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Let X be a metric space and f a continuous mapping of X into
itself. Consider the positive half-orbit

) O+(m;f)={f(‘”)7f2(m)a;fn("v);}
for each <X and put

Po() =1{al0s(@, /) = X}, Qi () = X—P.()).

If X is a circumference of a circle, then there exists a homeomorphism
h of X onto itself such that P, (k) = X. If h is a homeomorphism of the
Euclidean plane E* onto itself, then the sets P, (k) and @, (k) can be
more complicated. For instance A. 8. Besicovitch [1] gave a homeomor-
phism & of E* onto itself sueh that P, (k) # 0 and, of course, @ ~(B) #0.
His type of homeomorphisms has also been studied in [2], [3]. On the
other hand the author proved with T. Homma [5] that if X is a locally
compact, non compact metric space, then @, (f) is dense in X for every
continuous mapping f (see also [3], p. 202).

In this paper assuming X to be compact, we shall deal with the
sets P, (f) and @, (f) more systematically. In fact we shall prove the
following

TemoREM 1. Let X be a compact metric space and | a continuous mapping
of X into idtself. If P, (f) 5 ), then P, (f) is a dense Gy set.

TeaworEM 2. Let X be a compact metric space and f a continuous
mapping of X into dtself. If Q. (f) # 0, then Q. (f) i3 a dense Fj; set.

An immediate consequence of Theorem 2 ig the following

CoroLLARY 1. Let X be a compact metric space and f a continuous
mapping of X into itself. If f has at least one fized point, then @ (f) is a dense
F, sel.

Further o

COROLLARY 2. If h be a homeomorphism of an n-dimensional Buclidean
space E" onto dtself, then @ (k) is a dense Fy set (see [5], p. 871).
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50 S. KINOSHITA

Furthermore if h is a homeomorphism of X onto itself, then we can
define the negative half-orbit O_(z, k) and the whole orbit O(xz, k) as

follows:
400
By = > W)

M=

O_(x,h) =0, (%, ") and

Now put P_(h) =P (A7) and Q_(h) = Q+(h"). Furthermore put
P(h) =P, (h)-P_(h) and Q(h) = {x|0(x, h) # X}. Then we shall prove
the following

TamorEM 3. Let X be a compact metric space and h a homeomorphism
of X onto itself. If P _(h) 0, then P(h) is a dense Gy set.

TarorREM 4. Let X be a compact metric space and h a homeomorphism
of X onto dtself. If Q. (h) =0, then Q(h) # 0.

An immediate consequence of Theorem 4 is

COROLLARY 3. Let X ba a compact metric space and h a homeomorphism
of X onto itself. If Q. (h) # 0, then @ (h)-Q_(h) # 0.

1. Hereafter we shall always assume that X is a compact metric
space. Let f be a continuous mapping of X into itself. A subset ¥ of X
is said to be e-dense in X, if for each 2 X there exists a y<¥ such that

(#,4) <e(*).In other words Y is e-dense in X if and only if {U (¥, &)},er (2)
is an open covermg of X. Then a subset P (e, f) of X is defined as follows:
A point #eX is contained in P, (e, f) if and only if O (@, f) is e-dense in X.

L;raMMA L. If xeP, (e, ), then there ewists a natural number N such

that > {*(®) is e-dense in X.
n=1

Proof. This follows immediately from the compactness of X.

LeMwA 2. P, (e, ) is an open subset of X.

Proof. If P, (s, /) is empty, then our lemma is obvious. Now let
N

»eP,(e,f) and suppose by Lemma 1 that Y'/(x) is s-dense in X. Put

N=1
N
T - 3re
Since X is compact,

. Then d(z, Y¥) is a continuous real-valued function on X,

¢ = maxd(x, ¥)
zeX

exists and 0 < e <e Pub s~c =d. If 8 is a sufficiently small positive
number, then for each yeU(x,d) all d(f(x),/(®), d(f (=), 12(y),...

(*} d{w, y) moans the distance from @ to Y.
() Uly, &) = {old{z, y) < ¢}.
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a(f¥ (z), ¥ (y)) are smaller than d. Now we are only to prove that
yeP, (e, f). If zeX, then there exists an #u, (1 <7, <XN) such that,
a2, ™ (#)) < 6. Therefore N '
afz, () < d(z, (@) +d((@), (y)
Thus our proof is complete.
Lemma 3. P.(f) i a G4 set.
Preoof. It is easy to see that

0 =[] (1)

Then our statement is obvious by Lemma 2.

Levma 4. If weP, (f), then f(x)eP, (f).
Proof. Since

)<c+d=£.

X =0, /) =f@+0,(f@), /) =

we are only to prove that f(x)eO., (f(z),f). From ze0, (z,) it follows
that

1@+ 0. (@), ),

H@)ef (0, (=, 1)) CF{O4 (2, ) = O, (f(2), f).

Thus the proof is complete.

Proof of Theorem 1. From Lemma 4 it follows that if <P (f),
then O, (z,f) CP,(f). Since X = O, (z,f) CP,(f), our statement is
obvious by Lemma 3. :

2. Proof of Theorem 2. It is trivial by definition that Q+(f2 is
an F, set. Now let A be an open non-empty subset of X such that 4 is
compact. Since X is compact, we are only to prove that 4@, (f)# 0.

Consider the sequence 4, f(4), ..., *(d),..
Tirst suppose that there exists a natural number N such that

N
A C D) MA)

N=0

Since 2 f"(4) is compact, if Z'f

=0
fore our theorem is obvious. If Z f*(4d) = X, then there exists a point

2ed such that f™(z)eQ, (f) for some 7y (0 < my << N). Then zeQ.(f) by
Lemma 4 and the proof of the first case is complete.

A)+ X, then A4 C@Q,(f). There-
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“ Now suppose that for each #
n |~1 Cl: j

Then ‘the sequence { fr(A)} is said to be a bulgi‘ng sequence and it is
proved that there exists a point wed such that f"(z)sA for every n
(n 3= 1) (see [6], § 1). Then 2@, (), and. the proof of our theorem iy com-
plete.

3. Now let 7 be a homeomorph]sm of X onto itself. Put
P_(e,h) =P, (e, h7).
Levva 5. If P,(h) =0, then P_(h) is o dense Gy set.

Proof. First we shall prove that P_(s, h) is denge in X for évery
&> 0. Let 2P, (k). Then by Lemmal there exists a natural number N
N

such that }'A"(z) is e-dense in X. Then all BV () are contained in
n=1 N .

P_(e, k) for every n (=1). On the other hand, since xeP,. (), B~ (@) eP +(

by Lemma 4. Then g‘hN‘”‘(w) is. demse in X. Therefore P_(c, k) is
n=1

denge in X.

Then from Lemma. 2 it follows that P_(e, b) is a dense open subset

of X. Since
< 1
h) = P_{—,h
, P (b g ;_(n, )
P_(h) is a dense G, set, and the proof is complete.
. . Proof of Theorem 3. Since P, (h) and P_(h) are dense @, sets
‘and P(h) = P (h)-P_(h), our statement-is obvious.

4 4 Proof of Theorem 4. Let @, (k). By definition

D M@ ~ X
=l
Congider the sequence {h"(w)}.~ Sinee X iy compact, there exists
a point 4 such that y is one of the limit points of {A"(z)}. Then there
_exists a subsequence {k"™ (x)} of {A"(x)} which converges to y.
Now we prove that y <@ (k). Let m be an integer. Then the sequence
{R™*+"i(z)} converges to. k™ (y) for every m. Therefors

G ) 3 HMw)  for every m.
. v S P O
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Thus we have proved that Z’h”‘ y) C Z‘h’”(m) Since Zh“ ) # X,

our proof is complete.
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