SOME PROPERTIES OF CONNECTED COMPACT GROUERS
BY
JAN MYCIELSKI (WROCLAW)

It is the purpose of this paper®) to prove for general compact groups
some theorems known for Lie groups. The derivation of these results
is based on the theorem of approximation of gemeral compact groups
by Lie groups. :

Theorem 1 of this paper gives a solution of a problem of 8. Hartman
and C. Ryll-Nardzewski ([2], P 162).

1. The groups considered are in general non abelian and -written
multiplicatively, their unity being denoted by 1. An element & of such
a group @ is called divisible if for every positive integer m there exists
such a £e@ that £" = 2. A group G is called divisible if all elements of
@ are divisible.

Our results are the following:

TasoreM 1. A maximal abelion subgroup of a connected compact
group s connected, and all mazimal abelian subgroups arc comjugated by
nner  automorphisms.

THEOREM 2. An edement ® of a compact group is contained in the
component of the unity if and only if » is divisible.

The proofs of these theorems are given in sections 2 and 3.

Now we prove some corollaries.

COROLLARY 1. Bvery element of a connected compact group is con-
lained in & connected (mamimal) abelian subgroup of this group.

Proof by Theorem 1.

COROLLARY 2. A compact group is connected 1f and only if i 4s di-
visible.

Proof by Theorem 2.

COROLLARY 3. Huvery comnected locally compact growp contains an
infinite connected abelian subgroup.

icm

*) Presented to the Polith Mathematical Society, Wroclaw Section, on Febrnary »

15, '1957. The results were announced without proof in [6].
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Proof. It is known?) that a connected locally compact group either
is compaet or contains a one-parameter group.

COROLLARY 4. Buery cownected compact group G is covered by the
powers of the elements of any neighbourhood of wnity.

Proof. This was proved [2] for divisible groups. Then, by Corol-
lary 2, it holds for all groups which are compact and connected.

Note (this will be applied in our proofs) that:

(1) Corollary 2 is Tnown for abelian groups (e. g. see [4], p. Hb).
(2)  Theorem 1 is known for Lie groups (e. g. see [1], p. 29).

It is also known that every connected locally compact abelian group
is divigible®). This theorem fails for non abelian groups. In fact, in the
group of real matrices A of dimension 2 x2 with detA = 1 no matrix
exists such that 3)

(1

0 —3/°

2. For proving our theorems we need some lemmas (implicitly con-
tained in the theorems).

Levma 1. Bvery divisible element  of a compact group G is contained
n a connected abelian subgroup of G.

Proof. Since » is divisible there exists such a sequence x,, %, ... @
that @, =« and o) = @, (m =2,3,...). The gronp X generated by
the elements @, ,, ... is abelian and divisible. Its closure X is compact

and abelian. X is also divisible because, the functions f,(£) = &™ being

continuous, we have fy,(X) = f,(X) = X. Then, by (1), X is connected,
q.e. d.

For the proof and formulation of the next lemma we need the follo-
wing facts and notation:

It is well known that every meighbourhood V of the unity of a com-
pact group G contains a normal subgroup N, that @/Ny is a Lie group
(see [5]). Consider the group-topoelogical Cartesian product

P(Y) = P &/Ny,
e)?

‘) By a theorem of K. Iwasawa [3] (Thoorem 6) and the main approximation
theorem of H. Yamabe (see [56], p. 175).

*) By a theorem of Pontrjagin every such group i8 a divect product of a vector
group and a compact group. Hence this statement follows from (1).

®) T am indebted for this example to A. Goetz.
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where *)) is a family of neighbourhoods of the unity of &. Then P(99)
is a Lie group if <2 is finite. Congider the natural homomorphism
g @ - P(9)9), 4. e, the homomorphism defined as follows: if 77 = ()
then ¢ is the natural homommphism of G onto G/Ny; for general 77 if
ze@ and gop(x) = f, then f(V)=gu,(z) for all V9. Of course, g is
a continuous mapping. We abbreviate the notation by putting g (z) =
and ¢p(X) = Xoy for any xeG and X CG.

Let )7 denote a complete system of neighbourhoods of the unity
in ¢ It is clear that Gqp is a topological and algebraical isomorph
of G.

It 9 C YW,y and 4 CP(Y,), then 4., denotes the projection of A
on P(V); if BCP(%),) then B denotes the intersection of Gy, and the
cylinder in P (W) with basis B.

BEspecially, if 97 is finite,
X(T,l)"uvﬂ’l,) ete.

Clearly, if Y C W and X C ¢, then, (Xop)y = Xo.

LemMa 2. If G is connected and compact, A* and A* are mazimal
abelian subgroups of G, then for every finite system V= (V,, ..., V,)CW
the groups Ad, and A?w are conmected conjugated subgroups of (.

Proof. Let B; and B, be any open seli in G containing respecti-
vely A%, and 43,

We put 4

Hpypy = {hihelp, hdl ™ C By, ™' A2,k C Bi}Y).

We shall prove that
(3) the sets H BBy G NON. empty;

(4)  there ewist such connecied sets S; that Af)p C8;CB; for i =1,2.

For this purpose we shall prove the existence of such a finite set Qf
that 97 C U C Y and for every maximal abelian subsgxonpb AM and
A of Gq; such that Ag, C A", A} C A™ we have A}, C By, A%, C B,.

This will prove (3) and (4). Ind(,cd the group G lh then a Lie group
and by (2), 4" and 4™ are conjugated in G, which proves (8), and con-
nected, which proves (4) (we put §; = AL”)

Then Jet us construct such a U. We pub 0y = G\ B;. 'l‘h(m( are
compact and Cs Ca Al

For every e if @pel;, then wed® and there exists such an aed’
that ax # wa. There exists also a neighbourhood W of x such that
Lefaya=ty~! W),

Vo= (Vi,..r, Vip)y we wrie a

Lo Tan) 1

4 X denotes the closure of X.
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Since O’?" is compact, we can take a finite system W, ...
open subsets of Ggp and a system ay, ..., a”eA%,; such that

, W, of

n -
(5) e loyai y ™y < Wy)
jo==1
and
™
(6) o cU wy.
k=1

By (5) there exists a neighbourhood of unity Ue9# such that

(1 UCGw\U {ay o Ty Ty W)

We put U = (Vy,...
ed properties.

Let 4™ be 2 maximal abelian subgroup of Gy, which contains A‘?K
We must prove that A » C By. It i3 enough to ghow that for every ceC"lf
there exists such an aeA q¢ that acz£ew. By (6) and (7) for every OeOV
there exist such an »¢(0}” and a,;,eAfW that 2, =¢ and mwe; 'z e U
But then (a;wa; s )y # 1, . & ac # ca for a = (ay)y.

Then 9 has the required properties.

Now on account of (3) and (4) we prove the Lemma. The sets
Hp p, are compact and, by (3), all finite intersections of these sets are
non empty (becanse H ey ~ Hyl'sy DH Bi~B'5, ~57). Then there exists

an hye ﬂ Hp 5, Consequently,
By, B;

sy Vi, U). We will verify that 9 has the requir-

By AN, B3 C QB} =435 and  hytALh C ﬂBl = A%,.
Then the groups Aq » and 4%, are conjugated; they are closed (because

A'y A%, being maximal, are closed), then, by (4), they are also connected,
q.e. d.

3. Now we prove theorems 1 and 2.
Note that theorem 2 can be proved independently of Theorem 1,
if we nse the following lemma:

(8) A conmected compact group is divisible.

The proof of this Lemma (for Lie groups it holds by (1) and (2))
ig simpler than that of Theorem 1 and can be easily performed by means
of the notions introduced in the preceding section.
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Proof of Theorem 1. Let 4' and 4*® be maximal abelian gub-
groups of the connected compact group G. It is obvious that

o

45 =N

m=1Vy,.., Ve

('A(vl ) m)))” (Z :17?’)'

Then on account of Lemma 2 it is easy to see that A%, and 43,
are connected. Also by Lemma 2 for every Vi,..., V¢ the sets

Hy = {h: helr,ppys RAiry, ™ = Ak

are non empty. Of course, the sets (II,l v m)'“ are  compact and
Hyy v )% ~Hy  p)Y = (Hp  vovhe r . Then there exists an
PEETLE 1) prets yeeny ) "

1V m

Toee

o0

hoe M

m=1 7, VopeCys

It ig clear that h(,A ho = ACW

Then the groups 4' and A® are also connected and conjugated, q. e. d.

Proof of Theorem 2. By Theorem 1 every element of a con-

nected compact group is contained in a connected compact abelian gub-

group of that group. Then by (1) we obtain (8). Now Lemma 1 implies
Theorem 2, q. e. d.

(Hpy, 1)
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ON THE IMBEDDING OF TOPOLOGICAL GROUPS INTO
CONNECTED TOPOLOGICAL GROUPS
BY.
S. HARTMAN anp JAN MY UIRLSKI {(WROCLAW)

Topological groups arcwise and locally arewise connected are called
¢-groups. Speaking about subgroups of topological groups we do not
suppose that they are closed.

It is the purpose of this paper to prove the following theorem and
to make some remarks and pose certain problems connected with it.

Ewery topological group G is a closed subgroup of a c-group G”.

Moreover G* can be such that:

(i) card@ = 2% card @
(i) every finitely generated subgroup of G*

of a finite direct product G xG x... x@.
(iil) G" has such a normal o- -subgroup N (not closed), that every s<G” admits

the decompositions s = ghy, 8 = h,g where ge, by, hy e N, and these

decompositions are. unigue.

Proof. Let f be a function defined over the half open interval <0,1)
with values in the group @ for which there exists a finite partition
{0,1) = Lay, a;) w {ay,as) o --\J<a’m“n+1)(0 =y <y < ... << By —1)
such that f is constant over each interval @iy @yp)

Let G be the set of all such functions. We introduce the group-
-operations in G" by putting

¢ isomorphic to a subgroup

[f = gh™'] = [f(®) = g(@)(h(z))™* tor every w0, 1)].

Clearly, ¢ satisfies (i) and (ii).
It is easy to see that G* becomes a topologwal group if we define
the open neighbourhoods of a function fe @G by

(1)

. {h: {o:h(@)e V(@) < e}
where ¥ is any open neighbourhood of the unity in @, |-| is the Lebesgue

measure over <0, 1) and ¢ is any positive number.
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