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THEOREM 6. Let 8 be a compact semigroup and T the set of those aeS
which have in 8§ roots of every degree m = 1,2,3,... Then T is a closed
non-empty subset of 8 such that every aeT has roots of every degree in T.

Proof. If k[l, we clearly have T}, D T,;. Next we prove f,(T) = T,.
If ¢ceT), then o< for every integer v >> 1, especially ¢"e 77, therefore
fx(T}) C T;. Suppose conversely that ¢e T,. Then according to Theorem 5
there is & de T) with ¢ = @' = (4"%)". Since deT; implies @*¢ Ty, we have
ce fr(17), whence T; C f5(T). This proves our assertion. Now the sequence
Ty DTy DTy D... fulfils the suppositions of Lemma 1. Hence

T = ﬂl Ty # o and f,(T) = T for every %k > 0. This proves Theorem 6.
=

If 8 is commutative, T' is obviously a semigroup. Let us call a semi-
group U complete if every element from U has in U roots of every
degree % > 0. We then have: ’

ToeorREM 7. In a compact commutative semigroup 8 the sét of ele-
ments having roots of every degree k > 0 forms a complete closed subsemigroup.

This theorem is known for compact abelian groups (7' is then a group)
and need not hold for discrete groups.

We use this opportunity to prove a further theorem on (non-neces-
sarily commutative) complete compact semigroups.

TrEOREM 8. Let 8 be a complete compact semigroup. TLet ¢ be an
idempotent from 8 and H (e) the mazimal group belonging to e. Then H (¢) is
a complete closed group. .

Proof. Let acH(e). Then according to the supposition there is an
2 =g(n)e8 with 4" = a for every n > 1. Let n > 1 be arbitrary, but
fixed. We know that the set {, #%, #%,...) contains a unique idempo-
tent. Since {w,a’,4*,...} D {o", o™, 2™, ...} = (4, a%, a?,...} and a be-
longs to e, this idempotent is e. Hence x belongs to e. Now every element
wef belonging to ¢ satisties we = eve G C H(e). Since a = o™, we have
¢a = eg", whence & = (ex)", i. e. @ = 3 with ye H(e). We have proved
that for every » there is a y = y(n)e H(e) such that y" = a. This proves
that H(e) is a complete group. The fact that H (e) is closed is well known.
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1. Introduction. Let M be a closed (i.e. compact, unbounded),
connected 3-manifold. We describe a 2-sphere in M as fame if, and only
if, it is the image of § x1/2 in a homeomorphism of § x I into M, where
8 is a 2-sphere. We describe M as reducible if, and only if, it contains
a tame 2-sphere, S, which is essential in M (i. e. the identical map § — M
is not homotopic to a constant). In this case M may be ‘reduced” by
cutting through § and filling in the holes. If M is reducible, then (cf.
§ 6 below; also [3]) =, (M) is either cyclic infinite or a free product with
two non-trivial factors. In fact we shall prove (ef. [3]):

THEOREM (1.1). For M to be reducible it is necessary and sufficient
that 7, (M) be either cyclic infinite or a non-trivial free product.

‘We emphasize the fact that M need mot be orientable. Specker [9]
has proved that m=,(M) is a free Abelian group whose rank is 0,1 or oo
according as s, (M) has less than 2, 2 or co ends [2]. If =, (M) is eyclic
infinite or a non-trivial free product, it has 2 or co ends. Therefore if A1
is orientable (1.1) follows from the triangulation theorem [4] and the
sphere theorem [6,10].

In order to prove (1.1) we consider a certain II-module J(IZ, &),

. which is associated with a given group I7 and a given Abelian group G

(see §5 below). We write J(II, Z) = J(II), where Z is the group of in-
tegers. According to Specker [9] there is an operator isomorphism J (nl(M )),
a7, (M). Assuming that I7 is finitely presentable, we introduce a certain
gub-set X(II,Q@)C J(I1,G). In general XZ(I1,@) is not a sub-group of
J (II, @) but it contains the element 0. If IT = 1 or G = 0, then J (I7,4) = 0.
‘We write X (I1,Z) = X(II). We shall prove:

THEOREM (1.2). In order that a finiiely presentable group, I, be either
cyclic infinite or a non-irivial free product it is necessary and sufficient
that Z(I1, @) # 0 for a given G % 0.

CoroiLARY (1.3). If Z(II, @) 5 0, then XZ(II,G') # 0, where & 1is
any non-zero Abelian group.
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THEOREM (1.4). In order that a closed, connected 3-manifold M be
veducible it s necessary and sufficient that X(m,(M)) # 0.

“Sufficiency” in (1.1) follows from “necessity” in (1.2) and “suffi-
ciency” in (1.4). It will be seen that ‘‘necessity” is the easier half of (1.2).
The slightly more difficult ‘“sufficiency” in (1.2) seems to be of some al-
gebraic interest. The group J(I7, @) is defined in purely algebraic terms
but Z(II, &), though it depends only on /7 and @, is defined geometrically.

2. The functors Hy. Let X be any topological space. If U is an
open sub-set of X, then H"(U) will denote the relative cohomology group
H"(X, X~—TU). Here the term ”cohomology group* refers to some coho-
mology theory [1] which we need not specify. If U C ¥V C X, where V
is also open in X, then the inclusion map ¢: U C V, or alternatively j:
(X, X—V)C(X,X—0), induces an injection i = j*:H™(U) - H*(T).
‘We define

(2.1) Hp(X) = Lim{H"(U), i*}
for all open U C X such that U, the closure of U, is compact.

A map f:X - Y, in a topological space ¥, is called proper if, and
only if, /7' B is compact for every compact BC Y. A proper homotopy
dlass of maps X = Y is defined in terms of proper maps X xI-» Y.
Clearly Hy is a contravariant functor on the category of proper homotopy
clagses between topological spaces.

If X is a locally finite polyhedron then H3%(X) may be identified
with the cohomology group which is defined in terms of finite n~-cochains,
in a triangulation of X, with some coefficient group & (this follows from
the excision theorem and the uniqueness theorem [1] for finite polyhedra).
In this case we shall somefimes write Hp(X) = Hyp(X, &).

3. II-simple elements. Let X be as before and let I7 be a discrete
group which operates effectively as a group of homeomorphisms X - X.
Then H7(X) is o right /7-module, with ar = z*s for any aeHp(X),
Tell. A sub-set 4 C X will be called IT-simple, if, and only if, Antd =0
for every v % 1 in II. An element of H%:(X) will be called II-simple if,
and only if, it has a representative in H™(U) for some open set UC X
whose closure is /I-simple and compact. We denote the set of IT-simple
elements in Hy(X) by Z*(X), or by Z"(X, @) it H%(X) = Hy(X,@d) and
we wish to indicate the dependence on G. We shall rely on the context
to indicate the dependence of X™(X) on II. Clearly 72™(X) = Z"(X),
.where 7: Hp(X) > Hp(X) is a right operator in /7. In general X"(X)
1 not a sub-group of H3(X). However, the empty set is I7-gimple and
Z"(X) contains the zero element in HE(X).
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Let IT be without fixed points (i. e. 7z 3 @ for every weX, 1 3 7ll).
Let II" operate similarly on a space X’ and let f: X — X’ be a proper map
which is equivariant with respect to a monomorphism 8: I —II" (i. e.
for = Brof). Clearly 7/ "4’ = f~'(67)A’, where A’ C X’. Since 6 is a mo-
nomorphism it follows that, if A’ is II'-simple, then f~1A4’is II-simple.
Hence we have:

TEREOREM (3.1). If f:X — X' is a proper map which is equivariant
with respect to some monomorphism IT — IT', then '2™(X')C Z™(X). .

For example, let X be a closed sub-set of X’ such that ' X = X for
every v’ eIlI' and let II = II’. Then (8.1) applies to the inclusion map
f:XC X

As another example, let ¥, ¥’ be locally compact spaces which are
locally and globally 0-connected and are locally 1-connected in the weak
sense (i. e. each point in Z = ¥ or Y’ has a connected neighbourhood,
V, such that the injection =, (V) — m;(Z) maps =, (V) to 1). Let X, X'
be universal covers of ¥, ¥’ and Iet I = =, (Y), II' = n,(Y’), operating
on X, X’ in the usual way, with due regard to base-points. Let g: ¥ — ¥’
be a proper map which induces a monomorphism I7 — II' and let f: X — X’
be the map determined by g. Then f satisfies the conditions of (3.1).

4. The case of a simplicial covering. Let X be a (connected) regular
cover of a connected, locally finite, simplicial complex Y. Let p: X — ¥
be the projection and II the group of covering transformations. That
is to say, /I consists of all homeomorphisms 7: X — X such that pr = p.
The space X may be given the structure of a simplicial complex such
that p, likewise each 7:X — X, is a simplicial map. When we refer to
a sub-division, X', of X (e. g. the barycentric sub-division), we shall mean
one with respect to which every zell is simplicial. Thus X' determines
and is determined by a sub-division, ¥’, of ¥ such that p is simplicial
with respect to X', ¥’. By a polyhedral sub-set of X, or ¥, we mean the
sub-set covered by a sub-complex of some sub-division of X, or Y.

Let puiay (X, @) = 7, (Y, 4,), Where y, = pa,, be the homomorphism
induced by p. Then p.m;(X) (7 (X) = =, (X, @) is an invariant sub-
group of =, (Y) = m, (Y, 1), because the covering p:X — Y is regular,
and IT may be identified with o, ( ¥)/p. 7, (X). We describe a map ¢:8'— ¥
as inessential mod p if, and only if, it can be lifted to a map f:8' — X such
that g = pf. Let aem;(Y) be the element obtained by orientating S* and
joining gs, to ¥, by a path in ¥, where s,¢8%. Then ¢ is inessential modp
if, and only if, aep.m(X). We deseribe a sub-set BC ¥ as 1-connected
in Y, mod p, if, and only if, every map S — ¥, whose image is in B,
is inessential modp (in Y). If =, (X) = 1 we may omit the gualification.
“modp”.
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Let B be a locally 0-connected sub-set of ¥ which is 1-connected in ¥,
modp. Then the inclusion map ¢: BC Y can be lifted to a map f:B—- X
such that pf = 4. Clearly fB is Il-simple.

Let A be a Il-simple subset of X. Then p|4 is a 1-1 map onto p4.
If 4 is either compact or open in X, then p|4d is a homeomorphism. The-
refore it has an inverse, p4 —> 4, and pA is obviously 1-connected in ¥,
modp.

Let U be an open subset of X whose closure is compact and poly-
' hedral. Then, by the excision theorem [1], H*(U) may be identified with
H™(U,T), where U = U—U. Bvery compact, [l-simple subset of X
is contained in & ecompact, I7-simple, polyhedral subset. Therefore every
element of X" (X) has a representative in H"(U) for some open UC X
whose (compact) closure is polyhedral and IZ-simple.

Let UC X be an open set such that U is polyhedral and compact.
Let N be a closed simplicial neighbourhood of U in U such that U is
a deformation retract of ¥. Let Uy = U—XN. Then U, C U and i: H*(T,)
~ H"(U), where 4:U,C U. Hence it follows that, if U is II-simple, then
every element of Hy(X) with a representative in H™(U) is II-simple.

Since H%(X) may be calculated in terms of finite cochaing in X we
have ¢": Hi(X)~Hp(X%) if ¢ > n, where X? denotes the g-section of
X and :X? C X. I say that

(4.1) " ZUX) = ZY(XY).

Proof. It follows from (3.1) that 4*X'(X)C 3'(X%. We have to
prove that, if 5<X'(X?), then (°)~'eX"(X). Let f<H'(U) be a represen-
tative of b, where U is a relatively open subset of X2, whose (compact)
closure is /I-simple and polyhedral. Let V =pUC ¥* and let py:(T, T~
— (7, V) be the bomeomorphism determined by p.

Let y = (py)"*BeH'(V), where p;: H'(V)~ H*(U) is the isomorphism
induced by p,. Then (4.1) will obviously follow when we have proved:

Levma (4.2). There is an open set V' C Y, such that V' is a compact
polyhedron and

(a) VVAYCY,

(b) yei* HY(V'), where j:(X?, Y—V)C(Y, Y-V,

(¢) V' is 1-conmected in ¥, mod p.

Proof of (4.2). Let N(V)C Y be the open get consisting of all the
open simplexes of ¥ whose closures meet V. Since Y is locally finite and
V is compact there are but & finite number of open simplexes in N (V).
Assume that, for some ¢ > 2, there is a relatively open set, V,
C ¥?~ N (V), which satisfies the conditions imposed on V' in (4.2)
when Y is replaced by Y% If ¢ = 2 these conditions are satisfied by V=7V
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and if ¢ = dimN(V), then they are satisfied for ¥ by V' = V,. Let
Y, be a sub-division of ¥ such that ¥,is a sub-complex of ¥, and let
y = "y, Where y,<H'(V,). Then H'(V,) may be calculated combina-
torially and y, is represented by a cocycle,

2,6 2V, @) CZY (X4, &).

Our aim is to construct a V,,,, s tisfying the analogous conditions,
such that #, can be extended to a cocycle z,,,¢Z"(V,, , G). Some care is
needed to ensure that V., is 1-connected in ¥, modp.

Let o be g (closed) (g+1)-simplex in ¥ and let § be the subcomplex
of ¥, which covers o. Let y<Z' (S, @) be the restriction of 2, to 8. If y £ 0
let §* be the ccll-complex, composed of blocks of simplexes of the bary-
centric subdivision of §, which is dual to S. Let y"<Z,_,(8", &) be the
cycle dual to y and let P* be the support of 4* (i. e. the union of the clo-
sed (¢—1)-cells of §* in which y” has non-zero coefficients). Let Pj, ..., Pr
be the components of P*. Then y* = y}+..:--y;, where y; is a (¢g—1)-
-cycle in P;. Also P"C V,.

Let G* be the character group of G and let T be any compact poly-
hedron in ¢. Then H,_,(¢—T,G) and H(T, T ~ ¢;G") are orthogonally
paired, by linking coefficients, to the real numbers, modl. Hence it
follows by induction on r that there are polyhedra @, ..., Qs C ¢ such
that .

(@) Qi ~no =P} and Q; ~Qf = o if ¢ = §,

(b) Q; carries a g-G-chain = such that 02 = y;.

Moreover we may assume that 2} <C,(E;, @), where E: is the cell-
-complex dual(?) to a (simplicial) sub-division, E,, of ¢, which coincides
with 8 in ¢, and that @} is the support of z;.

Let W; be the union of the open simplexes of B, which meet @,
and let W, = W,v...vW,. Let

2,0 (W, 6) C O1(E,, @)

be the cochain dual to z; and let z, = #,+...+2,. Since dzf =47 and
Q; ~8" =P} it follows that  is a cocycle which coincides with
in 8. Therefore 2, is an extension of y to a cocycle in W,. Since ¢ meets
V,, because y = 0, and since V,C N (V) it follows that oc—oC N(V),
whence W,C N (V). Since P*C V, it follows that W,~oC V.

(*) Let E;,;S" denote the barycentric sub-divisicns of Ey, § and let v be a k-
-simplex of §. Tuen B contains the (g — k- 1)-call, 7y, Which is the dual of 7 in B,

and the (g—k)-cell, 7; €z, which is dual to = in &’
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We have assumed that y £ 0. If ¥y =0 let W, =g, 2, = 0. Thus
W,y #, are defined for every (¢-1)-simplex, o, of Y. Let Vo, = J,W,.
Since there are only a finite of open simplexes of I in N (V) and
since W, =g if o—0c¢ N (V) it follows that VQH is compaet (and poly-
hedral). If o, v are different (g4-1)-simplexes of ¥ then 2, 2, both coin-
cide with ¢; in ¢ ~ 7. Therefore a cocycle z,.,¢Z (V,,1, @) is defined by
the condition 2,,,|Y, = 2,, 2,0 = #,, for every o = ¢**' in Y. Since
W,~aCV, it follows that V,,~Y¥Y2CV,~Y¥Y2CV, in accordance
with (4.2a). Also #,,, extends z, and it follows that (4.2b) is satisfied.

Clearly W; ~ ¢ is an open simplicial neighbourhood of P} in ¢ and
is therefore O-connected. Since Qf ~Q; =g if ¢ %7 it follows that
W:nW; = if i s£j. Therefore, if points @, beW,~¢ are joined by
a path in W,, then a, b are in the same set W; ~ ¢. Therefore the path
is homotopie, with its end points held fixed, to a path in W,~s6C V,.
Henge it follows that a given map §'— V,,,, which we may assume to
be piecewise linear, is homotopic in ¥*** to & map in V,. Since V, is
1-connected in ¥, modp, 50 is V,,;. Therefore (4.2¢) is satisfied and (4.2)
follows by induction on ¢. This completes the proof of (4.1).

THEOREM (4.3). If dimX < 2n, then Z*(X) = Hp(X).

The proof is similar to that of (4.1) but much simpler since it only
involves placing the dual chains in general position. The details are left
to the reader.

In general, if beX"(X) then the eup-produet b v bz, defined in terms
of any pairing GxG @', is obviously zero, provided T #1. On
considering a double covering of a Klein hbottle by a torus, with n =1,
one sees that this is not always the case.

Let H7(X) = Hp(X, &) and let y:G — G be a homomorphism in
an Abelina group @'. Then, obviously,

(4.4) »I"X,G)C X, ),

where y.:Hz (X, @) - Hi(X, &) is the homomorphism induced by y.

5. The set (17, @). Let IT is a given group and & a given (additive)
Abelian group. Then G” is o left IT-module, in which addition is defined
by addition of values and 7: @7 — Q¥ is defined by (zf)(£) = f(&x) for
all f:II +@, =, £ell. Let G(IT)C G7 be the sub-module consisting of all
finitely non-zero functions. That is to say, @ (I1) if, and only if, f(&) = 0
for all but a finite number of elements £eIT (thus G(II) is the group-
-ring over G if @ ig a ring). Let F (17 , @) be the sum (direct if /7 is an in-
finite group) of @(I7) and the sub-module of constant functions. Thus

f<F(II, @) if, and only if, f(£) = gy for all but a finite number of elements
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& and some g;e@. Let ‘
(5.1) A(IT, 6) = {fe@”|tf—feG(II) for each rell}.

Clearly F(I1,@), A(Il,G) are sub-modules of G” and F(II,G)C
A(Il,@). We define (cf. [9])

(5.2) JUI, @) = AT, ®)/F(I,6).

The groups G¥, F(I1,G), A(II, @) are also right /7-modules, with
fo:ll - G defined by (fv)(&) = f(z£). Therefore J(II,@) is a right
II-module with #r defined in the obvious way for all @eJ (1, &), vell.

Let IT" be any group and h:II — II' 2 homomorphism whose kernel
ig finite. Then h~'A’ is a finite set if A’ is a finite sub-set of II'. Hence
it follows that % induces, by composition, a homomorphism

(5.3) Jh): JUT, G) - J (I, &).

Similarly a homomorphism G — @ induces a homomorphism J (17, )
—J(II,G). Let & be a category of groups and homomorphisms with
finite kernels and let & be the category of all homomorphisms between
Abelian groups. Then J is clearly a functor J:5 x ® - &, which is contra-
variant in &, covariant in G.

Now let IT be finitely presentable and let Y be a finite, connected,
2-dimensional simplicial complex, with a base point y,eY°, such that
II ~ 7, (¥, ¥,). Let X be the universal cover of ¥, whose points are homo-
topy classes, rel. end points, of paths (I, 0) = (¥, y,). Let the class of
the constant path, I — %, be taken as the base-point #,e X. Then [9]
an isomorphism @:I~ (Y, 4, determines an equivariant isomor-
phism
(5.4) &,.:J(,6) ~ Hp (X, &).

Let
(5.5) 2,6 = o7 2N X, ).

Let (X', 9p), d:II' ~m (X', yy), (X', 2;) have similar meanings to
(¥, 4), @, (X, ). Then there is a map g:(¥, y,) = (¥, y;) which in-
duces

dj’@—l:nl(y; Yo) A~ nl(yly yl;)i

and any two such maps are homotopic on Y'. Let F1 X, @) — (X, @)
be obtained by lifting g. Then we have

4 R A ’
JUT,6) 5 He(X';6) 5 Hy(X; &)
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and (5.4) is natural in the sense that @, =/"®,. If ':(X’, ) - (X, a,)
- is similarly defined in terms of @@~ then 7* = (*)~* and it follows
from (3.1) that

f*Zl(X', G) = ZI(X’G)'

Hence it follows that X(I7, @) defined by (5.5) does not depend on the
choice of Y,®. Similarly the homomorphisms J (7', Q) - J(IT , @),
J (I, @) — J(II,G') induced by a monomorphism JT — I’ and a homo-
morphism G — @ carry Z(/T', @) into X (I, &) and X (T, &) into 2T,

The group J(II,@) is isomorphic to the reduced Cech 0-G-cohomology
group of the (compact) space of ends of IT. If G=Z, the group of integers,
then J(IZ, @) is free Abelian [9]. We write J(I7,Z) =dJ (), 2(II, Z)
= Z(II). In general J(II) is not a free I7-module.

6. Proof of (1.2). Let (X, a,), (¥, 1) be as in the paragraph eon-’

taining (5.4). Let IT be either cyclic infinite or a non-trivial free product.
In the first case we take Y to be a circle and in the second we take
Y=Y,v Y, where Y,nY,=y, and =,(¥;) s£1. In either case
X = X,v X,, where X,, X, are infinite simplicial complexes and X 1~ X,
=ux,. Let I7; be the (relatively) open simplicial neighbourhood of X,
in X, and let U, = U;—a,. Then U, is compact and I1-simple. Let 0 £ ge@
and let ce C°(X, @) be the infinite cochain defined by ¢(v) = 0 or g accor-
ding as the vertex visin X —X,= X,—a, or in X,. Then é¢ is a (finite)
cocycle in ZY(U,, ®. If é¢c = &', where ¢’ is a finite 0-cochain, then
d(e—¢’) = 0. Since X is connected this implies ¢(v) = ¢’ (v)+ g, for every
vertex v of X and some g,eG. But this is absurd sinece it implies g, = 0
and g, = g % 0. Therefore the cohomology class of d¢ in Hp(X, ) is
a non-zero element in (X, @).

Conversely, let 0 s« beX'(X, @) and let f<H'(U, @) be a represen-
tative of 4, where UC X is open and U is compact, polyhedral and II-
-simple. Iret Uy, ..., U, be the components of UJ. Then B=p+...4Buy
where f;eH'(U;, G), and b = by+...+by,, where b;eHy(X,@) is the
element represented by f;. Clearly b (X,6) and b; = 0 for at least
one value of 2. We may therefore agsume to begin with that U, and hence
U are connected. ’

Let V = pU, where p:X - ¥ is the projection. Let P he a compo-
nent of ¥ — ¥V and suppose that Pv ¥ is 1-connected in Y.Let V,=PuV.
Then V, is open and V; = Pu 7. Therefore the homeomorphism ¥V — U
inverse to p:U may be extended to a homeomorphism. f, of ¥, into a
compact, H—._%imple subset of X. Moreover fV, = U, sa,y; is open in X
a?;nd fVy = U,. The element be X! (X, @) is equally well represented by
isf, where is:H'(U) - H*(U,) is the injection. Therefore U, V may be
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replaced by U,, V,. Sinee Y is a finite polyhedron and ¥V is polyhedral
the set ¥ —7V has but a finite number, %, of components. The set ¥— 7V,
has k—1 components. Therefore the theorem will follow by induction on
% when we have proved it on the assumption that Pv ¥ is not 1-connec-
ted in Y for any component, P, of Y—V. So we assume this to be
the case.

Suppose that U and hence X —U = 4, say, are connected. Then
H'(A, @) = 0, where H° indicates a reduced cohomology group, defined
in terms of infinite cochains. Also H*(X, @) = 0 since X is 1-connected.

Therefore it follows from the exactness of the cohomology sequence of

(X, A) that H' (U, @) = 0, contrary to hypothesis. Therefore U, likewise
V, are not connected.

Assume that no two components of ¥ are in the same component
of Y—V. Since V is not connected it follows that ¥Y—7¥ has at least two
components. Let P, be one of them and P, the union of all the others.
Let @, = P, V(1 =1, 2,). Then @, is not 1-connected in ¥. Let t;:7,(¥)
— 7,(Q;) be the injection. Then [7, § 52] there is a presentation for =, (Y)
which consists of a presentation for z,(Q,) together with a presentation
for m(Q;) and the additional relators (i, a)(se)”}, for every aem, (V).

Since ¥ is 1-connected in ¥ these additional relators may be replaced
by ¢ a, t;a. Therefore

m(Y) ~ (5’53 (Q1)/F1)*(”1(Q2)/T2)a

where I7+II’ indicates the free product of given groups II,II’ and I, is
the smallest invariant sub-group of z;(Q,) which contains 1,7, (¥). More-
over this isomorphism is such that the free factor =, (Q,)/I’; corresponds
to the image of =;(Q,) in the injection m; (Q;) — 7, (¥). This image is not
1, since @, is not l-connected in Y. Therefore =, (Y) is a non-trivial free
product.

Finally let two distinet components of ¥ be in the same compo-
nent, P, of ¥—V. Let @ be the union of ¥V and all the other components
of Y—V. Since ¥, V are connected, sois @ and ¥ = Pv @, P~Q is not
connected. Mence it follows from a variant of the theorem in [7), to which
we have just referred, that =,(Y) is a free produet of the form /'xZ.
Therefore it is either eyclic infinite or a non-trivial free product, accor-
ding as I'=1, or I" 5= 1. This completes the proot.

7. Proof of (1.4). We observed at the beginning of §1 that, if I
is reducible, then =, (M) is either cyclic infinite or a non-trivial free pro-
duct. Therefore “necessity” in (1.4) follows from (1.2).

Conversely, let Z‘(nl(M )) # 0, let ¥ be a triangulation [4] of 3
and let X in § 4 be a universal cover of ¥. We take X*, ¥* to be the

-
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X, Y of §5. Then X*(X*) £ 0 and it follows from (4.1) that Z*(X) = o.
Let U and feH(U) = HY(U, %) be as in §6, § being a representative
of some b 5 0 in X'(X). Let z¢Z*(U) C Z"(X) be a (finite) cocycle repre-
senting B, let X~ be the cell complex dual to X andlet 2*¢Z,(X*) be the
eycle dual to 2. Then 2" does not bound a (finite) chain in C5(X*) because
b # 0. Moreover [5, p. 296] &, treated as a singular cycle, is homologous
to a 2-cycle carried by a non-singular, compact, orientable, polyhedral
2-manifold, P, in U. Since 2" is non-bounding it follows that some compo-
nent, 4, of P is non-bounding in X. Then 4 is a compact connected,
orientable, non-bounding, I7-simple 2-manifold in X.

Let B = pA, where p: X — I is the projection. Then R is 1-connec-
ted in M and is therefore 2-sided. If B is a 2-sphere it is tame, being po-
lyhedral, and essential in M since 4 is non-bounding in X. Therefore M
is reducible in this cagse. So we assume that B is not a 2-sphere. Let I » B
be an essential, piecewise linear map. Since B is 1-connected in M this
can be extended to a piecewise linear mapyf: 12— M. Since B is 2-sided
we may assume that there is a neighbourhood, N C I2, of I2 such that
J(N —I?) lies entirely on one side of B. We may further assume that
f7'B is a set of non-singular closed curves in I% Let ¢ be one which con-
taing no other in its interior and let D C I® be the disc bounded by C.
If the circuit f|0:C — B is essential in B we replace f by f|.D. Otherwise
fIC0 can be extended to a map g:D— B and we replace f by fi:I2— M,
where fis = fs or gs according as seI*—D or seD. We then deform fa
slightly so as to free f, D from B and thus reduce number of components
of {7 B. It tollows from induetion on the latter that there is a mapk:12— M
such that k|12 is an essential circuit in B and k'R =I2 (ef. [3]).

Let us cut M along B, thus converting it into a bounded manifold
M. Then M, = B, v B,, where B,, B, are two copies of B, and % deter-
mines & map k;: I*~> M, such that %,|I is an essential circuit in one of
By, By, say in B;. There is, therefore [5], a non-gingular (polyhedral)
circuit O, C By, which is essential in B, and bounds 2 singular 2-cell
B, C M,. We may obviously assume that B, — C, C M,— B, and it follows
from Dehn’s lemma, proved recently by C. D. Papakyriakopoulos [6]
(see also [8]), that there is & non-singular 2-cell which satisfies these con-
ditons. Therefore B contains an essential, non-singular cireuit ¢ which
bounds a non-singular 2-cell B C M such that B~ B = ¢. The homeo-
morphism B — 4, inverse to pj4, can obviously be extended to a homeo-
morphism g:B v H — X such that pgy = y for every yeBw H. Clearly
A v gB is II-simple. We now cut through g and separate the two gides
of the cut. We thus transform 4 into a connected, I7-simple manifold 4’,
if B is non-bounding on B, or into two disjoint, II-simple manifolds 4,, 4,,
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if I bounds on B. Let h be the genus of A. Then 4’ is of genus h—1 in
the first case. In the second case, if h, is the genus of 4,, then hy > 0,
since & is essential in B, and hy+hy = . In the first case 4, and in the
second case one, ab least, of 4,, 4, is non-bounding in X. Therefore the
theorem follows by induction on &.
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