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WITH TWO STATES
BY

LKOZNIEWSKA (WARSAW)

1. Introduction. The scope of this mote is to compare different
notions of ergodicity for non-homogeneous Markov chains with two sta-
tes.

A nopn-homogeneous Markov chain of r states, say E,, B,,...,H,,
is defined, as it is known, [5], by the initial distribution of the system
Dy(Poy Pajgs -+ » Dopr) ad the tramsition matrices of probabilities P,, = {p{}
for n =1,2,... where p,, denotes the (absolute) probability that the
gystem is at the initial moment in state H, and P{ the (conditional)
probability that the system is in state ), at moment « if it was in state
B, at moment n—1.

k3
Thus the distribution of the system at moment » is D, = D, [] P,,
and the evident relations -

T
ol =1
b=1

h01d-7 and -Dn = (pnur Pujzy ooy pmr) .
If we take into consideration the matrices

.
for n#=1,2,... and me=1 for n=0,1,...

A==]

n

(1) Hwm= [] P

d=Mep-1

for m =0,1,...,n=1,2,... and m < a~1,

their elements kg (m, n) will denote the probability that the system
is at moment n in state &, if it was at moment m in state H,. The ro-

lation r
Dby (my ) =1
bl
and the Chapman-Kolmogorov equation
(2) Hyp = HyyHy,  for m<t<n
will hold.
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For non-homogeneous chains three important notions of ergodicity
are known.

Kolmogorov’s principle of ergodicity [3] takes for non-homogeneous
chains the following form [6]:

(3) Lim [hgy (m, n)—heg(m, n)] =0 for m=0,1,...
N—00

According to Hajnal [2] a non-homogeneous chain is ergodic in the
weak sense if

(4) Lim [k (0, 1) —he (0, 2)] = 0.

N—>00

A chain is ergodic in the strong sense if

(5) ﬁmhab(oy n) = hy .
n—00
This property of chains was already known by Markov [4].
Morover, one might define, for symmetry, the notion of non-homo-
geneous chain ergodic in the strongest sense ag follows
(6) - Limhg(m,n) = h, for

N—+00

m=0,1,2,,..

It is obvious from the above definitions that the ergodicity in the
weak sense (4) is implied by each other ergodicity and that the ergodi-
city in the strongest sense implies.as well the strong ergodicity as the
ergodicity in Kolmorogov sense.

The following examples will illustrate the difference between the

definitions.
BEXAMPLES
LI P, = * 0 Hyy = ! 0 ), then lim H,
: 2 TN (A1) nfm 1)) R T k1) B+ 1))? o
= “ g) for each k¥ =1,2,..., as lim(k/n+1) = 0 for %k constant.
A N300

This is an example of a chain ergodic in all mentioned 'senses.

5 1/m2 2
2. Let P, = (iﬁ g;j) and P, = (1 1 Vo )" for m > 1.

_ [(n+1)/8n (Tn—1)/8n
Then Hy, = ((n+1)/8n (Tn—1)/8n
in the weak and strong senses, without being ergodic in other senses.

3. If P, = (gz 8,3) and qu = ((1) é) for » >1, the chain is ergodic

only in the weak sense.

) for » >1 and the chain is ergodic
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0,1 0,9

4, Let P, = (02 08) and P, = ((1) é) for n > 1.

This chain is not ergodic whichever would be the sense of the ergo-

dicity treated.
0,9 0,1
5. If Pyp_: =( 0,3 0,7

0,4 0,8
) 2/31/3 . {1115 4/16 _
i B, = (33 1) and T sy = (1105 415) for m=1,2, .

Thus the chain js ergodic in the sense of the two first definitions
((3) and (4)) and is not ergodic in other senses.

0,8 0,2

) and Pzn,_—;( ) for n=1,2,..,

2. Necessary and sufficient conditions for ergodicity of two-
-state non-homogeneous Markov chains. For the Kolmogorov’s defi-
nition of ergodicity we have

SIRASHDINOY THEOREM [6]. The necessary and sufficient ocondition
for non-homogeneous two-state Markov chains to be ergodic in the sense of
definition (3) is the divergence of the series

(M - D (=14,

Pl

where A; denotes the characteristic root, different from 1, of matrim Py, i. €.
2 = pf)—82.

In the above theorem condition (7) is equivalent, as proved by Si-
ragedinov, to condition

(8) [[s=0 for m=1,2,..

i=m

Proof. For the sake of completeness we reproduce here Siragedi-
nov’s proof. We use the following property of the product of two stocha-
stic matrices of the second order. The characteristic roots of such a pro-
duct are products of ,,respective” roots of the factors. Hence if P, has 1
and 1, as roots, and P, has 1 and 2, as roots, Py P, has 1 and 4,4, as
roots. Applying it to (1) gives

k]

byy (my M) —hgy (my 0) = ” A dor m=0,1,...
Tl
and.
Ban [y, (m, n)— oy (m, )] = [T A,
Tr00 [}

and this proves the theorem.
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For a chain ergodic in the weak sense, as defined by Hajnal, we
have
COROLLARY. Formula

(9 Hﬂaﬁ=0

gives a necessary and sufficient condition for the weak ergodicity (4) of
non-homogeneous Markov two-state chains.

Now we can prove

THEOREM 1. The necessary and sufficient condition for the strongest
ergodicity (6) of non-homogeneous Markov two-state chains is the divergence

of
(10)

1

(=14
=1
and the existence of

n n
(11) lim (p;’f>+i§p;§—‘) [14)-

=1
Proof. Considering (2),.the evident relation P, = Hy_1, gives
Hm,n = Hm,ﬂ—l-Pn
If we write this relation for elements instead for matrices we obtain

hoy(my m) = by (m, n—l)P?f)—Hl“hm(’M, n—1)1p§P

(12) valid for m =0,1,... and m<n.

or
(13) gy (my m) = Ry (m, n—1) A+
In particular,

hor(m, m—+1) = :05’1"“),

By (m, m4-2) = P4 pff D4,
(14) hyy (m, m+-3) = PQ{HS)‘F 2’%+2}lnz+a+ pg’{‘+1)l,n+2ﬂ,,n+5,

" n
hgy (m, m) = pglb)"k 2 Pgﬁml)ﬂﬂk:
=42 =1

hoy(m, n) will have a limit, for m constant, and » tending to infinity,
if the right member of (14) has a limit. This limit will be the same as

. o0
the limit of hy,(m, n) if [J4; = 0. We can of course require the existence

f=m

°
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of

tm (o4 37 [

=2 k=1

instead of that of

(p"})

Z {i-1 n Ak) for each m.

=2

COROLLARY. ”li = 0 and the ewistence of

de=l
tim [pf+ 2’:’ i [ 7 2
[ {=2 ki

are necessary and sufficient conditions for the strong ergodicity (B) of non-
homogeneous Markov two-state chains.
In order to calculate

n n
tim [p+ 3 247 [ ] A

one has to apply Toeplitz theorem and this is generally cumbersome.
Anyhow, it is obvious that for chaing ergodic in the weak sense if

©

219

is convergent, this limit exists.
oo
Hajnal showed [2] that if []J4; = 0 and
LES

(13)  pi¥ = gp{® for m =1,2,... where g is a non-negative constant,
the chain is also ergodic in the strong sense.

Indeed, condition (15) entails then the existence of (11
proved below.

Let us put pf) = ga,/(o+1) and p{p

Then

), as it is
= ap[(0-+1) with 0 < a, < 2.

Ay = 1=y,

Q‘l‘- [%'I‘i;;aq 1117 0= ak)]
?9“—[ g 1-aHH(1 ag) rfﬁ(l——m]

n)+ Z?U*I) ”)“Ir

fm=2 b=

kit im2 Kot
x - i [%——2 I] a- ak)—rl;;k[l 1»«%)]

To=2 kmadm1

(‘OM\I“\IIOA.TIONS

o3

n

_ .0 _ _ _
- Q+1 I:a’ﬂ» g (1 ak)+1 a’n]

__Q_ _ kit _ 0 3 n
PES [1 e “")]* o+1 [1 Hi"]‘

We see that if (9), then

i o+ S0 [ 4] = 12

In order to compare conditions of ergodicity and to state several
theorems, we define

Case (A). We are saying that case (A) of a chain is happening if in
the sequence {P,} there exists such % that 1, = 0 and that, for n >k,

o0
Ay =0 and ] 2; #0.
{=kt+1

If the case is considered from probabilistic point of view, P, with
X = 0 indicates that at moment % the transition probabilities are inde-
pendent of issue states, and consequently the distribution of the system
at moment % is independent of the distribution at moment k—1, hence
independent of the distribution at any previous time. Chains contai-
ning such P, may be considered rather ag trivial cases of chaing.

TEEO]mM . Brgodicities in Kolmogorov's sense (3) and in the weak
sense (4) of non- homogeneous Markov two-state chains are equwalem zf' case
(A) zs excluded.

THEOREM 3. Hrgodicities in the strong (B) and strongest (6) senses
of non-homogeneous Markov two-states chains are equivalent if case (A)
is excluded.

The proofs of these theorems follow from the comparison of condi-
tions (8) and (9).

For case (A) we have

THREOREM 4. If there exists such k that A, = 0 and either

(a) I 4 = ¢ where ¢ £ 0,

i=k1
or
(b) n A; 18 neither convergent nor divergent to 0 and
d=k41
o o S 4]
7> =2 Jo==q
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ewists, the chain is ergodic in the strong sense without being ergodic in the
strongest sense.

00
Proof. (a) As [[ 4 = 0, it remains to prove that
i=1

lim [pﬂ’—[-z D [1 lch

=2

exists, in order to have the chain ergodic in the strong sense. The con-

vergence of 2, p{® would be sufficient for that purpose.

M=l
Indeed, the convergence of [ [ Ai involves that of 2 (L—2;) and thab

of Z’p”) too, since 1—1; = p(‘)-fp”’ The chain cannot/ be ergodic in the
=1

strongest sense because ” A # 0 for m >k.

=

(b) is obvious.

The following two theorems are obvious:

THEOREM 5. A non-homogeneous Markov two-state chain s ergodic
in the Kolmogorov's sense (3) and is not ergodic in the sirong sense (B) if

oo
() there emists such & that, for n >k, A, % 0 but [k | Ay = 0 and there
s linpel

exists mo

[p21)"|‘24 piY [1 Ml
or

(b) there ewisis an infinity of A; = 0 related to Ppyy Pryyoee
ewists no Um P,
ko0

but there

TuHEOREM 6. If case (A) happens and
n n
tim [p{?+ 3 0 [ | 2]
v dmd T
does mot ewist, the non-homogencous Markov two-state chain is ergodic
in the weak sense (4) and is mot ergodic in any other sense.

3. Ergodicity of homogeneous Markov two-~state chains. In the
homogeneous case we have
THEOREM 7. For homogeneous Markov two-state chains the four treated

ergodicities are-equivalent.

Proof. For homogeneous chains 4; = 1 is congtant. Cage (A) cannot
happen, thus on one hand the weak (4) and Kolmogorov’s (3) ergodici-
ties are equivalent and on. the other hand the strong (5) and the strongest
(6) ergodicities are equivalent too. .
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Hence it remaing to prove the equivalence of weak and strong ergo-
dicities. The condition for weak ergodicity, Hﬁ = 0, for homogeneous

chain is lim A; = 0 and that entails |4 < 1.

300
It follows from Fréchet [1] that homogeneous chains may be divi-
ded into four classes as regards the kind of characteristic roots of the
trangition matrix of probabilities:
1. 2 =1 is a simple root and there is no other root of modul 1.
This is the regular case of chaing which are ergodic in the strong

sense, 4. e. limp{p = py.
N0

. A =1 1is a multiple root and there is no other root of modul 1.
These chaing are not ergodic in the strong sense. Here hmp‘”) = Pap-

3. 2 =1 is a simple root and there exist other roots of modul 1.
These chaing are not ergodic in the strong sense, hmp(") does mnot

exmt but
1 ]
lim E Y =,
n—sc0 N st

" (it is the so-called Cesdro ergodicity).

4. 1 =1 ig a multiple root and there exist other roots of modul 1.
These chains are not ergodic in the strong sense, limp{ does not
exigh and o

N u B
l}m - > P = mgy.

Therefore |A| << 1 proves the strong ergodicity of the cha,m, since
2 is the second, besides 1, root of the transition matrix.
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