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ON CONVERGENCE OF MAPPINGS

BY
G. T. WHYBURN (CHARLOTTESVILLE, VIRG.)

1. Introduction. The idea of a mapping, that is a single valued
continuous transformation, as an extension of the function concept lies
deep in the history of topology. Indeed it is closely interlaced with the
very beginnings of topology, as is apparent to any student of complex
function theory with its strong emphasis on mappings generated by diffe-
rentiable functions. In more recent times, however, one of the most po-
werful and stimulating influences in the development of topology and
ity applications has been the method of generation of mappings by decom-
position of the domain space into disjoint closed sets, together with the
dual operation of generating a decomposition of a domain space by means
of 4 given mapping defined on that space. The early recognition by Ku-
ratowski [1] of the equivalence of these operations in an appropriate
setting and his formulation of some of the then eurrent work on upper
semi-continuous decompositions in terms of mappings surely represents
a distinet landmark in the development of Analytic Topology and has
lead to major advances in this area of mathematical work. It is a pri-
vilege and a pleasure, therefore, for the author to dedicate this paper
6 his long-time friend and colleague Casimir Kuratowski on the occasion
of the 40 anniversary of his first mathematical publication. The author’s
mathematical life and work have been immeasurably stimulated and
enriched through personal and professional association with this great
mathematician and by his masterful and exceptional skill in topological
writing and exposition. ;

We shall be concerned in this paper with sequences of mappings
from one locally compact separable metric space to another®. Conditions
for the almost uniform convergence of such sequences having some appli-
cability in the case of function sequences will be studied. The existence

* This research was supported by the United States Air Force through the
Air Force Office of Scientific Research of the Air Research and Development Command,
under contract No. AF 49 (638)-71 at the University of Virginia.
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of a limit mapping toward which the sequence converges in a certain senge
will be assumed. Emphasis is centered on the case of mappings with non-
compact domain and range spaces. The mappings themselves are usually
assumed to have some elements of compactness. A mapping f: X— ¥
is compact provided f~'(K) is compact for every compact set K in ¥ or
equivalently, provided the mapping is closed and has compact point;
inverses 7~!(y) for each ye¢ Y.

In general, standard notation and terminology will be employed.
For each point # in a space X and each real number » > 0, V, (x) denotes
the spherical neighbourhood of @ of radius r. Also for any open set R
in X, Fr(R) denotes the boundary or frontier of R. A sequence of sets A4,
ig said to converge 0-regularly to the set A provided that A4, conver-
ges to 4 and for any ¢ > 0 2 § > 0 and an integer N exist such that if
n > N any pair of points =, yed, with o(2,y) < § lie together in a con-
nected set in 4, of diameter < .

2. Mapping types. Two kinds of mappings will be congidered, mono-
1':o'ne and-quasi-open. A mapping f: X — ¥ is monotone provided f'(y)
is a eontinuum (i. e, compact and connected) for each y¢¥ and is weakly
monotone provided each point inverse 7~ (y) is connected. Also a mapping
f: ;‘Y—?Yis (strongly) guasi-open provided that for any ye¥ and any open set
U in X which contains a compact component of 17(y), ¥ is interior to (7).

) .For the casg of a mapping of one real line into another it is readily

Ve@ed that the properiies of weak monotoneity and quasi-openness are
eguwa.lent qnd each is equivalent o the property of univariance when the
ma.pp'mg 18 regarded as a real valued function of a real variable.
This is no longer true for mappings of intervals onto intervals, because
every open mapping i3 quasi-open and the interval is readily mapped
onto itself by an open mapping which is not monotone. It may algo be
Fema;rked that every (strictly) monotone mapping of one line into another
i8 mnecessarily compact.

) T}.le mapping of a region R of the complex plane generated by a fune-
tion dlﬁerfentiable in R is open and hence quasi-open. In thigs situation
of a mapping generated by a function of a complex variable, quasi-open-
ness is equivalent [2] to a minimum modulug property of the function.
$-E'0r our present purposes the following characterization of guassi-openness
i a br9ader setting will be particularly useful. Let X and ¥ be locally
connected generalized continua, i. e. locally compact connected and lo-
cally connected separable metric spaces. 4 mapping f: X — Y is quasi-
-open if and only if the relation !

(%) Frf(R)] C f[Fr(R)]
holds for every conditionally compact region R in X.

icm

ON CONVERGENCE OF MAPPINGS . 313

The word “region’ here means “connected open set”. If this word
is replaced by “open set” the resulting characterization is valid in case
X and Y are arbitrary generalized continua or, indeed, locally compact
geparable metric spaces.

3. Conditions. Example. It is well known, of course, that simple
convergence of a sequence of mappings to a mapping does not by itself
imply any type of uniformity of convergence in general. The clagsical
theorems of Osgood and Vitali do give such conclusions for sequences
of analytic functions. It is readily seen, however, that even the stron-
gest topological restrictions on the separate mappings in the sequence
is unlikely to have uniform convergence implications for the sequence
ag a whole. This may be illustrated by the

ExaMpLE. There exists a sequence of homeomorphisms of the plane
onto diself which converges everywhere to the identity but where the conver-
gence fails to be almost uniform.

To see this let ¢ be the circle 2’y = 1. For each » > 0 let s, be
the arc of the upper semi-circle of ¢ joining the points with abscissas
1/n and 1/(n+1), let ¢, be the chord of O subtending s, and let S, and
T, be isosceles triangles of altitudes } and 1 respectively standing on ¢,
a8 base and extending outside 0. For each n > 0.let h, be the homeo-
morphism of the plane onto itself which

(i) is the identity on and outside T4,

(ii) maps the interior of T, onto itself by sending s, onto the union
of the two sides of S, outside €, the segment of the interior of ¢ cut off
by ¢, and s, going onto the interior of 8, and the part of the interior
of T, outside C going onto the part of the interior of T, outside 8y, It
is then readily verified that this sequence of homeomorphisms ky, ke, ks, ..
meets all conditions required of our example. The sequence converges
at each point to the identity; but the convergence fails to be almost
uniform because for any » there exists a point p of s, whose h, image
is the vertex of S8, and hence at a distance > 1 from p.

Thus even for sequences of homeomorphisms extra conditions seem
to be essential in order to secure mniform convergence conclusions about
the sequence. It may be noted that in the example just described, any
gmall circular neighbourhood U about the point (0, 1) has the property
that the limit of the images h,[Fr(T)] of its boundary is a different seb
from the image h[Fr(U)] of its boundary under the limit  of the sequence.
This suggests consideration of the associativity condition

;

(+) ii_)m[fn(o)] = [1‘11_?30]‘”](0)

for sequences of mappings f,: X — ¥ and subsets ¢ of X. It will be shown
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in the next sections that a medified form of this condition applied to boun-
daries of small neighbourhoods of points does indeed yield conclusiong
of the desired sort on almost uniform convergence of the sequence.

4. Monotone mappings. In order to simplify the form of the condi-
tion needed we first give the i

DermviTioN. If 4, is a sequence of sets in a metric space, we define
limsup 4, G4,
read “limit superior of A, strictly contained in A4”, to mean that for
every ¢ > 0 almost all the sets 4, lie entirely in V,(4). In a compact
space this clearly is equivalent to the, in general weaker, statement
“limsup 4, C 47, '

THEOREM. Let the closed generalized continua X, ¥ and Y' in a lo-
cally compact separable metric space be such that ¥’ C Y and for cachye¥, ¥’
intersects each component of ¥ —vy. Let the sequence of compact monotone
mappings fo(X) = ¥, and the mapping f(X) = Y’ satisfy
(a) the sets X, converge O-reqularly to ¥ and
(b) for each weX and &> 0 there emists an e-neighborhood U of @ with

boundary C such that imsupf,(0) C, F(0).
Then [fn(x)] converges almost uniformly to f(@) on X and if each f'(y),
yeX', has @ non-empty compact component, f is compact and monotone,

Proof. We first establish the almost uniform convergence. Suppose,
on the contrary, that on some compact set 4 in X, f, does not converge
uniformly to f. Then for some a > 0 and each » there exists an Tpe A
and an integer k, > n such that if 2, = fr, (@) and ¥, = f(x,) we have

® 0(Yns #n) > a.

We may and do suppose o chosen so that V,(y) is compact. By ta-
king a subsequence if necessary we may suppose z, - xe4d and from
this we have y, -4 = f(#) by continuity of f.

By regular convergence of ¥, to ¥ it follows that Y is locally con-

nected. Thus if F, is the component of ¥-V,(y) containing y, F, i8 a lo-

cally connected region in ¥ and there exists a positive number f<al2
such that

(ii) Vy(y) Y C F,.

Again by local connectedness of F, there exists a positive number

o < /2 such that if there are exactly » components W, W,,..., W, .

of Y—y not contained wholly in Vs(y), then each W, containg a point
b; of Y'-[Y—TV,y)]. For each i< 7, W, containg a finite number of
components of F,—y. Let a point in each such component of F;—y in
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W, be joined to b; by a simple arc in W;. We then add this finite set of
arcs to I, for each ¢ < » and let F, be the resulting set. Then F%—y has
exactly » components K, K;, ..., K, which do not lie entirely in Valy)
and we choose the notation so that K;c W; for each i< » Now let
y < ¢/2 be chosen so that Fz—Fg-Vi(y) is contained in t.he union of 7
components My, My, ..., M, of F;—F, V,,(y) with notation so chosen
that, for each ¢ <7,

(iif) M, CEK;C W,.

By regular convergence of ¥, to ¥ there exists an integer N, and
a 6> 0 such that if y',y"” ¥, with n > N, and o(y',¥") <6, then
y' 44" CGCY, where @ is connected and & (@) < v/3. Then by con?vergenge
of Y, to ¥, there exists an &, > N, such that if n > N, any point of Fy
is at a distance < /6 from some point of ¥, and any point of ¥y Va(y)
is at a distance < 6/6 from some point of Y. -
Now let U be an open set in X containing « such that

{iv) HO)C V,(9)

and such that limsupf,(C) Cs f(C) where O is the boundary of U. There
exists an integer Ny > N, such that if # > N,

(v) f(C) C V,(y).

We shall show next that there exists an integer N, > N; such tl}at
if w > N,, fo(X—0U) intersects each component of ¥,— Y,,'- v, () 1;\711110}1
does not lie whelly in ¥,(y). For each ¢ <7 let % be a point of /7 ().
Then 2 ¢ X—U for each ¢ by (iv), sinee o(b;, 4} = o0 > 2y._ For 62:911
i < r, let V; be an open seb about z; with boundary ¢; such that 'Vi cXxX-—U,
V) C Tyby), and lmsupfa(C;) Cs F(C;). Then for each <7 there
exists an integer N> N, such that for # > N3}

(vi) fn(0s) C Vi[OI C Vp (bi):

Let N, = max [N1, let » be any integer > N, and' let @ be any com-
ponent of ¥,— ¥, V,(y) which does not lie wholly in Vﬁ(y): There is
a point p of @ on the boundary of V,(y) and, since n > Ny, p is at a dis-
stance < 6/6 from some be¥Y.

Now by (i), be I, C F, and b is not in V,(y) since § > 2o Hence_b
lies in M; for some j 7. Leb b =y, %, ..o % =b; be 2 8/6-chain
in M. Then if for each s, 1 < s <k, s is a point (?f Yo Wlth. g(-ms, Ys)
< 86 and yxe fn(C;), then P =Y1,¥ay o) Y1, 18 2 d-chain in ¥,
from p to ;. For each s < k there exists a eonnectgd subset Bs of ¥,
containing y,+¥,., and of diameter < y/3. The union B of these sets
Ej,1<s<k is a connected subset of ¥, containing p+yr; and
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BECV,(M;) since 6<y/3 Thus ECY,—Y, V,(y) so that BCQ.
Hence @ contains the point y; of f,(X—T) as was to be shown.

Now if n ig any integer > N,, we must have f,(U)C V,(y). For
suppose there is a point w of £, (U) in ¥, — ¥, V;(y). Then w lies in a com-
ponent @ of ¥,—7¥,-V,(y) which i3 not contained in V(y) and thus @
must contain a point # of f,(X—T) as shown above. Thus f7*(¢) inter-
sects both U and X—U. Sinee f, is compact and monotone, f;*(Q) is connee-
fﬁed and thus it must intersect C, the boundary of U. However, this is
impossible because by (v), f.(C)C V.(y), as n> N,> N;, so that
(0):Q = 0. Accordingly fn(U)C Vy(y).

Now for = sufficiently large, say n > N; > N,, we have @,¢U and
Yn = (@a) e V(y). However, this gives 2, ¢ 1, (U) C V() 80 that g(yn, 2,)
< 2f < a, contrary to (i). Thus the supposition of non-uniform com,rer-
gence on 4 leads to a contradiction.

To prove the final statement, suppose f~*(y) has a non-empty compact
component for each y ¢ ¥. Then for any y ¥, if X is such a compact compo-
nent of {7 (y), ¢is any poiitive number and U is any conditionally compact
oPlen set about K with UCV_(K) and with boundary ¢ not intersecting
7~ (), we can choose an open subset R of ¥ about y a8 follows. By regu-
lar convergence of ¥, to ¥ there exists a 6 > 0 and an N such that if
n> N and y',y"” ¥, with o(y",y") < 8, then y'+y" CQC Y, where
@ is connected and of diameter < & — %oly, f(C)]. We may and do
suppose N chosen also so that £,(C)C V.[F(C)] for any n > N, Then i%
R denotes the set ¥-¥,,(y) we must have

(vii) FUR)CU.

For if there existed a ze f~(R) (X — U), for pe K and n sufficientl

_?I;Jgga;d >'}f‘7 we would have f,(p)+7fu(2) C Vss(y) so that fn(p)+fn(g)r

" 1W ere @ is connected and of diameter < & Thus Q-fu(0)=0
so‘ that f27(@)-C = 0. This is impossible as f;1(Q) is connected and con-
tams‘ p+=. Tl.n's proves (vii) and our result follows readily from this
For if H C ¥ i8 compact, it can be covered by a finite collection of suc]:;
fxets R so0 that /' (H) lies in a conditionally compact subset of X and thus
18 compact. Whence f is compact. Also, f is monotone, because ()

must reduce t i —1 !
iy 0 K gince fy)CUCTV,(K) and o+ is any positive

5. Notes. (1). As an immediate congequence we have the result that
any seq_uem:e of real continuous monotone non-decreasing functions f,(x)
on the interval (a,‘ s b) which converges on an everywhere dense set incluc,llm
a and b to a function f(x) continuous on (@, b) necessarily converges um‘formlg
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10 f(2) on (a, b)(1). For in this case the convergence at a and b together
with the nature of the image sets ensures the regular convergence requi-
ved in condition (a); and pointwise convergence at an everywhere dense
get on (a,d) implies condition (b) immediately. For a discussion
of further applications of this type reader is referred to the author’s pa-
per [3].

(2) The homeomorphisms: fu(z) =a/n, 0<z<1, fle) =2,
—1<w<0, converge almost uniformly to the mapping: f(z) =20,
0<e<, flo) =2, —1<o<0, and also ¥, converges 0-regularly
to' Y. However, f is neither compact nor monotone.

(3) Examples are readily constructed showing that all conditions
in the theorem may be satistied and yet ¥’ be different from X.

6. Quasi-open mappings. Let X and ¥ be locally connected genera-
lized continua and suppose that for each yeY each component of Y—y
is non-compact. We then have the

TarorEM. Let f,: X — Y be a sequence of quasi-open mappings and
suppose there ewists & mapping f: X — X such that for each wveX and ¢ >0
there is a conditionally compact region R containing  and lying in V, [ (2)]
on the boundary C of which the relation

(++) limsupf,(C) Cs F(0)

holds. Then f,(x) converges almost uniformly to f(x) on X.

To prove this we first repeat the first paragraph of the proof given
in § 4. Then let ¢ = a/2 and let V be a neighborhood of y lyingin V (y)
and so chosen that ¥—V,(y) is contained in the union M of a finite
number of components My, My, ..., M of ¥—V and no two of the sets
M, lie together in the same component of ¥ —y. Then each M; is necessa-
rily non-compact because it contains all points in Y—V,(y) of some
component of ¥—y.

From our hypothesis it follows by continuity of f that there exists
2 conditionally compact region R in X containing x and such that fIR)CV
and such that (+-) holds on the boundary ¢ of R. Since e v,
there exists an integer N such that f,(C)C V for n.> N. However this
implies that f,(R) C V,(y) for n > N. For if not we would have f,(R)-M;
s 0 for some i < k; and sinee f,(B) is compact and thus cannot contain
all of M;, we would have M;Fr[f,(R)] 0. This contradicts relation

(1) The theorem remains true even if we drop the agsumption that the functions
fn () are continuous; see M. Nosarzewska, On uniform convergence in some classes
of fumctions, Fundamenta Mathematicae 39 (1952), p. 38-52, theorem I [Note of the

Editors].
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(*) in § 2 because f,[Fr(R)] = f,(0) and this set lies in V. Accordingly
In(B)C V, (%)

Now for n sufficiently large, say #» > N, > N, we have #,¢R and
Y = (@) e V,(y). However this gives znefkﬂ(R) C V,(y) so that g (yy,, 2,
< 20 = a, contrary to relation (i) (see first paragraph of the proof in
§ 4). Thus the supposition of non-uniform convergence on 4 leads to a con-
tradiction.

7. Conclusion. Since for a real continuous function on the whole
real axis, or on a connected open set of real mumbers, monotoneity of
the function is equivalent to quasi-openness of the mapping generated
by the funetion, the theorem just proven gives at once the result: any
sequence of monotone non-increasing continuous real functions on the whoie
z"eal axis which converges at an everywhere dense set to a function f(x) which
is condinuous for all real , necessarily converges almost uniformly to f(z).

It seems likely, however, that our theorem for quasi-open mappings
may be of greater interest in connection with sequences of functions of
a complex variable or of mappings on surfaces and other more complex
spaces. The setting provided by a closed algebra of complex valued fune-
tions seems of special interest and it is proposed to study this in a later
paper.
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ON A OERTAIN DISTANCE OF SETS
AND THE OORRESPONDING DISTANCE OF FUNCTIONS
BY
E. MARCZEWSKI axp H. STEINHAUS (WROCLAW)

Tt is well known that the measure of the symmetric difference of
two sets can be considered ag a distance of sets (so called distance of
Fréchet-Nikodym-Aronszajn): o(4, B) = u(4-—B). This distance is a
particular case of the distance in the space of Lebesgue integrable

funections.
This paper is devoted to the study of another distance of sets, de-

fined by the formula
nA=B) _ o(4,B)
uw(A+B)  u(A+B)

o(4,B) =

and the corresponding distance of functions.
The distance o seems to be useful in several practical applications
and especially in some biological problems (see n°3 and our paper on

- systematical distance of biotopes [2]).

: 1. SETS

1.1. Metrie g. Let (X, M, ) be a o-finite c-measure space. Let us
denote by M, the class of all sets 4eM with u(4) < oo, and by g, the
well-known distance of sets 4, BeM,:

Qu(-A: B) = u(4—B),

where A—B denotes the symmetric difference of 4 and B.

The index w will be omitted in this case and in other analogous ones,
when no misunderstanding is possible.

Tet us recall the fundamental properties of o (see e.g. [1], p. 168
and 169):

(i) (M, o) is a melric space when we identify any two sets, the sym-
meiric difference of which is of measure u zero.
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