

COLLOQUIUM MATHEMATICUM

VOL. VI

DÉDIÉ À M. CASIMIR KURATOWSKI

95

ON ORBITS OF HOMEOMORPHISMS

BY

S. KINOSHITA (OSAKA)

Let X be a metric space and f a continuous mapping of X into itself. Consider the positive half-orbit

$$O_{+}(x, f) = \{f(x), f^{2}(x), \dots, f^{n}(x), \dots\}$$

for each $x \in X$ and put

$$P_{+}(f) = \{x | \overline{O_{+}(x, f)} = X\}, \quad Q_{+}(f) = X - P_{+}(f).$$

If X is a circumference of a circle, then there exists a homeomorphism h of X onto itself such that $P_+(h)=X$. If h is a homeomorphism of the Euclidean plane E^2 onto itself, then the sets $P_+(h)$ and $Q_+(h)$ can be more complicated. For instance A. S. Besicovitch [1] gave a homeomorphism h of E^2 onto itself such that $P_+(h)\neq 0$ and, of course, $Q_+(h)\neq 0$. His type of homeomorphisms has also been studied in [2], [3]. On the other hand the author proved with T. Homma [5] that if X is a locally compact, non compact metric space, then $Q_+(f)$ is dense in X for every continuous mapping f (see also [3], p. 202).

In this paper assuming X to be compact, we shall deal with the sets $P_+(f)$ and $Q_+(f)$ more systematically. In fact we shall prove the following

THEOREM 1. Let X be a compact metric space and f a continuous mapping of X into itself. If $P_+(f) \neq 0$, then $P_+(f)$ is a dense G_{δ} set.

THEOREM 2. Let X be a compact metric space and f a continuous mapping of X into itself. If $Q_+(f) \neq 0$, then $Q_+(f)$ is a dense F_{δ} set.

An immediate consequence of Theorem 2 is the following

COROLLARY 1. Let X be a compact metric space and f a continuous mapping of X into itself. If f has at least one fixed point, then $Q_+(f)$ is a dense F_A set.

Further

COROLLARY 2. If h be a homeomorphism of an n-dimensional Euclidean space E^n onto itself, then $Q_+(h)$ is a dense F_{δ} set (see [5], p. 371).

Colloquium Mathematicum VI

Furthermore if h is a homeomorphism of X onto itself, then we can define the negative half-orbit $O_{-}(x,h)$ and the whole orbit O(x,h) as follows:

$$O_{-}(x, h) = O_{+}(x, h^{-1})$$
 and $O(x, h) = \sum_{m=0}^{\pm \infty} h^{m}(x)$.

Now put $P_{-}(h) = P_{+}(h^{-1})$ and $Q_{-}(h) = Q_{+}(h^{-1})$. Furthermore put $P(h) = P_{+}(h) \cdot P_{-}(h)$ and $Q(h) = \{x | \overline{O(x,h)} \neq X\}$. Then we shall prove the following

THEOREM 3. Let X be a compact metric space and h a homeomorphism of X onto itself. If $P_+(h) \neq 0$, then P(h) is a dense G_{δ} set.

THEOREM 4. Let X be a compact metric space and h a homeomorphism of X onto itself. If $Q_+(h) \neq 0$, then $Q(h) \neq 0$.

An immediate consequence of Theorem 4 is

COROLLARY 3. Let X be a compact metric space and h a homeomorphism of X onto itself. If $Q_+(h) \neq 0$, then $Q_+(h) \cdot Q_-(h) \neq 0$.

1. Hereafter we shall always assume that X is a compact metric space. Let f be a continuous mapping of X into itself. A subset Y of X is said to be ε -dense in X, if for each $x \in X$ there exists a $y \in Y$ such that $d(x,y) < \varepsilon$ (1). In other words Y is ε -dense in X if and only if $\{U(y,\varepsilon)\}_{y\in Y}$ (2) is an open covering of X. Then a subset $P_{+}(\varepsilon, f)$ of X is defined as follows: A point $x \in X$ is contained in $P_+(\varepsilon, f)$ if and only if $O_+(x, f)$ is ε -dense in X.

LEMMA 1. If $x \in P_{\perp}(\varepsilon, f)$, then there exists a natural number N such that $\sum_{n=1}^{\infty} f^n(x)$ is ε -dense in X.

Proof. This follows immediately from the compactness of X.

LEMMA 2. $P_{+}(\varepsilon, t)$ is an open subset of X.

Proof. If $P_{+}(\varepsilon, f)$ is empty, then our lemma is obvious. Now let $x \in P_+(\varepsilon, f)$ and suppose by Lemma 1 that $\sum_{n=1}^f f^n(x)$ is ε -dense in X. Put

 $Y = \sum_{n=1}^{\infty} f^n(x)$. Then d(x, Y) is a continuous real-valued function on X. Since X is compact.

$$c = \max_{x \in X} d(x, Y)$$

exists and $0 \leqslant c < \varepsilon$. Put $\varepsilon - c = d$. If δ is a sufficiently small positive number, then for each $y \in U(x, \delta)$ all $d(f(x), f(y)), d(f^2(x), f^2(y)), \dots$

 $d(f^N(x), f^N(y))$ are smaller than d. Now we are only to prove that $y \in P_{+}(\varepsilon, f)$. If $z \in X$, then there exists an n_0 $(1 \leq n_0 \leq N)$ such that, $d(z, f^{n_0}(x)) \leq c$. Therefore

$$d(z, f^{n_0}(y)) \leq d(z, f^{n_0}(x)) + d(f^{n_0}(x), f^{n_0}(y)) < c + d = \varepsilon.$$

Thus our proof is complete.

LEMMA 3. $P_{\perp}(f)$ is a G_{Λ} set.

Proof. It is easy to see that

$$P_{+}(f) = \prod_{n=1}^{\infty} P_{+}\left(\frac{1}{n}, f\right).$$

Then our statement is obvious by Lemma 2.

LEMMA 4. If $x \in P_{\perp}(f)$, then $f(x) \in P_{\perp}(f)$. Proof. Since

$$X = \overline{O_+(x,f)} = \overline{f(x) + O_+(f(x),f)} = f(x) + \overline{O_+(f(x),f)},$$

we are only to prove that $f(x) \in \overline{O_+(f(x), f)}$. From $x \in \overline{O_+(x, f)}$ it follows

$$f(x) \in f(O_+(x, f)) \subset \overline{f(O_+(x, f))} = O_+(f(x), f).$$

Thus the proof is complete.

Proof of Theorem 1. From Lemma 4 it follows that if $x \in P_{\perp}(f)$, then $O_{+}(x,f) \subset P_{+}(f)$. Since $X = \overline{O_{+}(x,f)} \subset \overline{P_{+}(f)}$, our statement is obvious by Lemma 3.

2. Proof of Theorem 2. It is trivial by definition that $Q_{\perp}(f)$ is an F_{α} set. Now let A be an open non-empty subset of X such that \overline{A} is compact. Since X is compact, we are only to prove that $\bar{A}Q_{+}(f)\neq 0$. Consider the sequence \overline{A} , $f(\overline{A}), \ldots, f^n(\overline{A}), \ldots$

First suppose that there exists a natural number N such that

$$f^{N+1}(\overline{A}) \subset \sum_{n=0}^{N} f^n(\overline{A}).$$

Since $\sum_{n=0}^{N} f^{n}(\bar{A})$ is compact, if $\sum_{n=0}^{N} f^{n}(\bar{A}) \neq X$, then $\bar{A} \subset Q_{+}(f)$. Therefore our theorem is obvious. If $\sum_{n=0}^{\infty} f^n(\overline{A}) = X$, then there exists a point $x \in \overline{A}$ such that $f^{n_0}(x) \in Q_+(f)$ for some n_0 $(0 \le n_0 \le N)$. Then $x \in Q_+(f)$ by Lemma 4 and the proof of the first case is complete.

⁽¹⁾ d(x, y) means the distance from x to y.

⁽²⁾ $U(y, \varepsilon) = \{x | d(x, y) < \varepsilon\}.$

Now suppose that for each n

$$f^{n+1}(\overline{A}) \subset \sum_{i=0}^n f^i(\overline{A}).$$

Then the sequence $\{f^n(\overline{A})\}$ is said to be a bulging sequence and it is proved that there exists a point $x \in \overline{A}$ such that $f^n(x) \in A$ for every n $(n \ge 1)$ (see [5], § 1). Then $x \in Q_+(f)$, and the proof of our theorem is complete.

3. Now let h be a homeomorphism of X onto itself. Put

$$P_{-}(\varepsilon, h) = P_{+}(\varepsilon, h^{-1}).$$

LEMMA 5. If $P_{+}(h) \neq 0$, then $P_{-}(h)$ is a dense G_{δ} set.

Proof. First we shall prove that $P_{-}(\varepsilon,h)$ is dense in X for every $\varepsilon > 0$. Let $x \in P_{+}(h)$. Then by Lemma 1 there exists a natural number N such that $\sum_{n=1}^{N} h^{n}(x)$ is ε -dense in X. Then all $h^{N+n}(x)$ are contained in $P_{-}(\varepsilon,h)$ for every $n \ (\geqslant 1)$. On the other hand, since $x \in P_{+}(h)$, $h^{N}(x) \in P_{+}(h)$ by Lemma 4. Then $\sum_{n=1}^{\infty} h^{N+n}(x)$ is dense in X. Therefore $P_{-}(\varepsilon,h)$ is dense in X.

Then from Lemma 2 it follows that $P_{-}(\varepsilon, h)$ is a dense open subset of X. Since

$$P_{-}(h) = \prod_{n=1}^{\infty} P_{-}\left(\frac{1}{n}, h\right),$$

 $P_{-}(h)$ is a dense G_{h} set, and the proof is complete.

Proof of Theorem 3. Since $P_+(h)$ and $P_-(h)$ are dense G_δ sets and $P(h) = P_+(h) \cdot P_-(h)$, our statement is obvious.

4. Proof of Theorem 4. Let $x \in Q_+(h)$. By definition

$$\sum_{n=1}^{\infty} h^n(x) \neq X.$$

Consider the sequence $\{h^n(x)\}$. Since X is compact, there exists a point y such that y is one of the limit points of $\{h^n(x)\}$. Then there exists a subsequence $\{h^{n_i}(x)\}$ of $\{h^n(x)\}$ which converges to y.

Now we prove that $y \in Q(h)$. Let m be an integer. Then the sequence $\{h^{m+n_i}(x)\}$ converges to $h^m(y)$ for every m. Therefore

$$h^m(y) \in \sum_{n=1}^{\infty} h^n(x)$$
 for every m .

Thus we have proved that $\sum_{m=0}^{\pm\infty}h^m(y)\subset\sum_{n=1}^{\infty}h^n(x)$. Since $\sum_{n=1}^{\infty}h^n(x)\neq X$, our proof is complete.

REFERENCES

[1] A. S. Besicovitch, A problem on topological transformations of the plane, Fundamenta Mathematicae 28 (1937), p. 61-65.

[2] — A problem on topological transformations of the plane II, Proceedings of the Cambridge Philosophical Society 47 (1951), p. 38-45.

[3] G. D. Birkhoff, Dynamical systems, American Mathematical Society Colloquium Publications 9, New York 1927.

[4] G. D. Hedlund, A class of transformations of the plane, Proceedings of the Cambridge Philosophical Society 51 (1955), p. 554-564.

[5] T. Homma and S. Kinoshita, On the regularity of homeomorphisms of E^n , Journal of the Mathematical Society of Japan 5 (1953), p. 365-371.

DEPARTMENT OF MATHEMATICS, OSAKA UNIVERSITY

Reçu par la Rédaction le 15.10.1958