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(*) in § 2 because f,[Fr(R)] = f,(0) and this set lies in V. Accordingly
In(B)C V, (%)

Now for n sufficiently large, say #» > N, > N, we have #,¢R and
Y = (@) e V,(y). However this gives znefkﬂ(R) C V,(y) so that g (yy,, 2,
< 20 = a, contrary to relation (i) (see first paragraph of the proof in
§ 4). Thus the supposition of non-uniform convergence on 4 leads to a con-
tradiction.

7. Conclusion. Since for a real continuous function on the whole
real axis, or on a connected open set of real mumbers, monotoneity of
the function is equivalent to quasi-openness of the mapping generated
by the funetion, the theorem just proven gives at once the result: any
sequence of monotone non-increasing continuous real functions on the whoie
z"eal axis which converges at an everywhere dense set to a function f(x) which
is condinuous for all real , necessarily converges almost uniformly to f(z).

It seems likely, however, that our theorem for quasi-open mappings
may be of greater interest in connection with sequences of functions of
a complex variable or of mappings on surfaces and other more complex
spaces. The setting provided by a closed algebra of complex valued fune-
tions seems of special interest and it is proposed to study this in a later
paper.
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ON A OERTAIN DISTANCE OF SETS
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Tt is well known that the measure of the symmetric difference of
two sets can be considered ag a distance of sets (so called distance of
Fréchet-Nikodym-Aronszajn): o(4, B) = u(4-—B). This distance is a
particular case of the distance in the space of Lebesgue integrable

funections.
This paper is devoted to the study of another distance of sets, de-

fined by the formula
nA=B) _ o(4,B)
uw(A+B)  u(A+B)

o(4,B) =

and the corresponding distance of functions.
The distance o seems to be useful in several practical applications
and especially in some biological problems (see n°3 and our paper on

- systematical distance of biotopes [2]).

: 1. SETS

1.1. Metrie g. Let (X, M, ) be a o-finite c-measure space. Let us
denote by M, the class of all sets 4eM with u(4) < oo, and by g, the
well-known distance of sets 4, BeM,:

Qu(-A: B) = u(4—B),

where A—B denotes the symmetric difference of 4 and B.

The index w will be omitted in this case and in other analogous ones,
when no misunderstanding is possible.

Tet us recall the fundamental properties of o (see e.g. [1], p. 168
and 169):

(i) (M, o) is a melric space when we identify any two sets, the sym-
meiric difference of which is of measure u zero.
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(iiy Nome of the numbers: @(A;+Bi, 4:+Bs), (4B, 43B,),
0(43—By, A;—Bj), 0(4;~By, 4,~B;) surpasses e(41, 43)+ o(By, By).
None of the numbers |u(A;)—p(d,)| end o(X—A4,, X—A,) surpasses
o(4y, 4,).

In other words, all set-theoretical finite operations and the real
function u are Lipschitzian (with coefficients 1) in (M,, ¢). Thus, we can
state a fortiori that

(i) The finite set-theovetical operations are continuous in (M, p).

(iv) u 18 a real function continuous in (M,, o).

Following proposition is important:

(v) Bwery sequence of sets A; e M, , fundamental with respect to o, containg
a subsequence Ay, such that

4 (im gup Akj-—— ]imian,,y.) =0
i 1

(where limsup and Lmint are to be read in the set-theoretical semse).
(vi) If
A4, =liminfd,;, A*=limgsupd,
i i
and

p(A*—4,) =0,
then

Hfle(ﬁf, 4,) = 0 =limo(4y, 4%).
7

It results easily from (v) and (vi) that
(vil) The metric space (M,, o) is complete.

1.2. Metric 0. Let us define a new distance of sets belonging to M,:

mA=B)
0,4, B) ={ p(4+B)

0 if

u(4+B)> 0,
u(d+B) = 0.

(i) (M, o) is a metric space (when we identify any two sets, the symmetric
difference of which is of measure u zero).

It follows directly, from the definition that (4, B) = 0 if and only
if 4y(A-B) =0, and that ¢ is symmetric.
In order to prove that

o(4, B)+0(B,0) > ¢(4, C)
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let us denote by a, a”, 8, ', ¥, »* and & the values of u for the atoms

of 4,B and C:

Then, the inequality in question may be written as follows:

atd

BB +y+y et ytyt
ata*+p+p +y" +5

BB +y+y Ha 48 T atd tydy H B8

After reducing the fractions above to a common denominator and ordering
the terms according to the powers of 4, we have only to prove an inequality
of the form

. P8+QO+R > p&+qd+r.

An easy verification gives P = p, @ >¢q and R =7, and, since
6 > 0, the inequality is proved.

It follows easily from the definition of ¢ that

() o(4,B) <1 for A,BeM,, and o(4d,B) =1 if and only if
u(AB) =0 and u(4A+B) > 0.

In particular

(iil) If p(d) =0 and u(B)> 0, then o(4d,B) =1.

Therefore the empty set (with all sets of measure u zero) forms an
isolated point of the space (M,, o).

Thus the identity transformation of (M,, ¢) onto (M,, ¢) is not
homeomorphic for some measures. Nevertheless, we shall prove that
the empty set is a unique discontinuity point of this mapping:

Colloquium Mathematicum VI. 21
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(v) If A<M, and A;eMy for j=1,2,..., then the relation

() limo(4;, A) =0
7

implies

8 limg(dy, 4) =0

and if, moreover, u(A) > 0, then (B) implies ().

Since
u(4;~—4) p(d;4) . w(d)
. == _ 1'—‘ > J._‘
ol A) = a5 WAy 4 WA T4y

the relation («) implies u(4-+4;) — u(A4) and consequently the sequence
u(A+4,;) is bounded: 0 < u(A+4;) < @, whence

_ o(4y, 4) o(4y, 4)
oM =T . 2
Thus («) implies (B).
Since
o(d;, 4) Q(A:HA)
o A) = < ,
A=A ST e

the relations p(4) > 0 and (8) imply («). Theorem (iv)
Let us prove now the following lemma:
(v) If A; form a fundamenial sequence with respect to o and if u(4;) <0,
then there are posttive numbers a and b such that & < u(4;) <b (j=1,2,...).
It suffices to prove that the relations u(4;) -0 and u(d;) — oo
are imposkible.
‘We have for every fixed positive integer j,

is thus proved.

AGIEDE
w(d;+Ayz)
It ]ifm,u(A,) =0, then limu(d;4;) = 0, and Umpu(d;+4;) = u(dy),
7 7 :
whence, by (),
(#+)

(#) o(dg, Ag)) = 1—

limg(4,, Afo) =1.
;
If imp(4;) = co, then
7

I (AJ' Aio) “ (A:ia)
p(di+A45) ~ pl4+4,)

whence, in view of (%), we obtain (xx) again.

-0,
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But formula (#*) contradicts the hypothesis that 4; form a sequence
fundamental with respect to o.

Lemma (v) implies

(vi) The space (M,, o) is complete.

In fact, if 4; is a fundamental sequence in (M,, o), then, by (v),
4; s fundamental in (M,, g). By 1.1(vii) there exists such an 4 e M that

(AJ,A)~>0 whenee, by 1.1(iv), u(4d;)— u(4). It follows from (v)
that u(4) >0, whence, in view of (iv), o(4;,4)—> 0, g.e. d.

Let us denote by M, the class of all sets 4 e M with 0 < u(d) < oo,
Propositions (iv), 1.1 (ili), and 1.1 (iv) imply the continuity of finite
set-theoretical operations and of w in (M, ¢). It is worth noticing that,
moreover, these operations are Lipschitzian (with coefficients 1):

(vii) o(dy+By, 424Bs) < o(4,, As)+a(By, By).

In the case u(d;+4,) # 0 # u (By+B,) it follows from 1.1 (ii) that

o(A;+By, 4,4 B,) o(4y, A5)+ o(By, Bs)
A,+B;, A,+B,) = =
olditBy, A 4-By) w(Ad,+B,+4,+B,) u(d+B+4,+B;)
o(4dy, ds) 0(By, B,)
B, B
w(A,+4,) u(B 1TB) o(dy, As)+ o 15 Ba)-

In the case u(d;+4,) =0 (and, analogously, if u(B;+B,) = 0)
we have o(A;+4B;, 4,+B;) = o(B;, B,) and o(4,, 4;) = 0. Thus (vii)
is proved.

By arguments analogous to the first part of the preceding proof,
we get

viil) If u(41B;) # 0 # p(4,B
(A4, By, 4:B,) < o(dq, 45)+ (B, B,).
(ix) If p(d,—By) 5£ 0 £ pu(Ad,—By), then
o(d;—B;, 4,—B,) < o(4,, A,)+ o(By, By).

a), then

. PUNCTIONS

2.1. Metric . Let us denote by ., the class of all u-integrable real
functions (defined on X) and by o, the we]l»known distance (cf. e. g. [1],
p. 98) of functions belonging to £2,:

= [if(@)— g(=)|dp(x)

(where the integral is extended over X). Obviously

0.t 9)
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(1) (Lo, 0) @5 @ metric space (when we identify any hwo functions which
are equal p-almost everywhere).

It is well-known that the distance p of sets may be treated as a
special case of the distance ¢ of functions. Namely, it y, denotes the
characteristic funetion of the set 4, we have the following obvious re-
lation:

(ii) @p(-Ay B) = 9;4(%11: xp) for A, BeM,.

It is possible to formulate also a converse relation, which permits
o say that the distance of functions is, in a certain sense, a case of the
distance of sets.

To this purpose, let us denote by ¥ the real axis, by N the smallest
o-field of sets containing as elements all sets of the form 4 x B, where
AeM and B is Lebesgue measurable. Let » be a ¢-measure in N, which
is the direct product of u and of the Lebesgue measure in Y.

V% .TT-"TT""T

Next, denote by C; for fe2, the set of points lying in X x ¥ between
the graph of f and the X-axis:
O ={(m,y): X, and 0 <y < f(2) or f(w) <y < 0}.

Then

(i) eu(f) 9) = 0,(Cy, ) for f,geL2,.
“In fact, the intersection of (40, by every vertical line » = @, is
an interval of length [f(x)—g(®,)|, Whence, by the theorem of Fubini,

[ @ —g(@)ap(@) = »(0;-0,).
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2.2, Metric ¢. We define the metric o, in 2, as follows:

[l @) —g(@)|du(s)
Jmax([f ()], 1g()], If (@) — g ()]) dpe ()

and o,(f,g) =0 if f(x) =0 = g(z) p-almost everywhere.

Let us remark that the number max(|al, [b], |6—b]) has a simple
geometrical meaning: it i3 .the length of the shortest closed interval
containing the points: 0, @, and b.

In the case of non-negative functions the definition of o, admits of
a simpler form:

ou(f 9) =

J1H(@)— g (@) du (@)
fmax (I @)1, lg @) du(w) *
Let us prove now two propositions analogous to 2.1 (ii) and 2.1 (iii).
@) o,(4, B) = 0,(x4, 28)-

o.(f, 9)

In fact
u(4=B) = [ |ya(®)—y5(@) du(e),
#(A+B) = [max(z.(o), £p(@)dp(z).
(i) o,(f,9) = 0,(Cs, Cp).
The mtersectlon of C;4C, by the vertical line » = w, is an interval
of length

max(]f(mo)l, 19 (@)l !f(mo)“g(%)]):

whence, by the theorem of Fubini,
Jmax(|f (@), lg(@)], [f@)—g(@))) dp(@) = »(Cr+0,).

Consequently, in view of 2.1 (iii), formula (ii) is proved.

Theorem (ii) permits to reduce problems on the distance between
functions to the analogous problems on sets. First of all, the triangle
property of functions results from the same property of sets (1.2 (ii)).
Therefore:

(iil) (L2,,0,) is a metric space (when we identify any two functions
equal u-almost everywhere).

It follows directly from 1.2 (iv), 2.1 (iil) and 2.2 (ii) that, in .2,, the
convergences with respect to g, and o, to a function f essentially different
from zero are equivalent:

(iv) If f,fiel, for j =1,2,... and u(Cy) > 0, then ]iI;lgF(f,-, =0

if and only if ]i;na,‘(f,, f) = 0.
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Denote now by N, the class of all sets He N with »(H) < co and by C
the class of all sets of the form O, where fe.2,. We shall prove that

(iv) The set C is closed in the space (Ny, o,).

Suppose that a sequence A; = 0y, is convergent with respect to ¢”
to a set 4. It is to prove that there is a funetion f such that
»(A-+C;) = 0. We may assume of course »(4) > 0..

On account of 1.2 (iv) limg;(A,v,A) ='0. Then, by 1.1 (v), there

exists a sﬂ)sequenee Ay = 0”‘7‘ such that
v(limjsupA;aj—limfianhj) = 0.
Putting f(2) = limjsup fki(m) we easily get
]imiin_fAkj C 0 C limjsupAkj,

whence, by 1.1 (vi), limg,(4;, C) = 0, and consequently »(4d-=0C)) = 0,
q.e. d. !
Propositions (iv), (ii) and 1.2 (vi) (applied to the measure ») imply
(v) The space (L,, 0,) is complete.

3. BIOTOPES

An especially simple cagse of o aviges if the space X containg only
a finite number of elements {a,b,c¢,...,%k}, M being the class of all
subsets of X and x(F) the number of elements of E. Then the integration
in the formulae of the preceding section reduces to the ordinary addition.

The distance o pertaining o the case above may be applied e. g.
in the study of biotopes, where it can be employed as a quantitative
characteristic of the qualitative difference of two biotopes.

For ingtance, to characterize numerically the difference of two forests
2 and B we may proceed as follows: we consider the set A of all species
growing in 2, and the set B of all species growing in B; the distance
o(4, B) will be the characteristic sought for. If there are no species
common to 2 and B, the distance will assume its greatest value: it will
be equal to 1; if the forests are identical as to the species they contain,
the distance will assume its smallest value, which is 0.

If we were interested not only which species can be found in the
forests but also, how often they appear, we would take instead of A and B
functions defined in 4 4-B: function f may be the quantitative character-
istic of the species growing in 2[, function g the analogous characteristic
for B. The distance o(f, g) will now be the quantitative characteristic
of the biotopical difference between the two forests considered.
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Let us take, for instance, two real forests of Lower Silesia: In 2[ we
have red pines (a), oaks (b), birches (c), and alders (d); in B oaks, birches,
alders and black pines (e). We can symbolize by 1 the presence and by 0
the absence of a species in a forest, which leads to the following table:

a b ¢ d e p
A 11110
B o1 1 1 1
A=B (1 0 0 0 1§ 2
A+B |1 1 1 1 1} B

We easily read that u(4-+~B) =2, u(4+B)=>5, thus p(4, B) = 2/5.
The same two forests give another table if frequencies of the species
are taken into account:

a b e d e I
7 4 2 3 1 0
g 021 2 5
lf—gl |4 0 2 1 5] 12
max(f,g)| 4 2 3 2 5| 18
Thus of(f, g) = 3/4.
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