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On a class of double sequence transformations
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1. Introduction and definitions: A double sequence {qu} is
said to be bounded if |s,;] < % for all p and ¢ and it is said to be conver-
gent, in the Pringsheim sense, if Lim s,, exists and is finite. If in addition

D, q-r00
to convergence lims,, for each ¢ and lims,, for each p exist, then the
D—00 q-00

sequence is said to be regularly convergent and the space of such sequences
is denoted by (rc). If the limits defined above are all equal, to I say, then
the sequence {sm} is said to be perfectly convergent to I (see, for example,
Alexiewicz and Orlicz [2]). The space of perfectly convergent sequences
is denoted by P and that of perfectly convergent sequences with limit
zero is denoted by P,. The space P, is called (rern) by Hamilton [4], (5],
but the notation P, is due to Alexiewicz and Orlicz [2]

Transformations of double sequences: Let A ?—_(amnm;) be

a four-dimensional matrix for m,n,p,g = 0,1,2,... Then the set of
equations
(@Y} tn = A (8) = 2 Amnpg Spa

»,9=0

determines the transformation of {s,,} into {fn,}, which we shall call the
A-transformation of {sug).

Defining the product of two four-dimensional matrices 4 and B
by the equation

(2 ) (AB )mnrs = Z Qmnpg bpqrs

p,2=0

we see that (1) can be written in the form .
t = As

where ¢ is the matrix defined by tumes = 0 (7,8 7 0); bnuoo = tmn and s,
the matrix defined bY Spmupe =0 (P, ¢ 7 0); Smnoo = Smn-
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The matrix A will be said to be completely conservative for a certain
gpace, not containing a divergent sequence, if all the double sequences
belonging to that space are transformed into sequences of the same space,
the limits concerned not necessarily being the same. If in addition the
limits are also preserved we. shall say that the matrix A is completely
regular for that space.

Hamilton [4] has proved the following theorems:

THEOREM H-1. The matriz A transforms all sequences ¢ Py into sequen-
ces P if, and only if,

00
(1) sup Z |dm.n17z1‘ < o9,
mmn P,q=0

(i) for each fized p and g, the double sequence |y, eP.
TEEOREM H-2. The matrix A is completely regular for Py if, and only if,

(i) sup Z |ququ < oo,

mn  pg=0
i) for each fiwed p and g, the double sequence {tyup,)ePy. .

Iu a subsequent paper, [5], Hamilton has established the necessary
and sufficient conditions for 4 to be completely regular for the space (re).
In Section 2 of this paper, confining myself to a restricted class
of double sequences, viz. P, I have obtained the necessary and sufficient
conditions for the matrix 4 to be completely conservative oxr completely
regular for that space. It is also proved that the completely conservative
matrices of the above type form a Banach algebra under a suitable norm,
Section 3 of the paper is a study of those matrices which are of
type M for P. Banach ([3], Lemma 1, p.91) has proved that for any
T-matrix A satisfying certain conditions there exists a convergent simple
sequence contained in the closure of R,(4) where R,(4) is the set of
A-transforms of convergent simple sequences. The analogue of the theorem
for double sequences has been given by Hill [6], when the matrix of trans-
formation is taken to be one that is completely regular for (re). We prove
in this paper a theorem, very similar to these, for the class of double
sequences and the matrix 4 is taken to be completely conservative
for P and in addition satisfies certain suitable restrictions and in fact
is more general than a matrix which is completely regular for JP.
The lagt section, Section 4, is a study of four-dimensional Tausdortf
methods. Adams [1] has obtained the necessary and sufficient conditions
for such a matrix to be completely regular for the space of bounded,
convergent, double sequences. Making use of those, we obtain here the
necessary and sufficient conditions in order that the method be completely
regular for P. This in turn yields an inclusion condition which leads to
a theorem of the Mercerian type, considered earlier by the author [8].
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2. It may be noted, as proved by Alexiewicz and Orlicz [2], that
both P, and P are Banach spaces under the norm [js]] = L w b.[s,g].
».9

Algo, we have
LeMmA 1. The form of a linear continuous functional(*) over P is
given by

f(w) = clim @pn+ 2 CmnLmn zeP

Mmn

where ”f” = IG|+ 2 ]cnml
This is mdeed an immediate corollary to the following theorem due
to Hill [6]:
THEOREM OF HILL. Every linear continuous functional defined in
(re) is of the form
f(z) = Chmxmn’{“ Z Cn® hmwmn+2 Gm hmmmn+ Zemnxmny ze(re)

m,n

where [Ifll = lo]+ 3 leal 4+ 3 6l + 3 Cmnl-
2 m m,n
Now we shall prove the following theorem:
THEOREM 1. The matriz A is completely comservative for P if, and
only if,
(i) sup Z Ia'rrmpq] < oo,

mmn p,g=0
i) for each fized p ond g, {Gunpg) € Py with limit Ly, say,

(i) omn = 2 @mupge P, with lmit 1, say.
»,0=0 )
Under these conditions the limit of the transformed sequence will be

[l_z pq] +2 logSpq, where s = lims,,q.
»,q

Proof. Since P,C P the necessity of conditions (i) and (ii) follows
from Hamilton’s Theorem H-1. -

Now, taking the sequence s,, = 1 for all p and ¢ (so that s = 1),
we see that i, = Z @mnpqy Which, by hypothesis, ghould be ¢ P and thus

condition (iii) is a.lso necessary.

To prove that the conrhtlons are sufficient, let {qu} ¢P with limit s.
Then take the sequence sp, = s, for all p and g. Now, the sequence
{$p¢—Spa} € Po. Therefore, by Theorem H-1, it follows that |4 (5p0—

() For definition, see Banach ([3], p. 16).
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asj',q)}eP gince the matrix A satisfies the conditions (i) and (ii) of the
theorem. Also A (spy) = 8 3 thunpg 1 2l50 ¢ P, by condition (iii) above, and

»,2 -
therefore
A(Spg— Spg) +A (Spg) = A(8pg) P
This proves that 4 is completely conservative for the space P. To prove
the last part of the theorem, putting sp, = s,,—¢ and b = ) GunpgSoas
».a

we get sp;e Py and
. ’ . s ’
im by, = llmz;| ConnpgSpg = Z byg Spa -
mn m »,q .4

The same is true of limt,, and limi,,, sinee ty,eP,. Now,
: " m,n

1 ’ ‘r
ban =Z OmnpgSpg = Z Uonnpg (Spg +8) = by + 8 2 Omnpg -
P p.a p,a
So, we have

limy, = > bgSpgt sl = Log oyt 5 [1— D Lng]-
D,q »,9

D,q
_ THEOREM 2. The matriz A is completely regular for P if, and only if,

(i) sup Zlamnpq{ < oo,

N D,q
(i) for cach fived p and g, {mmpa} €P,

(iii) Omn = 3 Gomnpg e Py with Limit 1.
P,q

Proof. Since P, C P, it follows from Theorem H-2 that the conditions
(i) and (ii) are necessary. Taking, as in Theorem 1, the sequence
8y = 1 for all p and ¢, we see that condition (iii) is also necessary.

That the conditions are sufficient follows from the last part of
Theorem 1, since by the hypothesis of this theorem I,, = 0 for all P
and ¢ and 1 = 1.

I shall now prove some properties of the matrices
hitherto.

considered

THEOREM 3. The matrices A = (Gmnyg) which are completely regular
for P, form a Banach algebra wnder the norm

||AH =1 ub. Z Ia'mm)q‘ .
™ pa
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Proof. It is easily seen that the sum A+4B of any two members
of the family is also of the same type. We shall next prove thatb the
product AB of two members of the family is also a member of the family.
Let the matrix O = (Ciny,) denote the product AB. Then Guppy =
= D" unrs yspg- Therefore :

r,8
Z iommzqi = Z Iza‘mmsbrqu! < 2 ‘“mm-sl 2 !brqu]
»,q Pr,a 1,8 8 »q

and consequently the eleménts of the matrix ¢ satisfy the condition (i)
of Theorem H-2.
Also, for each fixed p and ¢, Cmnpg = > Gnes brp, and  therefore
r.s

the sequence {cmnm} may be regarded as the transform of the gequence
{b,.qu}, considered as & double sequence for varying  and s, by the
matrix A which is completely regular for P,. Therefore, for each fixed
p and g, the sequence |Cunp)eP, since {brapy} has the same property,
since the matrix B is by hypothesis completely regular for P, and the-
refore satisfies the condition (ii) of Theorem H-2. Thus the product
¢ = AB is also a member of the family. Now it is enough to prove that
the space is complete under the norm defined above.

Let A" = (alyp,) be & sequence of matrices which are completely
regular for P,. Then we must show that AT — 4% <& r,8 =k i8 a ne-
cessary and sufficient condition for the existence of a matrix A, completely
regular for P, and such that |A* —Afl < e, for all large r. It is easily veri-
fied that this condition is necessary. To prove that the condition is suffi-
cient, we have, by hypothesis,

(3) ’ Z Ia;'t,npq— a’ftlnpql S ey
»,q

independent of m and n. Therefore, Gnupy —> Gmnpq ) S3Y; 38 7 — 0. Letting

r — oo, we obtain from the equation (3) above

s
Z 1a1nn.pq—amnpq| < ) 8 2 k-
X

Therefore |4 — A% <&, for s >k Further, we have
k
\ 2 \a’nmpq _aﬁmpq‘ 22 \a’mmﬂgl _2 ’|a/mnpq
»,q »,q »,q

and consequently,

r,s =k,

Z ]aimnpq‘ <Z Ia"].rcnnpq““s < M
»,q

»,q

since A* is completely regular for P,. Also we have

k
a”nlnpq —é& < amnpq g aﬂmpq + €.
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Therefore letting m — oo, # — oo and m, n — oo we see that 4 is comple-
tely regular for P, and this completes the proof of the theorem.

TEEOREM 4. The matrices A which transform sequences P, inlo
those <P form a B-algebra under the norm in Theorem 3.

The proof is similar to that of Theorem 3.
THEOREM 5. The matrices A which are completely conservative for P
form a B-algebra wnder the norm in Theorem 3.
After the proof of Theorem 3, it suffices to prove, in the notation
of the proof of Theorem 3, that o, = S’a,,m,,,,sP Let off), = Z Wymg -
v,

Then
L efede =3¢

k K k X
[Omn— Jntl,nll < [Oun— Ol + |U;m - Uml,nll +|0-1§L1,77/1 - C‘ml,nl‘

and hence the result.

3. We start with the following definitions:
The range Rp(A) of a matrix A completely conservative for P iy the
set of ,,points” y = Az where w<P. It is obvious that Rp(4)C P.
The matrix A = (tunpg) 18 said to be of type M if the relations
Z’|aﬁ| <oo and Y ayyy =0, p,q=0,1,2,... always imply that
1,7 .

% = 0.
With these definitions, we prove the following theorem:

THEOREM 6. Let A = ((ynp,) be completely conservative’ for P and
let its elements satisfy the condition,

(,A = lim 2 Lopnpg — Z hm Unnpg 7 0

mn pq

and let y§ = {Yma} <P be such that Zaﬂ./h =0 whenever 2 lag] < oo,
and 3 aijtijpg =0, for p,q =0, 1, 2

’b 7
ewists an @ = {Tpn} P such that

| Ay (@) —~yyl <&y for

Proof. The conclusion of the theorem simply implies that ¥ ewﬁ’};(";f)
Therefore by Lemma 1, p. 51 of Banach [3], it iy enough to prove that
every linear continuous functional vanishing over Rp(d) will vanish
at y. By Lemma 1 of this paper any linear continuous funetional over P
is of the form

Then for every e > 0 there

i =0,1,2,...

b (S) = olimsmn—l— 2 Crnn Smn s selP
m,n m,n
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where |bl| = |e]+ Z |€mnl- Since Bp(A)C P any linear continuous functional

over Rp(4) is of the form

b(t) = b(4s) = ¢ KM (AS)ma+ D, tnn (48)mns

m,n n,n
=e¢ [ls—é—z lpq(qu—s)] + 2 c,,mz Gmnpg Spq
»,q m,n 2,4

= (8§ [l— 2 l];q] -+ 2 Spg [Glpq+z cmn("m'npa]
I »,q m,n

(the interchange in the order of summation in the above expression being
justified by the boundedness condition on the matrix as also on the se-
quence {sp,}, besides the convergence of Z'Icmn[)‘ Therefore

SGP,

and by Theorem 1

(4) b(t) = esy(4 +2 $30Png
where
(5) bpq = dpq’l“z Cmn Cpnpg +

m,n
Now suppose that the value of the functional is zero in Rp(4). Taking
for s, the set of sequences {&5"} where 47" is the Kronecker delta, we
find from the equation (4) above that b, = 0, for p,q¢ =0,1, 2,
Therefore, we have b(t) = csy(4). But y(4d) 0 Taking now for {qu]
the sequence sp, =: 1, we get ¢ = 0. Therefore from the equation (5)
we geb

2 Conmnpg = 0, for p,g=0,1,2,...

m,n
This, along with 2 |emn| < oo, implies by hypothesis that 2 ConYmn= 0

for yeP, and thls completes the proof of the theorern.

TEEOREM 7 (Converse of Theorem 6). Let 4 be completely con-
servative for P and let y<P be such that, for every ¢ >0, there exists an
zeP such thut

A (@) —
Then for any {ay} such that

D layl < oo and D dyaipg =0,

1,7 47

vyl <e, for all 4,7 =0,1,2,...

p,g=0,1,2,...

- we have D ayYy = 0.

%7
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Z“u iy SeP s
Also, since A (x)

Proof. Let {a;} be given as above. Then a(s)

a linear continuous functional in P and Z\a,,| [all.
= {Aw )} is in P, we have, 7

(6)  laldz— y\*‘zau

) G0 vi]| <llall - [dz—yll < llell -,

by hypothesis. Now,

33 agllasmellond = 3 asl ) \aismal  10aal < 3 Il D) ol - -
0,4

7,7 0,4 1,7 »,q 7
2 ] Z ®ijpgPpg = 2 mmZ 4y gy = 0, by hypothesis

(the interchange in the order of summatmn being justified as before).
Therefore now equation (6) yields QJ awywi < |lell - & and consequently,
2 a5y = 0.

Remark. It may be noted that in the hypothesis of the theorem we
have not assumed that y(4) == 0, as is the case in the previous theorem,
and thus the theorem is to be looked upon as.a generalized converse of
Theorem 6. Also in the theorem P can be replaced by P,, throughout.

' In the light of Theorems 6 and 7, we have the following theorems:

Therefore a(dx) =

THEOREM 8. The matriz A which is completely regular for P, is of type M,
if, and only if, Rp(A) is dense in P.

TaEoREM 9. If the matrices A and B, which are completely regular
for P are both of type M, then so is their product AB.

TaroREM 10. If the product C = AB of two matrices A and B,
completely rvegular for P is of type M, then A must be of type M.

The above theorems may be looked upon as extensions of the corre-
sponding theorems which I proved for simple sequences in an earlier
paper [7].

Next, we prove the

TurorEM 11. Let the matriz A be completely conservative for P and let

2 (4) # 0. Then for every bounded sequence ®, = [smn} such that _AwueP
and for every ¢ > 0, there ewists a double sequence x <P such that | Ay (@
—Ay(me) e for all 4,5 =0,1,2,...

Proof. For 4,§ =0,1,2,..., pub ¥y = 4y(z,). Then by hypothesis

{4is} e P. Let {ay) e a sequence such that ‘Ff lay] < oo and 12; gy iy = 0y
4, y

for p,¢ =0,1,2,... Then

2 %iiYsg = 2 i Z e 2 4 Z %if Qg

2,2 7
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by the definition of |y;} (the order of summation being interchangeable
on account of the hypothesis and the boundedness of {s,} and since
Z]aﬁl < oo). Now the result follows at once from Theorem 6.

7

4. In this section we shall study the conditions of regularity for
a four-dimensional Hausdorff matrm, for the space P. We start with the
following definitions:

The four-dimensional matrix H =

g = () ()47 bz (m

iy called a Hausdorff mairiz, generated by u,, and denoted by (H, u).
Let x(u, v) be a function of bounded variation (in the sense of Hardy
and Krause) in the square U (0 <% <1, 0 <v <1). Then the quantities

(hmnpg) (%) detined by

21’1”2@1 h'rnnpq=0(m<py'n<Q)

=f1f V" dy dyx (%, v)
0

0

are called moment constants. If, in addition, the function y(u, v) satisfies
the following conditions of continuity

g(u, 0) = x(u, +0), Hn’;x(”:'o) = y(u, +0), 0w <1,
X(Oy'"):X(‘FO;'U)r HI%Z(“:'D)=X(+07”): 0 <o <1,
2(0,0) = x(u, 0)=x(0,v) =0, x(1,1) =1,

50 that pg, == 1, then uu, are called regular moment constanis.

With these definitions Adams [1] has proved that the matrix (H, u)
is regular (i.e. completely regular, in the sense of this paper) for the
class of bounded, convergent double sequences if, and only if, pm, are
regular moment constants.

The theorem below gives the necessary and sufficient conditions
s0 that the Hausdorff matrix may be completely regular for P.

THEOREM 12. The matriz (H, ) is completely regular for P if, and
only if, pmn are regular moment constants.

Proof. The proof of the above theorem of Adams [1], stated earlier
shows that only if the continuity conditions on x(u,v) are satisfied is

. [m\(n _p,n—
tma (7)) 4777 = 0

when p =g =0.
(2) The differences .1 are defined by
i

A g, = rg;) 3j (:) (1\) (= 1) *Samyr nis-
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Therefore the conditions are necessary after the theorem of Adams.
To prove that they are sufficiennt, we note thabt pum, are regular implies,
by Adams [1], that

® ]ylnril(?;)(g) Am=rrty,, =0, for all p, g,

(ii) hm, hm and lim Z

m,n P=0g=0

() = =1,

(iid) Z 2 (m)(n)IAm nn-ay 1 < M, independent of m, n.

Pe=0 g=0
Therefore we have only to prove that the hypotheses imply that
]im my(n Am-«?ﬂ,n-—q o= 0
im (51)(7) 47750
for p,¢=0,1,2,

i 32}t =0

Now for all  and » in the square U, we have

m
' (p)wa—wr < J(jwa-w =1
. P=0

together with a similar relation in 2, ¢ and ». Therefore, for 0 <4 <1
we have,

E

Therefore,

(3o <

d 1

fdu ot (% D) ("')(1 ) Ududvx Uy D).

0

%(8,1)—x(0,1)4%(0,0) =0, for all p,q

and similarly,

n?(;?)(Z)Am-P-’L“qu,,q <0 foral p,q
and hence the theorem. B

The above theorem in turn yields the following (where we assume
that none of the pp, and pum, vanish):

THEOREM 13. Let A= (H,u) and A = (H,u') be two Hausdorff
methods, not necessarily regular (completely) for P. Then A includes A’ —
in the sense that for any sequence (s} such that AseP with limit 8, 804,
implies that A's is also <P with the same limit s — if, and only if, T T
are regular moment congtanis.
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The proof of the theorem is obvious after Theorem 12, and the
equation A's = A'(A"*A)s = A'A~?(4s), which is true on account of the
boundedness conditions on the matrices and the sequence involved.

COROLLARY. The two methods A and A’ are egquivalent for the class P
if, and only if, both umpy/tmn ONG Upwtinn are regular moment constants.

In the light of Theorem 12 and that of Adams stated earlier, we see
that (H, u) is completely regular for P if, and only if, it is so for the space
of bounded convergent double sequences. This, in turn, yields at once
the following theorem, proved earlier by me [8] for the class of bounded
convergent double sequences, and this is the two dimensional analogue
of the classical theorem of Mercer.

TeEOREM 14. Let |s,,} be a double sequence and a,p > 0. Let

_ Cd—p) N, | FA—w) v - AN
toa = @St =1 & T = it (p+i) q+1 2?

Then if {t,,) ¢ P with limit U say, then the same is true of {s,,} and conversely.

In conclusion, I have very great pleasure in thanking Professor
W. Orlicz for his kindness in going through the manuscript. My warm
thanks are due, in no less measure, to Professor A. Alexiewicz for his
helpful criticism.
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