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some G, or Hy oy Oyt More generally, how do the entire hierarchies compare
for different initial classes with specified mode of generation (or in other
terms, for different ways of gemerating a class from an assumed funetion,
which is Aba O for the lowest class)? In particular, how much smuller a class
than the primitive recursive funciions -can one start with and get thé same
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LOCAL ORIENTABILITY
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R. L. WILDER (ANN ARBOR, MICH.)

It is the purpose of this paper* 1° to clarify and extend the notion
of local orientability which was defined on p. 281-282 of my book [7], and
2° to apply the results obtained to establish a definition of orientability
for an n-dimensional generalized manifold (== n-gm) which is the exact
analogue of the Poincaré definition (*).

It is hoped that these results will contribute to the solutions of
a number of unsolved problems concerning manifolds (see, for example,

171, p- 382-383, problems 4.1, 4.5).

1. Some basic lemmas. For the proofs given below it is necessary
to have the following definitions and lemmag, which are inserted at this
point for convenience of reference.

1.1. LuemMA. In an n-dimensional space S, if P is an open set with
compact closure, and " is a cycle mod S —P, then there exists a minimal
closed (rel. P) subset ' of P such that y™ is carried by I (S—P).

Proof. The portion of " on P is a cycle Z" mod F(P) on P.As P
is compact, there exists by [7], p. 205-6, Lemma 2.3, & minimal closed
subset 7' of P that contains F(P) such that Z" ~ 0 mod F'; and by [7],
p. 206, Lemma 2.6, F isunique and a closed carrier of Z*. Let F = F'~ P.
Since " ~ Z" mod §—P, the lemma follows.

1.2. LeMMA. If 8 is an n-dimensional locally compact space, then every
infinite cycle I'™ of 8 has a unique minimal closed carrier.

* Prosontod to the Amorican Mathomatical Society November 26, 1949, and
subsequontly augmented and revised. Rescarch on this papor was done under
Contract N 90 nr-89300 with the Offico of Naval Resoarch, and National Science
Foundation Grant G-2783.

Torminology and notation are that of my book [7].

(') This dofinition states that an n-manifold, without boundary, Whose elements
aro otiented %-colls (k' = 0, 1,,..,n) is orientablo if overy “closed chain‘ of colls

-1 n : : n n g -
1’07(1) » um), s Uf(m)’ ”;L(m+1)’ ;‘(m+l), ves 3’}:%‘ in which "k(m) and Fms1y 3¥6 OP

positely related to "1(m-.-1) had +u‘ as .,,end” element. See '[6], §8.
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Proof. If I'™ is on a compact subset of S, then the lemma follows
from [7], p. 206, Lemma 2.6, If I'™ is not on a compact set, let us com-
pactify 8 by the addition of a single ideal point p*; let 8% = §up”.
Then there is & cycle mod p* of §*; which we eall 7™, such that ™ ~ ™
mod p* (2).

By Lemma 1.1, there exists a minimal closed (rel. S) subset F of §
such that ™" is carried by F v p*. Since § is #-dimensional, we may assume
that I™ ~ I’ mod p* implies I™* = I'" mod p". It follows that F' is a mi-
nimal closed carrier of I'™.

1.3. Definition. If # is a point of a space § such that p,(z) = 1(3)
then a canonical pair P, @ of neighborhoods of x (rel. n and the local Beiti
number) (ef. [7], p.192, 6.11) together with a compact cocycle Z, in @
such that Z, ~ 0 in P will be called a canonical triad of x and will be
denoted by the symbol (z; P, @, Z,,).

1.4. LEMMA. If a locally compact space 8 is lec at z ¢ S, and pu(S, 2) =1,
then there exists a canonical triad (x; P, Q, Z,) such that P and @ are arbi-
trarily small connected sets and P D Q.

2. The wn-gm; orientable and locally orientable. By an #s-gm
(= n-dimensional generalized manifold) we shall mean a space S
satisfying the following axioms:

(1) 8 is a locally compact Hausdorff space.

(2) § is of dimension n (in the Lebesgue sense).

(8) For every z¢ 8, pi{z) =0 for 4 =1,...,n—1.

(4) For every ze 8, py(z) = 1.

() If 7 is a proper closed subset of S8, then every infinite n-cycle
on F bounds on §; or, which is equivalentin the presence of (1), ™ (F) = 0.

(6) 8 is connected.

We shall denote the system of axioms (1)-(6) by 3 (*).

If an n-gm is compact, we call it an n-gem (= n-dimensional genera-
lized closed manifold). If it carries a non-bounding n-cycle (compact
or infinite), we call it orientable.

Definition. An n-gm § is called locally orientable if & 8 implies
the existence of an open set U(z) such that U(z) is an ovientable n-gm,
‘(compare [7], p. 281, 6.1).

. (*) As was suggested in [7], p. 246, footnote!), such cyclos as I'™ could bo usod
to replace the infinite cycles used in [7]. H. Cartan stlidied groups based on such
cycles in [2].

] (*) By p™(), pa(z) wo donoto local Betti and local co-Bntti numbors at (soo [7],
- 190, 6.6). If it is desired to designate the space involved, we use thoe symbols
™S, ), ralS, 2).

(%) It will be ohserved that 2, incorporates Axioms A, B and C on pago 244
of [7] and Axiom D’ on page 254 of [7]. '
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Remark. Obviously every orientable n-gm is locally orientable.

2.1. LEMMA. Let P be a non-emply open subset of an n-gm 8. Then the
injection mapping jp of O"(8) in H™(P) is an isomorphism into; and conse-
quently if S is orientable, H"(P) # 0.

Proof. The sequence

> 9S—P) 3 98 B 5(P) >

is exact. By Axiom (B) of Y, 4, H"(8—P) = 0.

2.2, TumorEM. If P is a connected open subset of an orieniable n-gm S,
then P is an orientable n-gm.

Proof. By Lemma 2.1, if P is an n-gm then it is an orientable n-gm.
Tvidently P satisties Axioms (1)-(4) and (6) of Dy 80 that we need only
prove Axiom (5) for P. Let F be a closed (rel. P) proper subset of P and
suppose H"(F) # 0. By Lemma 1.2 we may assume F to be the closed
minimal carrier of a cycle I™ of some non-zero element of H™(F). Let 2™
be a fundamental cycle of § and let p ¢ B ~ (P—F). By Axiom (4) of
Zn there exist neighborhoods V and W of p such thet P DV DO W and
p"(p; V, W) = 1. Hence there exists a relation al™ ~ bZ" modS—W.
But @ s~ 0, since the contrary would imply Z" homologous to a cycle
on a proper closed subset (S—W) of § and thus ~ 0 on § by Axiom (5).
But then b = 0, else a similar conclusion follows (for W—F = 0). Hence
I'" ~0mod S—W. But on a cofinal family of n-dimensional coverings
this implies ™ = 0 in W and P not a minimal carrier of I™.

2.2a. COROLLARY. Hach point of a locally orientable n-gm S is con-
tained in arbitrarily small open sets that are orieniable n-gms.

(Recall that by [7], p. 244, 1.1, an n-gm is locally connected.)

2.3. THEOREM. A mnecessary and sufficient condition that an n-gm S
be locally orientable is that if x ¢S then there ewist arbitrarily small open
sets P containing © such that if ' is a closed (vel. P) proper subset of P,

‘then ™ (F) = 0.

Proof. The necessity follows from Corollary 2.2a and Axiom (5)
of },. For the sufficiency suppose &S and U an open seb containing
guch that p"(z; P) = 1 for all open sets P such that we¢ PC U(%); in
particular, for any such P, "(P) s 0. Let P be such an open set, having
also the properties of the set P of the statement of the theorem, and
suppose P = P, [ P, sepdarate. But this is impossible, since $*(P) would
be the direct sum of H™(P,) and H"(P,) each of which is zero by hypo-

(5) Soo p. 191 of [7]; in both lines 5 and 7 of the page referred to, the word «all”
should be followed by the words “arbitrarily small”. '

Colloguium Mathematicum VI 6
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thesis. It follows that P is connected and satisfies all.axioms of 3,; and
as H"(P) # 0, P is an orientable n-gm.

2.4. TumoreEM. Let 8 be an n-gm. Then a necessary and sufficient
condition that S be locally orvientable is that every comnected open subsel
of 8 be an n-gm.

Proof. The condition is sufficient. Let x¢8, and (z;P, @Q,Z,)
a canonical triad (Lemma 1.4). By hypothesis, P is an n-gm. And since
Zn 0 in P, D™(P) # 0, so that P is an orientable n-gm.

The condition is necessary. Let P be a nonempty, connected open
subset of the locally orientable n-gm §, and suppose F' is a closed (rel. P)
proper subset of P such that H"(F) # 0. By Lemma 1.2 we may
agsume F to be a minimal closed carrier of a cycle I'™ of some non-zero

element of H"(F). Since P is connected, there exists an @ e I ~ (P—F).
By Theorem 2.3, there exists in P a neighborhood U of # such that if M
is a closed (rel. U) proper subset of U, then H"(M) = 0. But I' ~ U is
such an M and it follows that F is not minimal.

2.4a. COROLLARY. The components of any open subset of a locally
orientable n-gm are all n-gms.

Ay An agiom system for locally orientable n-gms.

Let us now consider the following system of axioms:

(1)-(4). These are as in Y.

(). If #¢8 and U an open set containing @, then there exists an
open set P such that ¢ P C U and such that if 9" is a cycle mod §—P
on 2 set F such that F ~ P is a closed (rel. P) proper subsct of P, then o*
~ 0 mod §—P; or, which is equivalent in the presence of (1), H"(F) = 0.

(6). As in }),.

2.5. THEOREM. A mecessary and sufficient condition that a space 8
be a locally orientable n-gm is that it satisfy the amiom system An.

Proof. The necessity follows from Theorem 2.3. TFor the sufficiency
it is only necessary to show that § is an n-gm, sirice then axiom (5) of 4,
will imply, by virtue of Theorem 2.3, that S is locally orientable. To show
that § is an n-gm, it is only necessary to prove that axiom (5) of Dw i8
satisfied. Suppose, then, that there exists a proper closed gubset F of S
carrying a mnonbounding cycle I'™. By virtue of Lemma 1.2, we may
suppose F' to be a minimal closed carrier of I'™. Since & is connected, there
exists £ ¢ ' ~ §—F. Let P be a set satistying axiom (5) of 4,. Then
I'"~0mod S—P. However, as § is n-dimensional, we may conclude

that this implies I™ = 0 mod §—P. But this contradicts the fact the F
is & minimal closed carrier of I™
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2.6. Axiom (5) of 4, is clearly an “in the small”’ prototype of axiom
(8) of >,. The axioms of 4, form a convenient set with which to define
locally orientable n-gms, since they already imply, according to Theorem
2.5, the “in the large” form of the axiom — that is, axiom (5) of >,.

2.7. Remark. The question raised in [7], p. 382, Problem 4.1, as
to whether every n-gm is locally orientable, evidently reduces, as a re-
sult of the above, to the question whether 3, implies the ,,in the small”
axiom (5) of 4, (P 240). ‘ )

3. Alternatives to axiom (B) of 4,. Although axiom (5) of 4, is
perhaps ideal, from an axiomatic viewpoint, for incorporating the local
orientability property in the definition of n-gm, there are other proper-
ties that are often more useful in applications. Consider, for example,
the following properties:

3.1. If x¢8, then there ‘exists an open set P containing z and
a cycle I"™ mod S—P such that '™+ 0modS—U for every non-empty
open subset U of P.

3.1s. If xS, then there exist arbitrarily small open sets P contain-
ing # and cycles I™(P)modS—P such that I™(P)~+ 0modS—U. for
every nonempty open subset U of P.

 3.2. If 28, then there exists an open connected set P containing
and a compact cocycle Z, in P such that Z, ~ 0 in P, and such that if U
is any nonempty open subset of P there exists a compact cocycle y, in U
such that y,~Z, in P.

3.2s. This is the same as 3.2 with the words “‘arbitrarily small”
inserted between ‘“‘an’ and ‘“open’.

3.28". If xS, there exist arbitrarily small open sets P and @ such
that xQ C P and such that if U is a non-empty open subset of @, there
exists in U a coeycle Z, ~ 0 in P,

3.3. If A is a closed subset of § and aed ~ §—4, then p,(4,2) = 0.

3.4, It Z" ' is a cycle on a compact subset M of § and F a compact
get minimal relative to carrying the homology Z"' ~ 0 on F D M, then
F—M is open in S,

3.4s. If xef, then there exists an arbitrarily small open set P contain-
ing # such that if 2" is a eyele on a compact subset M of P and F is
a compact set minimal relative to carrying the homology Z"'~ 0 on
F D M, then F—M is open in §. )

Properties 3.1s, 3.25, 3.45 are of course localizations of 3.1, 3.2, 3.4
respectively. Property 3.1 was given in [7], p. 281, D"; the word “non-
-empty’’ was inadvertently omitted in the statement D’’. Property 3.3
was used by Cech [3], p. 686, in defining an' n-gm; attention was called


GUEST


S R.L. WILDER

to it in [7], p. 289 (bibliographical comment concerning § 6), with the
remark that ‘it seems probable that the local orientability property of
an m-gm is equivalent to” property 3.3. Also, property 3.4s is analogous
to a property used earlier by Cech [4], . 644, D,.

3.5, TusorEM. If S is a space satisfying awioms (1)-(4), (6) of Zm
then amiom (B) of A, is equivalent to each of the properties 3.1-3.48.

Proof. Let S be a space satisfying axioms (1)-(4), (6) of Zn- Then
axiom (5) implies that S hag property 3.1s (proof is left to reader); and
that 3.1s implies 3.1 is trivial.

To show that 3.1 implies 3.2, let P be an open seb satisfying 3.1;
since § is le, we may take for the P of 3.2 the component of the former
“P” — the conclusion of 3.1 still holds. We assert P satisfies the axioms
of }Y),. To show this, we have only to prove that P satisfies axiom (5)
of >,. Let I be a proper closed (rel. P) subset of P and ™ an. infinite cycle
on F; we may assume F minimal by Lemma 1.2. Let wel' ~ P—F, and
U,V open sets such that eV C UCP and p"(x; U, V) == 1. There
exigts a homology ay” ~ bI™mod 8§ —V. Neither @ nor b can be zero, since
neither y™ nor I'™ bounds modS—7V. But this is impossible, since it
implies I~ a/b y" ~ 0mod § — (V —F), whereas ™ ~ 0mod 8 —(V —T).
Thus P is an orientable n-gm, and the conclusion of 3.2 follows from
the properties of orientable n-gms (see [7], p. 255, 5.3).

To show that 3.2 implies 3.25, we need only notice that in the
presence of axioms (1)-(4) and (6) of 3,, the set P of 8.2 is an orientable
n-gm (an argument like that of the preceding paragraph shows this, for
example), and 3.23 then follows by application of corollary 2.2a above.
And that 3.28 implies 8.28' is trivial.

Let S satisfy 3.2¢', together with axioms (1)-(4) and (6) of }),, and
let 4, z be as in 3.3. By 3.2¢' there exist arbitrarily small open sets P,
@ containing # satisfying the conclusion of 3.2s. But P and @ may be
selected so that in addition p, (v; P, Q) = 1, and there will then (by 3.2s')
exist a cocycle Z, in @ —A such that Z, ~ 0 in P. Any cycle v"mod § —P
on A must then bound mod§--Q on 4 since Z, may be taken as & bage
for cocycles of @ relative to cobounding in P. It follows that p,, (A, @) == 0.

With § satisfying 3.3, together with axioms (1)-(4) and (6) of Y,
let 2", M, I be as in 3.4. Suppose there exists a point  of F— M which
is a limit point of §— (F'— M). Then el ~ S:Z’, and by 3.3, pu (I, @) = 0.
But if P,Q are open sets such that 2:Q CP C S—M and such thatb
Dul®; B ~ P, F Q) =0, it follows from the “working lemmas” ([7],
D. 201, 1.4, [7], p.202, 1.9, and [7], p.201, 1.3), in this order, thab
Z"'~0 on F—@. This contradicts the minimal character of I.

That 3.4 implies 3.45 is trivial.
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Finally, suppose S satisfies 3.4s, together with axioms (1)-(4) and
(6) of 3. If ‘U is any open set containing # let P be an open set as in
3.4s and such that P c U; we may suppose P compact. Let Q be a conne-
cted open set such that zeQ, @ TP, and m-cycles on § bound on P
([7], p. 196, 7.9) and suppose »™ is a cycle mod S—¢ on a set F such that
F ~ @ is a closed (rel. Q) proper subset of Q. By Lemma 1.1 (taking the
portion of ™ on @), we may suppose that F' = F ~ ¢ is a minimal
closed (rel. @) subset of @ such that " is carried by M = F' o F(Q).
Suppose F' £ 0. :

Now 94" is a cycle on F(Q) such that 9™ ~ 0 on M([7], p. 200, 1.1).
Also, M is a compact set minimal relative to carrying the homology
09"~ 0 on M D F(Q). For suppose there exists a closed set K D F(Q)
such that 8™ ~ 0 on K and K is a proper subset of M. Then there exists
I"mod F(Q) on K such that 1™~ dy™ on F(Q) ([7], p. 201, 1.4); and
hence an absolute cycle Z* on @ such that Z"~ " —I"modS—@
([71, p. 201, 1.6). By the choice of @, Z"~ 0 on 8. We may restrict our-
selves to n-dimensional coverings on the compact subsets of S8, and the-
refore Z" ~ 0 implies Z" = 0, which in turn implies I'™ = y"mod §—@.
But this contradicts the fact that XK is & proper closed subset of M, so that
we conclude M must be minimal relative to carrying the homology
0y"~0 on M D F(Q). Then by 3.4s, M —F(Q) is open in 8, implying
that ' = @. But this contradicts the choice of 7, and we conclude F' = 0;
e, " ~0modS—@.

4. A chain condition for local orientability. In [7], p. 251, f, there
is given a condition for orientability of an m-gem, due to Begle [1], in
terms of elements of canonical triads. An analogous condition for local
orientability may be given in the following manmner:

If § is an n-gm and P and @ a canonical pair of neighborhoods of §
(rel. » and the local Betti number), such that P is compact and § C P,
then for any covering G of 8 by open sets such that St(@, €) C P, there
exigt refinements G, and €, of € such that €, ~P is finite and each
element of €, that meets P is a “Q” of a canonical pair of neighborhoods
“p,@” (velative » and the local Betti number), whose corresponding P
is an eclement of G,; and such that each element of €, that meets P is
a “P? corresponding to one of the ,,@’s” of €,. (When convenient to do so,
we may assume that it B,eC,, %,2C, so correspond, then #,C E,). To
each such canonical pair B, B,, B,:C;, B,¢C,, such that B, ~ @ # 0,
corresponds a canonical triad (v; By, By, Zy). It (%4 By, By, Z,) and
(w3 By, By, Z) are two such triads such that By ~ By 0, there
exists a canonical triad (y; U, V, Z,) such that UC By, ~ Hj,, and relations

‘2L ~Z, in By, Zh~2, in B, implying a,Z,~ ;Z;, in E; v By.
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4.1. TusoreM. If 8 is a space satisfying awioms (1)-(4), (6) of Z,”
then the local orientability amiom (5) of 2.4 is equivalent to the assertion
that: If xeS, then there ewist arbitrarily small connected open sets P, Q such
that £:Q € P and such that for every covering € of 8 by open sets there exist
coverings G, €, and cocycles Z as defined above, such that for any choice
of canowical pairs U, V in the intersections of elements of €, that meet Q,
the ratios a;ja; are all 1.

Proof. By Theorem 2.5, if § satisfies axiom (5) then it is locally
orientable, and ‘the existence of the sets P, @, ete. follows from the
existence of an orientable n-gm I containing # and fundamental cocycles
of M (compare the first paragraph of the proof of Theorem VIIT 8.5
of [7], p 251).

Conversely, suppose that for each xeS the sets P, ¢, ete., of the
‘“assertion” of the theorem exist. Then to show 8 satisfies (B) of 2.4 it is
only necessary, by virtue of Theorem 3.5, to show that § has one of the
properties 3.1-3.45. Let us show that § has property 3.4s. Let xef, and P
and @ as in the “assertion” of the theorem. Let P’ be an open set such
that #eP’ C @ C P and such that every compact (n—1)-cycle of P’ bounds
in @ (see [7], p. 196, 7.9). Let Z*" be a cycle on a compact subset M
of P' and let F C @ (%) be a closed set minimal with respect to carrying
the homology Z" ' ~ 0 on ¥ and F D M ([7], p. 206, 2.8). Suppose F— M
not open in § and let yeF—M be a limit point of §—F.

Let B; be a connected open subset of @ —M containing ¥, R, an open
set such that yeR, € Ry, and peR,—F. Let € Dbe a covering of § such that
St(R., €)C Ry, mo element of € that contains p meets I, and
86(@, €)C P. Let €, and €, be as in the “agsertion”.

There exists a simple chain of elements of € from y to p in R,
(7], p- 33), of which let H; be the last link that meets 7 and By, the
next link; B, % B, since €, > €. By Lemmas VII 1.4 and VIT 1.9
of {7], p. 201 ff, there is a cycle I"™ mod M on F such that 1™~ y*!
on M and I"™ ~ 0mod §—E;, on F. Hence there exists a cocycle y, in By,
such -that y, ™ =1 and y,~ 0 in ;. There exists a relation

(4.72) ayn~0ZL  in By,

in which neither & nor b is zero. And by hypothesis there is a relation

(4.7D) 8"t = gzl -7

) (*) This apparent added restriction on F, not stated in 3.4s, may Lo stalod hore,
sinco the existence of a different F satisfying the other conditions (and possibly not
in @) would imply 8 an orientable n-gem, a forbiori satisfying 3.48 (cf. [7], p. 208,
2.19).
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where ¢"~! is in an open set U € Hy v E,. The portion of ¢! on

By, o F is a chain &' such that o' = Z.—2Z,, where Z, is in
By —F. And from the implied eohomology Z%~ Z, in B, and relation
(4.7a) follows ay, — bZ, in E;. However, this implies (ay,—bZ,). I = 0
([7], p- 164, 18.24), and since y,-I™ = 1, this in turn implies Z, - I™ # 0,
which is impossible gince Z, is in S—F and I'™ iz on ¥. From this we
conclude that F— M must be open in §.

5. Openness of an n-gm imbedded in an n-gm. Another applica-
tion of Theorem 3.5 settles a question that arises below, namely, whether
an n-gm imbedded in an n-gm S is open in S.

5.1. LemMA. If S, is the homeomorph of a locally compact space in.
o Hausdorff space 8, and weS; ~ S§—8, , then el A 8—5,.

Proof. Let 8, = f(S,) where 8, is a locally compact space and f
a homeomorphism, and let x = f(y), y&S,. As 8, is locally compact, there
is an open subset W of S, such that yeW and W is compact. Then V
= f(W) is open rel. 8;, ¥ = (W) is compact and xeV. Also, 7 is closed
in §. Let U be an open subset of § such that U ~ §; C V. Then it follows
easily that U~ 8, = U ~§,. The latter relation implies U—T ~ 8,
= U—Un 8;; i e, U—8, = U—F,. Hence “z is a limit point of §—8,”
is equivalent to “ is a limit point of §—38,. ,

5.2. THEOREM. Let S be a space satisfying avioms (1)-(4), (6) of Du.
Then axiom (5) of A, is equivalent to the following assertion: If Sy = f(S,)
where 8, C8, 8, is a locally compact space and f a homeomorphism, and
yely such that p,(8,, y) > 0, then x = f(y) is not a limit point of §—8;.

Proof. Suppose § satisties axiom (5) of 4,. Then by Theorem 3.5,
S has property 3.3. Now if # were a limit point of §—8;, 7. e, xe8;
~ §=8,, then by Lemma 5.1, xeS; ~ S—9;. Hence by property 3.3,
Pu(S1, ®) = 0. But this would imply p,(S,, ) =0, in contradiction to
Pu(81s @) = Pu(Ss, y) > 0. :

Conversely, to show that the assertion of the theorem implies axiom
(B), it is sufficient by Theorem 3.5 to show that & has property 3.3. If 4
is a closed subset of §, then 4 is itself locally compact, and if xed ~
~ §—4 it is necessary that p, (4, #) == 0 since the contrary would imply,

according to the assertion of the theorem, that w¢S—A.

5.3. CorOLLARY. If § is a locally orvientable n-gm and 8, the homeo-
morph in S of a locally compact space S, such that p,(Ss, y) > 0 for all
yely, then Sy is open in 8. :

5.4. COROLLARY. The homeomorph in a locally orientable n-gm S of
an n-gm is an open subset of S.
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Remark. It is clear that to solve the problem referred to at the
end of § 2 above, it is sufficient to prove that }), implies any one of the
properties 3.1-3.4s, or the properties embodied in Theorems 2.3, 2.4,
4.1, 4.3.

6. Application to orientability. In this section we study the
orientability (in the large) of the locally orientable n-gm. Tollowing
a procedure similar to that of Poincaré [6], we obtain a characterization
of orientability in terms of the local n-gms. An incidental result is a new
derivation of the Begle condition cited above, as well as extension thereof
to the non-compact case.

Basic is the following lemma, an immediate congequence of Lemma 2.1
and Theorem 2.2.

6.1. LeMMA. If 8 is an orientable n-gm with fundamental cycle (see [7],
P. 250) I'™ and 8, is @ connected open subset of 8, then 8, is an orientable
n-gm whose fundamental cycle may be taken as the portion of I™ on S8,.

6.2. In what follows, the assignment of a fundamental cyele I™
to an orientable n-gm § will be called orienting §; I'"™ may also be called
the orientation of 8. And if § and 8, are related as in 6.1, then the orien-

tation of the open set 8, as assigned therein will be called the orientation
of 8, induced by I

6.3.- LEMMA. If 8 4s an orientable n-gm and 8, 8, are intersecting
conneoted open subsets of S, the former with orvieniation 7 (arbitrarily
assigned ), then Sy 8y can be assigned an orientation y" such that ¢} is
the orientation of 8y induced by y". L'he orientation y™ is independent of the
orientation of S.

Proof. By Lemma 6.1, there iy an orientation I™ of 8, v §, induced
by the orientation of S. Then ay} ~bI™modS—8,, & % 0 = b. Let
8, 8; be assigned the orientation y™ = (bja)I™. If I T were a different
orientation of §, then there would exist a relation 7 ~ (b, /a,) I mod 8 —8,
implying (b/a)I™ ~ (b, a;) P mod 8§ — 8., and therefore (b/a).l’"v.-:-: (byfa) I}
(cf. [7], D. 254-255).

. 6.4. In the symbols of the above proof, »" induces an ovientation
Vs o;f 8y, and Y ~yymod§—=8,~8,. I in a space 8, 8, and 8,
are intersecting n-gms with respective ovientations 7, »" such thab
7" yrmod S —8,; ~ 8,, then we shall say that 8, and S, are concurrently
?rzented; or that their orientations arve comeurrent. And if 8, and S, aro
intersecting »-gms in an n-gm § which can be agsigned orientation in
such a way as to render them concurrently oriented, we shall say that
A anfl 8y can be concurrently oriented. Tinally, the notion of “indiming”
an orientation introduced above may be extended as follows: If S, has
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been assigned orientation y7 and 8§, 8, can be assigned orientation "
go that " ~ ymod §—8;, then the orientation y; of 8, induced by o™
will be called the orientation of S, induced by y7.

6.5. LEMMA. If 8, and S, are intersecting orientable n-gms in an n-gm S,
then in order that their orientations be concurrent it is mecessary that their
respective fundamental cocycles Zy, 7 satisfy the cohomology Zy~ Zy, in
Sy 8,.

6.6. Lemma 6.5 is a corollary of the sufficiency of Lemma 6.7 below.
That the condition of Lemma 6.5 is not sufficient is shown by the example
of the projective plane, mod3, in which there exist two overlapping
2-cells forming a Mobius band, which satisfy the condition but which

" cannot be concurrently -oriented.

6.7. LemmA. If 8, and S, are intersecting orientable n-gms with
orientations y? and yy, rvespectively, in an n-gm 8, then a necessary and
sufficient condition that there emist an orientation of 8, S, that tnduces
the orientation vy of S;, 4 =1,2, is that y? and yy be concurrent.

Proof. That 8, ~ 8, is open in § follows from Corollary 5.4.

The necessity is trivial. The sufficiency is easily deduced from the
relative Mayer-Vietoris sequence in terms of the groups $"(8)), H"(8),
ete. (see [51, p. 42 £f).

This Lemma is also a consequence of Théoréme 8.1 of H. Cartan
in the work [2] cited above.

6.8. If € is any covering of an n-gm by open sets (we make no
assumption about € being locally finite or star-finite, and the same re-
mark holds for the coverings €, and €, below, also), then there exist
refinements €, and G, of € similar to the coverings €,, €, introduced
in § 4, except that now the properties cited therein are not limited to
the elements of G, and &, that meet some subset of S (such as P or §).
We shall prove the following theorem (proved by Begle, loc. cit., for the
compact case):

6.9. THEOREM. An n-gm S is orientable if and only if for each cove-
ring € of 8 by open sets there ewist coverings €,, €, and cocycles Z% as de-
fined above, such that for any choice of a canonical pair U, V in the inier-
section of elements of €, (as in §4), the ratios a;ja; are all 1.

Proof. For the necessity, suppose I'™ is an orientation of §. Then €,
and &, may Dbe taken as identical, each element of G, being an n-gm €,
whose orientation is induced by I'"™ as in Lemma 6.1, and whose corres-
ponding cocycle Z% is the fundamental cocycle of €;; that a;fa; =1 in
all cagses follows from Lemmas 6.5 and 6.7. ) :

To prove the sufficiency, we note first that by Theorem 4.1, S is
locally orientable. Flence if €, and G, are given as in the hypethesis, we
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may assume all elements of €; and €, to be orientable n-gms. (Taking €
with elements orientable n-gms, each component of an eclement of €,
i =1,2, is an orientable #-gm ag in Lemma 6.1. Hence €, and €, may
be replaced by new coverings having these components as elements).
The orientations assigned to these elements will be determined as
follows: Using the symbols of §4, if (ay; Eyy, B; ;Zfb) is any one of the
canonical triads such that &, and E;, are corresponding elements of €,
and € , respectively, then we select a yj;mod§—E;, such that Zh -yl =1
for the orientation of E;,, and then orient €, concurrently with orienta-
tion y5. If (wy; Byyy Byy; Z3y)- is such that By, ~ By, # 0, then yy ~pfmod 8 —
— By ~ By For suppose this were not the case. Then there would be
a compact cocyele y, in Hy ~ By, such that y,- (yi—yjh) # 0, and since
Vo ust lie in a finite number of components of Eyy ~ By, We may assume
it to lie in one such component, C. Select (y; U, V;Z,) in ¢ with U
=V = ( and orient ¢ concurrently with Fy, (Lemma 6.1). By hypothesis
there exist relations as in § 4 with wfa; =1, and Z, 9} = Z, v
=Zn yj =a (= a; = a; # 0). Bub since ¢ is an orientable n-gm, ther(;

must exist a cohomology by,~cZ, in O, b # 0 # ¢. Hence vy, ~ -ZZ,,,

in 0, implying %Zn'(ﬁz—y}ﬁ) # 0, which is impossible since Z,-yi

. B); Lemma 6.7 there exists an orientation yjj of B, By, such that
Vi~ yp00d 8 —H;y and 9 ~ yj;mod S —Ey,. Commencing with a fixed
By, then, we may complete the orientation of any connected finite union
of sets B, by induction. At each stage of the induction the union of all
sets Fy, already selected is an n-gm U with orientation y® such that for
any By in U, 9" ~ pmod § —By,. If By, is not in U, but intersects U
we can show "~ y,mod §—U ~ By, by selecting By, in U such L'haA;
By~ By, 5= 0 and noting that 3" ~ pfh ~ ymod S — Uiy ~ Fys.

Now S, being locally compact, is the union of such ﬁ;ﬁlite unions
of.sets 1%, and it is easy to see that if U, C U, are two such, then their
orientations as defined above are concurrent. We may conclude, then
tha:t those orientations determine a non-zero element in the inverse limii;
which defines the n-dimensional infinite homology group of 8.

6.10. Definitions. If € is a covering of a locally orientable n-gon
S by n-gnas EB; such that each St(J;, €) lies in an orientable n-gm, then
?he.orlenta,tion vi of a single selected element X; of € will be caﬂl’ed an
indicatriz of § determined by F; and »¥. A finite sequence | |

(6103») Ei, Ei(l); ey E,,-(y-), ey E’é(m)y Ei

Slfl elements of € with identical initial and terminal clements and such
at consecutive elements of the sequence intersect is called a closed

e ©
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chain of €; the elements of the sequence are called links of the closed
chain. If B, is the element of € assigned the indicatrix 7', then in & closed
chain (6.10a) y} induces an orientation yj, of each Iy, as follows: Since
St(E;, €) lies in an n-gm Sy, 77 induces a concurrent orientation viay
of Eyy (cf. Lemma 6.3 and § 6.4); then y;f“(l) induces a concurrent orien-
tation y;, of the next link Ei’(”)) of the chain; and so on. In like manner,
yim induces an orientation Zi of F; which will be called the orientation
of B, induced by the closed chain (6.10a) and the indicatriz v .

6.11. THEOREM. In order that a locally orientable n-gm 8 should be
orientable it is mecessary and sufficient that for arbitrary covering U of 8
by open sets there exist a refinement € of 81 whose elements are n-gms and

~ an indicatriz of 8 determined by a special element E; of € and orientation

v of T, such that the orientation of B; induced by all closed chains of € is
identical with yt.

Proof. As for the necessity, if ™ is an orientation of §, let € be
a refinement of & whose elements are n-gms and for a selected E;eC

_let o7 be the orientation of E; induced by I™. Then y¢ is the required in-

dicatrix and the orientations induced by 9§ for the links of closed chains
(6.102) as defined in 6.10 are identical with those induced by I™

To prove the sufficieney, let & be a covering of § such that for each
U, St(T, Y) lies in an orientable n-gm of S. Then with € as given in
the hypothesis, let B be an arbitrary element of G, and (6.10a) a closed
chain in which B occurs as Eys; as S is connected, such chains must
exist ([7], p. 34, 12.5). Let 9{y, be the orientation of F induced by i
as in 6.10. Then this orientation is the same for all closed chains of type
(6.10a). For if

(6.1131) -Eq:, Ek(1)7 cevy —Ek(h)7 eny B;

were another closed chain such that B = Hy and the corresponding
induced orientation yjs is not the same as ¥igy, then the sequence

(6.11D) By, By 3 Bigyy Brys -y B

consisting of the beginning portion of (6.10a) from E; to Fyy; and the
beginning portion of (6.11a) in reverse order from Eygy (= Byy) back
to I;, is a closed chain in which the orientation of &, induced by the chain
is not identical with the indicatrix 7.

To see this, let ™ be an orientation of Fw Bys_, such that
y" ~ vimmod§—H (Lemma 6.3). There exists a homology, @y
~by"mod S —E, a # 0 £ b, a % b. As iy is the orientation of F induced
by the chain (6.11b), (b/a)y”™ is the orientation of By induced by the
chain (6.11b); and evidently (b/a)y”~ (/@) Viu_ymolS —Eypn_y, where
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?75(7»4) is the orientation of El:(h—l) induced by the chain (6.11a). Continuing
this process, it is shown that the orientation of F; induced by (6.11b)
is (b/a)yi, which is not 7 since a 5= b.

This contradiction of the hypothesis shows that every HeG€ receives
a unique orientation as a result of the assignment of the indicatrix to B;.
Now it B;, HyC with orientations y}, y} so determined, then vy ~ yrmod
8~E; ~ By. For if B; ~ By, # 0 there is a closed chain in which I; and
.Ek are consecutive links and in which the required homology holds by
definition.

The existence of an orientation I" of § can now be established by
applying Theorem 6.9, with € = €, = G,.

6.12. The completion of the above proof on the basis of Theorem 6.9
can be avoided by an induction argument such as was used in proving
the latter theorem. This observation allows of avoiding the “arbibmrily
small” element imposed by the injection of the covering ${ in Theorem
6.11, and hence one can prove:

6.13. TemorEM. If € ds a covering of an n-gm § by n-gms such that
every St(H, €), BeC, is orientable, and such that there ewists an ndicatriz
of.;S( delermined by o special e € and orientation y* of E; such that the
orientation of ; induced by all closed chains of G is identical with v, then
8 has an orientation I'™ such that I™ ~ y?mod § —IB;.

Proof. Agin the sufficiency proof of Theorem 6.11, it may be shown
th.a‘u each F;¢C receives a unique orientation v, such that if By, H,:C
with orientations »f, y%, respectively, thus determined, then Vi~
m0d §—F; ~ H;. Hence, applying Lemma 6.7 we may start an induction
proof such as was used in Theorem 6.9. At the general stage of the indue-
tlgn we have, as before, a finite union T of n-gms which iy itself an n-gm
with orientation y", say, such that for any B;eG in U, y" ~ yfmod 8 —T;.
]Z!et B, be an element of € meeting U but not a subset of U (for instance,
since § is connected there exists xel ~ (8§—1U), and there oxists an 1,
such that zsH,,). c

) We assert that y" ~ pfmod§—U ~ . For suppose not. Then theroe
exists in U ~ B, a cocycle Z, such that

(6.13a) Zo(y" — o) = a 0,

aan.d Weé may assume Z, in a single component, ¢, of U ~ B). Tet us
orient ¢ concurrently with ", and select an B; C U such that By ~ ¢ £ 0
,and v, in B ~ O such that y)»} = },-y" = 1. Then there exists a rela-
tion aZ,—by, ~0 in O, a £ 0 5 b, and Ziy+y" = (bla)yly™ = bla = 0.
-Now y7 and »} are orientations of congecutive links in some closed chain
.of G, and hence, y}’»miy}imp.ds —Ej ~ By and therefore, since 57, ig in By,

icm°
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Yo ok = 1. Bub then Z,-y% = (b/a)yn vk = bja; and, finally, Z,(y"—y%)
= 0. But this contradicts (6.13a).

We conclude, then, that " ~ yymodS—U ~ E, and that the proof
can then be concluded in the same manner as the proof of Theorem 6.9.
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