K. URBANIK

Since

24

$$\varphi_{\mu}(\chi) = \left(\left(\varphi_{\mu_{k_n}}(\chi) \right)^{k_n} = \left(1 + \frac{k_n \int\limits_C \left(\chi(x) - 1 \right) \mu_{k_n}(dx)}{k_n} \right)^{k_n}$$

we have $\varphi_{\mu}(\chi) = \exp m(\chi(x_0) - 1)$.

Thus μ is a Poisson distribution with the parameter x_0 .

Necessity. First we suppose that μ is a Poisson distribution and equality (1) holds. Let μ_n $(n=1,2,\ldots)$ be defined by formula (24) with $\nu=m\delta_{x_0}$. Then

$$\mu = \mu_n^{*n} \quad (n = 1, 2, ...), \quad \lim_{n \to \infty} \mu_n(e) = 1$$

and

$$\mu_n(G \setminus (e \cup x_0)) \leqslant 1 - \exp\left(-\frac{m}{n}\right) - \frac{m}{n} \exp\left(-\frac{m}{n}\right) \quad (n = 1, 2, \ldots).$$

Consequently $\lim_{n\to\infty} n\mu_n (G \setminus (e \cup x_0)) = 0$

Now we assume that $x_0^2 = e, x_0 \neq e$ and $\mu(e) = u(x_0) = \frac{1}{2}$. Setting $\mu_n = \mu$ (n = 1, 2, ...) we have

$$\mu = \mu_n^{*n}, \quad \mu_n(e) = \frac{1}{2} \quad \text{and} \quad \mu_n(G \setminus (e \cup x_0)) = 0 \quad (n = 1, 2, ...).$$

The Theorem is thus proved.

REFERENCES

- [1] P. R. Halmos, Measure theory, New York 1950.
- [2] L. H. Loomis, An introduction to abstract harmonic analysis, Toronto, New York, London 1953.
- [3] K. Urbanik, On the limiting probability distribution on a compact topological group, Fundamenta Mathematicae 44 (1957), p. 253-261.
- [4] A. Weil, L'intégration dans les groupes topologiques et ses applications, Paris 1940.
- [5] Н. Н. Воробьев, Сложение независимых случайных величин на конечных абелевых группах, Математический Сборник 34 (1) (1954), р. 89-126.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 2, 9, 1957

COLLOQUIUM MATHEMATICUM

VOL. VI

DÉDIÉ À M. CASIMIR KURATOWSKI

1958

CONCERNING APPROXIMATION WITH NODES

BY

P. ERDÖS (LONDON)

This note contains a remark on the subject treated by Paszkowski [1], [2].

Define

$$E_n = \min_{P_n(x)} \max_{-1 \leqslant x \leqslant 1} |f(x) - P_n(x)| \,, \qquad E_n' = \min_{P_n(0) = f(0)} \max_{-1 \leqslant x \leqslant 1} |f(x) - P_n(x)| \,$$

where $P_n(x)$ runs through all polynomials of degree n. Clearly

$$(1) E_n \leqslant E_n' \leqslant 2E_n.$$

I shall prove that there exists an f(x) satisfying

$$(2) \qquad \qquad \overline{\lim}_{n=\infty} E'_n/E_n = 2.$$

Let $n_k \to \infty$ sufficiently fast. Put

$$f(x) = \sum_{k=1}^{\infty} T_{2n_k}(x)/k!,$$

where $T_n(x)$ is the *n*-th Tchebycheff polynomial. Because of $|T_{2n}(0)|=1$ we have

(3)
$$E_{2n_k} \leqslant (1+o(1))/(k+1)! \qquad (P_n(x)) = \sum_{i=1}^k T_{2n_i}(x)/j!).$$

Next we show that

(4)
$$E'_{2n_k} \ge (2+o(1))/(k+1)!$$

Equality (2) follows from (1), (3) and (4). Thus we only have to show (4).

Let $\Theta_{2n_k}(x)$ be the polynomial of degree $\leq 2n_k$ for which

$$\max_{-1\leqslant x\leqslant 1}|f(x)-\Theta_{2n_k}(x)|=E'_{2n_k}.$$

APPROXIMATION WITH NODES

27

Denote by y the nearest extremum of $T_{2n_{k+1}}(x)$ to 0; clearly $|y|<\pi/n_{k+1}$ and $|T_{2n_{k+1}}(y)-T_{2n_{k+1}}(0)|=2$. If the n_k tend to ∞ fast enough we clearly have

(5)
$$|f(y)-f(0)| = (2+o(1))/(k+1)!,$$

i. e. $f(x) = \Sigma_1(x) + \Sigma_2(x) + \Sigma_3(x)$ where

$$\Sigma_1(x) = \sum_{j=1}^k T_{2n_j}(x)/j!, \quad \Sigma_2(x) = T_{2n_{k+1}}(x)/(k+1)!,$$

$$\Sigma_3(x) = \sum_{j=k+2}^{\infty} T_{2n_j}(x)/j!.$$

Now clearly

$$\Sigma_1(y) - \Sigma_1(0) = O\left(\frac{n_k^2}{n_{k+1}}\right) = O\left(\frac{1}{(k+1)!}\right)$$

if $n_k \to \infty$ fast enough, i. e. if $|g_n(x)| \le 1$, $g_n(x)$ is a polynomial of degree n, then by Markoff $|g'_n(x)| \le n^2$, $-1 \le x \le 1$,

$$\Sigma_2(y) - \Sigma_2(0) = \frac{2}{(k+1)!}, \quad \Sigma_3(y) - \Sigma_3(0) = o\left(\frac{1}{(k+1)!}\right).$$

Thus (5) follows.

Now $|\Theta_{2n_k}(x)| \leq 2e$ for $-1 \leq x \leq 1$ (since $|f(x)| \leq e$) and since $\Theta_{2n_k}(x)$ is a polynomial of degree at most $2n_k$, we have, by Markoff's theorem $|\Theta'_{2n_k}(x)| \leq 8en_k^2$, $-1 \leq x \leq 1$. Thus

$$|\theta_{2n_k}(y) - \theta_{2n_k}(0)| \leqslant 8en_k^2 y < 8\pi en_k^2/n_{k+1} = o\left(\frac{1}{(k+1)!}\right)$$

if $n_k \to \infty$ fast enough. Thus from (5) and (6)

$$|f(y) - \Theta_{2n_k}(y)| = (2 + o(1))/(k+1)!;$$

Hence (2) follows and our proof is complete.

By a simple modification of this argument it is easy to construct an f(x) with

$$\overline{\lim} E'_n/E_n = 2$$
, $\lim E'_n/E_n = 1$

(it suffices to put $f(x) = \sum T_{n_k}(x)/k!$ where $n_{2k} \equiv 0 \pmod{2}$, $n_{2k+1} \equiv 1 \pmod{2}$ and $n_k \to \infty$ fast enough).

I expect that one can show $\lim E_n'/E_n=2$ for suitable f(x), but I have not succeeded in doing it.

Note of the Editors. It has been stated by Paszkowski ([2], theorem 5.2) that for the approximation with algebraic polynomials the inequality

(7)
$$\overline{\lim}_{n \to \infty} \varepsilon_n(\xi; T) / \varepsilon_n(\xi) \leqslant 2$$

holds for an arbitrary continuous function $\xi(t)$ and for an arbitrary system T of nodes the notation being that of [1].

The relation (2) proved here by Erdös shows that (7) cannot be strengthened.

REFERENCES

[1] S. Paszkowski, On the Weierstrass approximation theorem, Colloquium Mathematicum 4 (1957), p. 206-210.

[2] - On approximation with nodes, Rozprawy Matematyczne 14, Warszawa 1957.

Reçu par la Rédaction le 20.9.1957