N =1 =T
because the sequence {1/bn| is a particular solution of (2) for s, =0.

In both cases it now suffices to apply theorem A; in the case 1b)
we obtain the expression for z, taking ¢ = 0 in the second formula.

2.1.2. Let

Uy, ==

2 .
H(H'?)’ #=atbi#—1,-2,..;
p=1

then -1
2 14w,

|| } 00 amd =L le

—-— for >0,
| a

> | Au,) Il

vl
[t
Proof. If ¢z = —1, —2, ..., then from the inequality

2 H>1 for
n-1|l<1l  for

|4y >0  monotonically for n >N and for a <O0.

a>0,
<0, n>N

Ui
'u”n.

e

it follows that the sequence |u,| is monotone for ¢ >0, n =0, 1, 2, ...,
and for ¢ < 0, » > N. We remark that
| “nt {oo for
AN e
" 0 for

H'(z+1)|

a>0,
a<<0.
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[~

Hence using Cauchy’s theorem we have in the case ¢ > 0

n—1 A
T VU L B -
N T T R T e

In the case a << 0 we have

[ A%y 4] =1":"| |1 Ni“na——l

[T (e+1)]
and the series }'|Adu,| converges; the proof now follows as in the case
a < 0. .

2.2. Transformations with the matrix H = (¢,,) of the form H =
= dud, p = [u,] are said to be of Hausdorff type (Hausdorff [2], Hardy
[1], p. 247).

The following properties of the Hausdorff transformations are well
known:

If (t,) = 0ud(s,) then A" = p,d"sy for n =0,1,2,...

It H, = 6u®é, H, = 6u® and 1,1, are complex numbers, then

MH A A Hy = 8(yu®+2u®)8,  HyH, = 506,

From the latter equation it follows that if H = H,H, = dué, u, # 0,
pO = [u], W = [uf], then w, = uful) and H™' = 8[1/u,]0.

It may also be shown that the class of matrices H is identical with
the class of matrices commutable with the matrix of the method of the
first arithmetic mean (Hardy [1], p. 249).

A sequence {s,} is said to be (H, u) summable if the sequence {ta)
defined by the formula (t,) = dud(s,) is convergent.

I H = (c,,) = oud, then c,, = (’;’) A"y, Using (1) with @, = pn_,

n
we have } 6, = po-
»=0

.

Thus the conditions of regularity of the transformation with a ma-
trix H are

n
ol = 3 ()1 4" < K, with some K < oo,

med
»=0

N

10

N
W
@

A
w
»
(=]
2

N

Cnw = Mo =1,

o

v=

3° lime,, = h‘m(:f)A"‘m, =0 for »=0,1,2,...
n n
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It may be shown that the condition 3° for » > 0 follows form 1°
(see Hardy [1], p. 255 for real case). i
If the methods (H,u®), »=1,2,...,k are regular, Z,l/lv =1,
n =
tn = 2 A,u), then the method (H, ) is also regular.
v=1
In the sequel let (&) = 8 [tn] 8 (8n)-
9.2.1. If yy = (—1)k(;c") then
0 for n<k,
(4) b = ‘ (Z) Mg, . for n =k
We prove that the terms of the sequence {tn) defined above satisfy
the relation A4™%, = (wl)’“(;:) Ats,. Namely A", =0 for n <k and

o= 3t () = ) a7 o

r=k
n—k

= (—1) (7:)2 (—1y (vnﬂ—’k) A*s,

»=0
= (0 (f] ) = (=0 () 4750
for n > k.
2.2.2. If W(z) is a polynomial of degree k, o = W(n), then
(B) ty, = L(sa), n=0,1,2,...,
k
where  L(s,) = %ZV(I:) As,_, (for n<v we se (:L) A's,_, = 0) and
= (—1r AW (0) = 3 (=17 [} W)
i=0

k
Since W (n) = 2(’1) AW (0), the proof follows immediately from
2.2.1. v=0 \
n

2.2.3. If 4y, is defined asg in 2.2.2 and s, = F('w:j;:}:i'i’ then

n!

= — > k.
ty, = W(r) Tin—r1) for n =k
Using 2.2.2 we obtain
. ,
n—w)!
= I = 3 (1)) A”W(O)A"——-————-—*mr(nir_)w_ﬂ)

v=0
n!

n! - _
= S 2 b A0 = F i WO

p=0
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gince
S\ e (n—w»)!
(=1 (V)A I'n—r—v-1)
iy (n—9)! _ o n!
= (,,) Fin—r+1) r(r—1) ... (r—v+1) = (”)F——“—(w—r-{-l)'

We set here n!/[(n—r41) = 0 if r is an integer and r > #.

Compare also Rogosinski [8] I, L. 1. ’

2.2.4. Let p be a positive integer. If rea > 0 then the Hausdorff trans-
formation with p, = 1[(an+1)" is regular.

We may write the relation (£,) = 6[a]d(sn) in the form of a system
of equations

8[an+118(2) = (2*Y),

where # = t,, 2’9 = s,, which by 2.2.1 is equivalent to the system
of difference equations
(6) —andzgl) |+ ol = al*h.

Assuming lims, = ¢ and using 2.1.1 succesively forv = p, p—1,..., 1
"

y=1,2,..,9,

n

and b, = [](1+1/av), we find from (6) by means of 2.1.2 that limz, =

v=1 n

for every sequence {wn] satisfying any of the difference equations (6).
Then the sequence {¢,} = {{} converges to the limit s and the considered
transformation is regular. Compare Perron [5].

TEEOREM 1A. Let W(z) and W,(z) be polynomials of degrees k and
1 < k respectively, without common zeros, W(n) # 0 for n=20,1,2,...
and W(0) = W,(0). .

The Hausdorff transformation with a matriz H = 6{p,16, where
t = Wi(n)[W(n), 18 regular if and only if W(z)eR (see p.3).

Proof. We may evidently assume that k >1. Let 7, be the roots
of the equation W(z) =0, rer, < 0 for » =1,2,...,k and

W.(2) o,

s Yk
W(2) PINTET
If the multiplicity of the root 7, is k,, it appears in this sum %, times with
p,=1,2,...,k,. Next we set

[
where Zl,, =1 and z#r,.
=0 .

tﬁ')zsn,
) =6 ! ) £ =1,2 k
(t) = A (8,) for »=1,2,...,k,
k
tnzzhzw.
=0
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Then

) = (Zk' L) = 5[10—%- 2 i _f?—/r] 5(5,) = 5[—-(~(~)—)J 8(50)-

Moreover hmtn =g, since lnnf,(" =g¢ for v =1,2,...,k by 2.2.4. This"’

proves ‘Uha.t the tl'ansformatl()n with w, = Wy (n)/W(n)
the considered case.
Let us remark that by the hypothesis of regularity of the transfor-

is regular in

mations (H, x®) with u4{) = the regularity of the transfor-

1
@L—ap)"’
k
mation (H, u) with wu, = Zo—}-ZT,,/ln also (,m mentioned above) follows

immediately from (3). ) .
Now let rer; >>0. We define the sequences {s;} and {z} by

o= o
(s2) = S[W (n )Ja( T 1+1))

Whence (i) = 8[W,(n)[W(n
n > k that

. . %

)16(ss). By means of 2.2.3 it follows for
®

N n! " n!

= W(ry) e =0, 1= Wy(r) 5 70

n ) (1) 5 F(’/L——Tl-{—l) #

Thus lims;, = 0, whereas the sequence {f,} does not converge and the
n

Wo(n)|W(n)

2.3. For every k >1 there exists o, with the following properties: If
a > oy, then the real parts of all the roots of the equation

) H(1+ )~1—u 2> 0,

=l

transformation with u, = is not regular.

are megative. If o < oy, a 7 0, then there ewists @ root of the equation (7)
with a mon-negative real part. In particular a, = a, = 0; if k =3, then
are(0, $) and

(8) ——1- n(u-f’;),

where v =1y, 18 the unique root of the equation

k
(9) Earctg(r/a:,,) = .

=1

icm
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Proof. Let r and o satisfy with some integer n (In| < k) the
equations
k

k
Z arctg (r/m,) = nm, ” (14+7*/a}) = (1) —17 for k>=3.
p=1 =1
It
r 72 7 w
1+ —i=T 14— " h p, = arctg— =
-|-mﬂz ]/ +w§ e where @, = arc gmv, 0<|qn,\<2,
then
. 1
14— i) = ‘Zm”]/ 1 = ¢ | —1| = (=1)"|-5 1|
”( + z) ¢ H + -5 (—1) oG

Tt follows that the value # = »i satisfies the equation (7) for a = o
if and only if » and o satisfy (10) with a certain n (jn| < k), whiech is
0dd in the case 0 < a <1 and even in the cases a > 1 and a < 0.

We denote by 75, the root of the first of the equations (10) with » =1
and by a, the positive root a® of the second for 7 = 7,. The constant e
is the largest value of the parameter o for which the equation (7) has
a purely imaginary root. From (10) follows the inequality o <4,
whence a; < %-

We remark that if z =0, rez >

I7(+3)

=1

0, then

> 1.

Since |1/a—1| < 1 for « = 4, we see that the real parts of all the roots
of (7), for those a, are negamve They are continuous functions of the
parameter «, whence it follows that they are negative for a > a.

Let 2 = a--bi be a root of equation (7) with a = 0 given; then for

some % (|n| < &k)

k 2
R b a\z b2 1 2
(11) % MCtga—]—xv = nm, l l [(1-[-;) _{_?J — (;_1).

ye=1 v

In virtue of the first equation of (11) we may consider the para-
meter @ as 2 function of b. In the case n = 1 we see that

1° the value z = 2, = a,-b, % satisties (7) and (11) if a = ax, by = 1y,
a; = a; (1) = 0,

9° the function a,(b,) is continuous and increasing for b, > r.—e¢,
with some & > 0.

By the second equation of (11) it follows that b, > 7 and a; > 0
in the case 0 < a < .
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In the case g < 0 it is easy to prove that equation (7) has a positive
root.

The values ¢, and «, we compute immediately.

24. If 0 <o, <oy for v=1,2,..., then the sequence {ay} de-
fined in 2.3 increases for k = 2.

Proof. Let

k k
fe) = > In(1+a*[}), = ) arctg(s/s,)
p=1 el

By means of Cauchy’s mean value thedrem we obtain for some
&€ (11, 1), Where r,, are defined in 2.3 and & > 3:
f (Vk) f (’/u )

g(re)— Vk(l)

I

D 26/ @+ &)
Tt = - > arctg ~EL
Tyq1 2 .’)&'/ m + fk w}n-\-l wlr w«l

=1

because 7, > 7, by (9). Hence

r
Inpe—Inpy,; = f(ry) — f(7rp) —1n (1 -+ ,_’LLL)
WIH 1

Fr) =1 resn) = [90) — g (7ayn)]

.2.’ 1

= arctg ——

o
> 2aarctga—In (14 a?) = Zf arctgeds > 0,
0

where p, = ” (1474/20), @ = rpp [Ty

Thus p; = (1/ox—1) is for & > 3 a decreasing and «;, an increasing
sequence. Let us notice that from (8) and (9) follows a4 > 0.

2.5, 1f 3 1/a:_.ooamdw

y_

e > 0 then the sequences {ry} and |ay)

defined in 2.3 have the followmg asymptotic representations:
T ~ 0[Sy, alcN‘%"’&Vlz‘glc’\’%"*%ﬁz(sk/glzc)y
k
where &, = 31w, 8 = 3 L(w,. It follows in particular that 1,40, oy~ }.
ve=l y=1

If 31w, < oo then mpdre >0 and a — ap < 3.
pe=1 )

Proof. Let 31/, = oo. From (9) it follows that r,0; by hypothesis
k¥ T > 0 'We obtain namely 3'arctg(r,/s,) = oo in contradiction. to (9).

Uging the inequality »—3a® < arctgs < @, true for @ > 0, we have
k

I
O) == 2 1/”3’

pul

es—$ri o < 2 aretg(ry/w,) < rys;, where

y=1

icm
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hence by (9)

0 <rmsp—m < §riop, 0 <l—mfres < 37i(on/sk).
— 1)z} 1

It; follows hmrksk = m, because 1im 2 < lim - < —.

& Sk » 1/m, 2

2.5.1. We show that if a, >0, 4,>0, 1,4,—0, 9, =n(1-|-2 a,),
where 4, E @,, then p, ~1+41,4,. Using the 1nequa.11ty z/(1+x)

<In(l+4w) < %, true for 2 > —1, we obtain

n

@,
2 i) -

a
1 —_—
; 1+i,0,  p,—1 < exp (A, Ap)—1

pe=1
2 Zn‘ @, 4, Z-nAn }“uAn

1420,

We h 0 A, 4, — 0; moreover, if hmA,, = oo, We
e have 0 < Ang T ln < — s y
obtain by Cauchy’s theorem
. ;:. a’1r/(1+zna’y) . an/(1+2unaln)
lim ~ = lim =1;
n —An n a'?’ly

n
if limA, = 8 < oo, it is easy to state that lim "

=8, because

A, = 0. Hence lim Pn—1 =1.
" n An-An

I A, =75, @, = 1/a}, then

— 8, 1
hmrn hmmsn hm—— < nhmr,,hm— =0.

n
— —— 1
0 < limi, 4, = limr}, E — < . o
—_— je—— n n n Dn

" p=l
Thus limi, 4, = 0 and by 2.5.1
n

k

1,2
P = | ](1+—§)~1+v~,’csxc.
vl v
Therefore limp, = 1, lime, = § by (8) and
k k
1 {1 g (1 ) Lo 1o _ 1
——2) =" lim —— 1) =

i TZS,E( “’“) W6, o T g, Ve .8’

hence a, ~ }— 358,
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Under the hypothesis 511/1" < oo the series )ﬁ aretg(r/x,) converges

v:l

for every real r. Denoting 1ts sum by F(r), we find from (9) that »
= limr, satisties the equation F(r) = =n. Hence
&

1 T 1
T > 0, -a—=1+]/n(1+-;'§-)>2 and 0<a°°<‘2—,
. 0 pe=l ¢

where a,, = 11mak

2.6. We now return to theorem 1A. Let us remark that & simple
modification of its proof enables us to state the following variant of
this theorem:

Under the hypothesis W,(n) 7 0 instead of W(n) #0,n =0,1,2,...,
the Hausdorff method of swmmabilily corresponding to p, = W (n)/W,(n)
is not stronger than the ordinary convergence if and only if W(2)eR.

From this we obtain

THEOREM 2A. Let W(z) be a polynomial, W(0) =1
n=1,2,..., (t) = 5[1/W(n)]6(84,,)
In order that for every sequence {.s'n] the hypothesis limp" = §

1+ 1/aeR.

n) £ 0 for
and P, = asy+(L—a)t, with a 0.
should imply
lims, = s it is necessary and sufficient that W (2)—
n

Tn the case fo the Cesaro and Holder transtorms o) and A of the
gequence {s%} (corresponding to p, = 1/ (”"HG) and p, = 1/(n+ 1)F
respectively) we obtain for positive integers k

THEOR.DM 3A. Suppose a real. For every k =1 there ewist constanis
o, and o, with the following properties: the hy Jpothe%s IJmpn =8, where

Py = asy+ (1—a)c®, implies hmsw =8 if and only if a > ay; the hypo-
) ] Vi

thesis hmqn_— s, where g, = asn—|—(1\—a)h${f), implies lims, == ¢ if and
"

only if a> ay.

In particular o) = ay = af = ay = 0, a5 =y, g = . For k¢
it is 0 < ay, o < ¥; the sequences () and {dy} are increasing and tend to
the limit 4. The following representations are true:

4
! 1 W II

cos ( /Ic) 1 m?
ay, m~ “2‘

1 cos(nfk) -2 8k

T 1R8Ik’ Gy =

For a # 0 the proof follows from theorem 2A by means of 2.3, 2.4
and 2.5 for @, =y and x, = 1 respectively. The case a =0 is known.

icm
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. k
THROREM 4. Let P, = Aysy+ 3 A c%), Z/l,, =1 with %k > 1. The hypo-
y=1

thesis limp,, = s implies the equality lims, = s if and only if
n n

) ()

=0 v

For the proof we obgerve that the equality

(&) = [(niv)J 5(5,)

(Pn) = 0[14n10(s,) and

implies
(S“) = 5[1/”w]6(p'n)1
‘where
_;kxll_l 5 A, (nk '
_‘”WW“WWZF S
p=0 v L v=0 v
We now use theorem 1A in the modified form given at the beginning
of 2.6.
TI[EOR.T‘M 5A. Let W(z), W,(2) be the polynomials defined in theorem 1A
and let p,, = 21 (")A’sn St n =k, where (1,) = 8[Wy(n)/W (n)18(s,)-
The hypotheszs limyp,, = s implies lims, = s if and only if
n n

4

W)Y (—1)"1,,(j) LW, (2)eR.

w=0

By means of (4) the proof follows in the same way as that of theo-
rem 4.
Let us remark that from theorem 5A the following Tauberian theorem

results: 4f hm(f’“) = s, hmn ay =0, then hmsn =35 with s, = 2 a,.

Indeed, if pn = *Aomsn‘ +c®, we take A > 0 and so large that the

PR
I

theorem BA.

equation ( )z-&-;{— =0 has k--1 negative roots, and we apply

3. We now give the analogous theorems in the case of difference
and differential Hausdorff transforms of functions.
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. 3.1. We suppose that the functions considered in this section are
complex-valued and defined for all real values # = a.
The k-th difference A*f(x) of the function f(z) is defined as usual by

k
A () 2

The functional analogue of theorem A (see 2.1) is the following
theorem:

TaEoREM B. Let s(x), f(x), glx) be given functions. The hypothesis
lims(z) = s implies hm(f )g(@)) = s if

X—>00

Fo (B fatn) for k=0,1,2,...,  4f(@) = 4'f(a).

1a) |g(x)| — oo as & — oo and ZlAg (—)| < Klg(w
1b) f(&) = 0, g(@) > 0 as & — oo, g(m) 0 for large = and Z\Ag z+v)|

< Klg(=)l,
2) Af(x) = s(z)dg(w)

lor

3.1.1. Suppose that

1) g(z) satisfies the conditions 1a) or 1b) of theorem B,

2) glw) #0 for v > a,

3) there ewists X > a such that g(wx) is bounded in every interval {a,,b,>
if X <ap<b < oo

4) lims(z) = 8.

T—00

Then there emists a function §(x) satisfying for = >
equation
Ag(z—1)
g@—1)
and tending to the limit 8 as @ — oco. If g(x) satisfies 1a) and y(x) is o so-
Tution. of (12), bounded in the interval (&, ®y+1) for some, sufficiently
large @ = @ (more precisely, in the interval <@y, @1, in which g(w)
and §(x) are bounded), then y(®) tends to s. If g(x) satisfies 1b) and the
functions g(a)y () and g(@)y(®) are bounded in (@, ®,+1> for some
@y > a, then

(12) Ay (o—1)+ [y (@) —s(@)] =0

y(@) = Fle)+0(Ljg(®) as @~ co.
Proof. If y(x) is a solution of (12) and y(x)

then the function h(x) satisties the difference equatlon

(w)/g(@), 2= 0

Ah(w—1) = s(x) Adg(x—1).

a+1 the difference .

icm
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If g(x) satisfies the conditions la) then

fc)—i—f} s
p=1

and the general solution of (12) is

(e—v+1)Ag(z—»),

[2]

_¢(=) 1
y(x) = m‘l‘m% s{z—y+1) Ag(w—v).

If g(») satisfies 1b) then the series ZAg (z+v) and Zs(m—i-v-l—l)x

»=0

X Ag(x+v») are convergent for z > a and

h(z) = _2 (@+7) = Z‘s (@+v-F1) Ag(z+v),
_al@ 1§
y(@) = @) g(m)za(w+v+l)Ag(m+v).

Here ¢(w) = h(z—[z]) and ¢, () are any periodic funetions with a period
w = 1; it is easy to state that in the case 1b) h(z) -0 as # — co. In
both cases we obtain the expressions for j(z) writing ¢(z) = ¢,(x) = 0
and applying theorem B.

For the proof of the second part of the lemma we show, using 3),
that ¢(x) and ¢, (2) are bounded in the considered cases.

I'z+2+4+1) .
3.1.2. Let g(x) = W’ where 2 = a+bi, 2> 0, v+z 5% —1,
2]
—2,... If a>0, then |g(z)] > cc and 2[ gz —»)| ll as
u=1
%00, if a<<0, then g(x)—~0 and Zlym-{—w\—» H as
y—.O
€& —> 00,

Proof. We mnotice that g(z)

——z(ml
=9 ).

2 — oo, whence

satisfies the difference equation

© Ag(x—1) From Stirling formula we obtain |g(z)| ~ «* as

. oo in the case of a > 0,
lim|g (2)| =

Z-ro0 0

in the cagse of a << 0.
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Similarly to 2.1.2 we show that for fixed x>0 the sequence b,
= |g(¢+n)| is monotone for ¢ > 0, # > 0 and for & < 0, » > N. Using
theorem B for |g(z)| instead of g(z) we obtain in the case of « >0

=]
ZlA9e=0l ey kel

e 19(@ T— T e g @ —lg@—1)|  aoes [LF2fe[ —1
It a < 0, then |Ag(z+»)| = ‘——— gl@49)| ~ |e|(m--»)*"", the. seri'es

2 |Ag(&+7)| converges and lim Z |Ag(z+v)| = 0; now we conclude the

Xer00 p=0
proof in the same way as in the case of a > 0.

3.2. We assume that the function f(x) is defined for # > 0 and is

representable by the Newton-Gregory series for @ > @, i. ¢,

©0
fa) = 3)(7) 4*1(0),
=0
the series being for x> x, convergent in the ordinary sense; then for
> ®,+1 it is convergent absolutely and almost uniformly.
We define the difference transform of Hausdorff type of the function
f(z) by the formula

(13) t(a) = fun(ﬁ) 4"1(0);

{/4,,} is a given sequence of complex numbers, such that the above series

converges for & > z,. We observe that ¢(x) is defined for # = 0,1, 2,

also if @, > 0, since A"t(0) = u, A"f(0), n =0,1,2,... (see 2. 2)
Hence, if u, # 0, then the equality

flz) =Z‘°;1;(:) A"t(0)  for = > ®,

immediately follows.
In symbolic form we write

{t@} = [wl{f@), {t@) = [Lm]{t@)].

Suppose for a moment that f(x) is defined for every real w. The
Cesaro transform ¢, (z) of the function f(z) defined by

5 47 fto
(14) () =222 o
%

icm
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satisfies (13) With u, = 1/("“‘

for # > 0 and if the function ¢ (x) is for x > =z, representable by its
New’con -Gregory series. Indeed

2[(3) auta—m)] = 1)

) if the series in the numerator converges

and .
4+ ao—m] = D (*TH)(2) 4 oo — k) = 47 (0)

»

by means of the formula
Af(@)g (@) =

For & = 0 we obtain

MR‘

() 27@ 2~ glatr).

I
=3

¥

(”;”‘) A", (0) = A™$(0).

It may easily be shown by induction that the Holder transform
hy(x) defined as

(15)  hi(@) = o1(w),

satisfies (13) with u, = 1 /(n+1)*. We suppose here that the geries in for-
mulas defining h,(x) are convergent for every « if v =1,2,...,5—1
and for £ > 0 if » = %k and that the functions h,(z) are for every =z, re-
spectively & > x,, representable by its Newton-Gregory series.
The transformation (13) is called regular if the hypothesis
lim f(2) = s implies lim t(w) = s. We observe that the abscissas of con-
T—

T—ro0

vergence x, and @, are not fixed and depend on the choice of the
functions f(#) and #(z) resp. The essential assumption here is that f()
and t(») are defined for large « (if # #0,1,2,...).

by () = hy[hy_y(®)] for &= 25.37 ceey

3.2.1. If ,L,,=(:) then t(m):(:)A"f(m—k) for @ > wo+k. We

have namely

(75)24"( —h)Anf 0) = ( )Ak[g: (w;—k) Anf(o)] _ (2)A,,ﬂm_k),
since (’Z) () = G G2 = Bl

3.2.2. If W(e) is a polynomial of degree k& and ln, = W(n) then

for #> wy+k is t(w) = L{f(=z)], ﬂere L(y) = 21 ( )A"y(w—v) and
A, = L£W(0).

Annales Polonici Mathematici V. . 2
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. For the proof we use 3.2.1 or the identity of Guderman

(16) ZN p(n)(2) 471" (0) = gzlw(m (5) 4°f @=m

N
(Ostrowski [7], p. 309), with f*(2) = 2(;)477(0), supposing N — co.
n=0

323 If f(0)=1, fl® =0 for #>0, r#0,1,2,... and u,
= 1j(n—r); then A"f(0) = (—1)" and from the well known formulas
for the sum of the hypergeometric series ¥(a, £, v, 2) with z = 1 it follows
for z > 0 that

ca

w1 (o) _ T@+HT (=)
to) = D (1= () = gz ~T

)@ a8

n=0

8.2.4. Let p be a positive integer. If rea > 0 then the transformation (13)

with w, = 1/(an+1)® is regular.
We may write the relation (13) in the form of a system of equations

[en-+11{y, (@)} = (Ba(@)  for and

y=1,2,...,p x> %y,
where ¥, (%) = (), Yps1(®) = f(#), which by 3.2.1 is equivalent to the
system of difference equations

azdy,(@—1)+9,(2) = Y, (@) for &> x+p.

We conclude the proof as in 2.2.4 using 3.1.1 for a = max(0, x,+p),
_ I'(w+1/a+1)

( I(z+1)
function ¥, () is continuous.

and 3.1.2. We observe that for x > z,+p-+1 every

TarorEM 1B. Let W (2) and W, (2) be polynomials defined in theorem 1A.
The transformation (13) with w, = Wy(n)/W (n) is regular if and only if
W(e)eR,

Proof. We put for 2 > g,

1

to(@) = Lof(®), (i)} = [('1“:”—/;“)@

]{f(m)} for v=1,2,..,k
Wheie r,, I, and p, arve defined in the proof of theorem 1A. If #(»)
= >'1,1,(x), then
[
_ L _ [Fatn)
T R S |

pa=1

icm
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From the hypothesis rer, <0 for » =1,2,..., k and limf(x) =s it
T-+00

follows that lim¢,(») = limi(z) = s by 3.2.4. This proves that in the

E~>00 I—ro00
considered case the transformation (13) with u, = W, (n)/W (n) is regular.
Suppose now that rer, > 0. Assuming A"f(0) = (—1)"W(n)/(n—7y)
we obtain for z > k—1 )

n=0
(@) = 2 (—1y :7:(’:1) (ﬁ) = Wl(rl); (=" nirl m

‘We suppose that f(z) is linear in the intervals (v —1, »),» =1, 2, ..., k—L.
Since by 3.2.3 we have t(z) ~ W,(r,)I'(—r,)2™ as > oo, we see that
in this ecase the transformation (13) is not regular.
We observe that the following variant of theorem 1B is also true:
Supposing that Wy(n) # 0 instead of W(n) %0, n=0,1,2,...,
the hypothesis lim t(z) = s, where t(x) 4s defined by (13) with u, ==

= W(n)|Wi(n), Z'nplies Lim f(x) = s if and only if W(2)eR.

After theorem 1B we have only to prove that if W(m) = 0 for some
positive integer m, then there exists a function f(z) divergent and such
that its transform #(xz) converges as @ —> oco. We take, for example,
f(z) = ( Z) ; hence #(x) = 0 for every = This completes the proof.

From this we obtain

TEEOREM 2B. Let. W (2) denote the polynomial defined in theorem 24,
furthermore suppose that t(w) satisfies (13) with u, = 1/W(n) and p(x)
= af(#)+(1—a)t(x) for x>y, a#*0. In order that the hypothesis
Lim p(x) = s should imply hm f(x) = s it is necessary and sufficient that

W(z)—l%—l/ae%.

In the case of transforms c,(x) and h;(z), which are representable
by its series of Newton-Gregory, we obtain for positive integers k

THmOREM 3B. Suppose that a is real, p(@) = af(@)+(1—a)e(x),

- 1 " -
where ¢, (x) = zm(z)‘d F(0) (% > ). The hypothesis wliu;p(m) =38
= k

implies I}lm f(2) =s if and only if a > ax.
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Let q(a) = af (@)+ (1— a)hy(w), where (o 2 n+1 - (n) "$(0)
(2> @,). The hypothesis lim q(x) = s implies 11mf(w =g if and only
T—00 Z—00 ‘
if @ > o .

(s} and {ai} are the sequences of theorem 3A.

3.3. The theorem of 1’Flospital, as an analogue of theorems A and B,
will be used in the following formulation:

TeEorEM . Let I denote a meighbourhood of the point x, and let
s(@), 1(z), g(z) be given fumctions. The hypothesis lim ¢(x) = 8 implies
f(w) . LT
e =8 if
sy §(%)

1a) |g(z)) - o0 as @ >z, and ]f|g ) dt| < Klg(@)| for a,yel or

1b) F(zw)—0, g(@)->0 as z—az, and g(z) 0, jf lg' ()| dt} < Klg(w)|
for meI

2) f'(z) = s(z)g' (@) in I,
f’(a; is integrable in I.

In this theorem we may suppose that f' ()
a finite number of points.

and ¢'(z) exist in I except

3.3.1. Suppose that

1) g(w) satisfies the conditions la) or 1b) of theorem C with some
zoe(a, b) and some IC (a,Dd),

2) g(w) #0 fO'I‘ m‘(a’y b);

3) ¢’ (z) exists in (a, b),

4) the function g'(x)s(x) is continuous in (a,‘b)

B) lim” s(z) = s.

T—>Tg

Then there ewists a function §(x) satisfying in (a, b) the differential equation
g’ (@)
g{@)

and tending to the limit s as @ — @,. In the case 1a) every solution y(x)
of (17) tends to s, in the case 1b) y(x) == F(®)+ ¢/g ()

Since the general integral of the differential equation (17) is of the form

an y @)+ [y (w)—s(x)] =0

x
1
—g———fst)g t, where a,xze(a,b),
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it suffices to apply theorem C. We 1ema1k that in the case 1b) the integral
]

[ s(t)g'(t)at converges and F(x
3.4. We suppose in this section that for every real x

) fo) = D11

We define the differential Hausdorff transform i(x) of the function f(»)

by the formula
1) mn
t(x) = E pa ! )(O)W ;

{ ,Mn} is a given sequence of complex numbers, such that the above series
converges for every ».(!) In symbolic form we write

[t(x)] = [pa][f ()]
It u, # 0, from (18) follows immediately
[f(#)] = [1/ua][t(#)];

(18)

furthermore
MO H@) 1+ 211 (2)] = D p) + 2?10 ()]
@[ 1F ()] = [l DI ()]
We notice that the Ceshro mean Cy(z) deﬁned as

Gk(m)-:;z%f(w——t)"“f(t)dt for 20, k=1,2,..

satisfies (18) with wu, =1 / ("+k) Namely

BN f( K140 S —-——1 () i
=—"—2 n! f s = 2 (”'}‘k)f Oy
n=0 0 n=9 n

(t) We observe that this definition is not less general than the definition of the
integral Hausdorff transformation (Rogosinski [8] II), since, for example, in the
1

case pp = 1/{(n—r), 18r > 0 the integral [ fltyt—r—1at is divergent if |f(z)| > 0 for
[]

0< o< 8 and the integral Hausdorff transform of f(z) cannot be defined.
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In the case of Holder mean Hy(wx) defined as

@

o) =+ [f0dt,  Hie) = BalHesle)  for k32,

x #0

we may prove by induction that u, = 1/(n+1)"
The transformation (18) is called regular if the hypothesis lim f(z) = ¢
implies lim (@) = s.

T—00

&~ 00

3.4.1. Tt is easy to state that if u, = (;) then #(z) = 7:’: 10 (@),

3.4.2. If W(z) is a polynomial of degree % and u,= W(n) then
[ ’
@
t(e) = Lf(@)], whete L(y) = X' 4,9, 4 = LW (0).
y=0 *
The proof follows from 3.4.1, since W(n) = 3 (Z) AW (0). We may

=0

also uge the formula of Guderman (Ostrowski [7], p. 309):

v Y (1) _aﬁ_‘ w _az’i (7)
: Do) — = > A'g(0)— @)
n=0 n=0
3.4.3. If f@)=e¢ % r#0,1,2,... and w, =1/(n—r), then for
x>0
t(m)—j’ T _p r r
—n=o (—1) ey H (=7, 2)2 ~I'(—1)w as @& —> oo,

where I'(—r, z) = F(—r)—fe‘tt"‘ldt, cf. for example F. Lésch and
x
F. Schoblik [3], p. 108.
3.4.4. Let p be a positive integer. If ren > 0 then the transformation (18)
with p, = 1/(an+1 is reqular.

Under our hypothesis we may write the relation (18) in the form
of a system of equations

fon+11[41 = W],

where y; = (), Ypy1 = f(#), which by 3.4.1 i3 equivalent to the system
of differential equations

v=1,2,..,p,

awy,+ Yy = Yuyr-

We then prove in the same way as 2.2.4 using 3.3.1 for ¢ = 0 and #, = oo;

we observe that the function g(z) = &' satisfies for large  the conditions
1a) of theorem C.
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TaeoREM 10. Let W (2) and W, (2) be polynomials defined in theorem 1A.
The transformation (18) with w, = Wi(n)[W(n) is regular if and only if
W(2)eR.

If 7, are the .1'00ts of the equation W(z) =0 and rer, <0 for
9 =1,2,..., k then in virtue of 3.4.4 the proof of regularity of the
transformation (18) is like that of theorem 1B.

Suppose now that rer; > 0. Assuming ™(0) = (—1)"W (n)/(n—71)
we obtain f(z) = W,(x)e *, where W,(z) is a polynomial of degree
k—1 and by 3.4.3 ‘

oy = > (-2

n=0

= Wy(@)e "+ Wy (r) ['(—r1, 2)

n—ry n!

~ W () (—rya™ a8

w—)OO’

where W,(x) is 2 polynomial of degree I—1 if 1> 0 and Wy(z) =0 if
1=0.
We see that f(z)— 0, whereas #(x) does not converge as & —> oo.
This proves that the transformation is not regular. ‘
Analogously to the case of theorem 1B, we may state the fo]lowing
variant of theorem 1C:

Supposing that W, (n) # 0 instead of Wn)==0, n=0,1,2,..., the
hypothesis lim $(x) = s, where t(z) is defined by (18) with =W (n)[W(n),
implies lim f(z) = s if and only if W(2)eR.

Z—>00
The proof is similar to that applied in the case of difference trans- -
forms: we take f(w) = #™ instead of (;)
'~ From this we obtain
TrmorEM 2C. Let W(2) denote the polynomial defined in theorem 2A;
furthermore suppose that t(x) satisfies (18) with p, = 1/W(n) and that
p(@) = af @)+ (1—a)t(z), @ # 0. In order that the hypothesis lim p(x) =s

ZT—>r00
should mply lim f(z) = s it is necessary and sufficient that W (2)—1-+
+1/aeR. .
In the case of transforms Oy () and Hj(x) of the function f(x) rep-
resentable by its Maclaurin expansion we obtain for positive integers k
TemorEM 3C. Suppose that o is real. The hypothesis Hm p () = s,
ZL—>00
where p () = af(@)+(1—a) Oy (x) implies lim f(z) = if and only if a > ar;

T—00

the hypothesis lim q(z) = 8, where ¢(x) = af(@)+ (L—a) Hy{x), implies
L—r o0
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lim f(@) =s if and only if o> ay. {ax} and {ay} are the sequences of
L~r00

theorem 3A.

We also easily obtain
TarorEM 4C. Let W(z ) and Wl( ) be the polynomials defined in

theorem 1A and let p(®) = 2 P (”)( 2)-+t(x), where t(x) satisfies (18)
with p, = Wy(n)[W(n

if and only if

). The hypotheszs lim p (%) = § ‘mplies lim f(z) = 8
&T—+00

& 00

W) 3 4fl) +Wie) et

ve=0

From this the following Tauberian theorem results: if Lim Oy (x) = ¢
and lim zf (x) = 0 then hmf aro0

&X—r00
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Estimation du domaine d’existence de l'intégrale d'un
systéme en involution d’équations aux dérivées partielles
du premier ordre dans le cas de variables complexes

par W. PAWELSKI (Gdansk)

Comme le titre I'indique, la présente note a pour but de généraliser
dans le cas de variables complexes le probléme analogue déja résolu
dans le cas de variables réelles [1].

Les démonstrations des théordmes seront indiquées & grands traits,
vu leur analogie avec celles de mes travaux antérieurs [1] et [2].'

Considérons le systéme d’équations

0z

o= .
(1) —a-{—}vHa(tﬂ,mi,-a—m—, z) =0, af=1,2,...,m; 1=1,2,...,n

‘remp]issa,ﬁt les conditions de compatibilité

0H; o 98 0H, 0H, 0H,
ot ¢ 9z oty

o [ OH, (0H, aH,,) 0H, (aﬂu BH,,‘)}
i ] T “h. T HiT = 0.
+; { 09; ( 0z; T4 0g; \ Om; 475
Admettons que les fonctions H, des variables complexes t5, 2, ¢;, 2
soient analytiques dans ’ensemble défini par les conditions

3) lt.—tal < ¢ l— gl <

et que la fonction w(w,, ..., ®,) soit analytique dans Vensemble

2 +

lmi'_wﬂ <ec, fe—2o| < ¢,
(4) o —af] < e.

Soit M un nombre positif constant tel que
1° les valeurs absolues

o gy | 9Ea| |98, | ‘6Ha ‘62&, ‘azﬂu '

() Hdl, Bw, |’ 02 '] by Oa; 0w; 022 |’ | 0g;0¢;
om, | | o°mH, | | 0°H,
0x;02 020¢; 0x,0q;
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