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§ 1. Introduction. Let C be the field of complex numbers, B
a locally compact topological space, and CF the vector space of mappings
of B into C. It is understood that a vector subspace of C” is always ‘‘over”
C. Let A be a vector space of C® with semi-norm 97, with values 94 (z)
for wed. We say that A is C-proper if zed implies that |#| and the
conjugate Z is in 4. We term ¢4 monotone if the conditions » and y in 4
and || < |y] imply that 90 (2) < 94 (y). When 94 is monotone it is clear
that 974 (z) = 974 (|2]). We say that 9 and A are trivial it 9N (x) = 0
for each wed.

Vector subspaces of C* which satisfy Conditions I and IT below are
termed MT-spaces. They are said to have ‘‘duals of integral type” because
of the satisfaction of Condition II.

CowpririoN I. Under condition I, A shall be a C-proper vector subspace
of C% with monotone semi-norm 4, and shall contain Ko (B) (see [3], p. 48)
as an everywhere-dense subspace.

We write 9y in place of U (E).

The measure dual <{'. Let A’ be the dual of 4, supposing that 4
satisfies I. Given 7ned’ we introduce the C-measure )

7 =9%y (cf. [T], p. 169).

The transformation 5 ->7% maps 4’ homomorphically onto a sub-
gpace =’ of the space of C-measures. We term o{’ the measure dual of A.
The map n — 7 is an isomorphism, since 7 = 0 implies that 5|y = 0,
and this in turn implies that 5 = 0, since 4 is the closure of %y in the
topology defined by <.

The set «(*. We norm ¢’ by setting

(11) lellse = sup| [odal  (aest)

* Ths work of Dr Transue on this paper was sponsored by the Office of
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taking the sup over v, with 9 (v) < 1. The infegral is the Bourbaki
integral as exposed in [7]. An o = o', with norm at most 1, will be
termed subunit. The subset of all subunits aes?’ will be denoted by «*
From Theorem 10.1 of [7] we infer the following

Luvma 1.1, If a is a C-lincar form on Ny & necessary and sufficient
condition that @ be a C-measure in (" 18 that for each vl

(1.2) ja(v)] < 9 (v).

ConpirioN IL. Condition IT presupposes that A salisfy I, and requires
further that )

(a) each wed shall be a-integrable for each aes,

(b) for each xed and ned’

1.3) n(x) = f xdy.

MT-spaces include the spaces .L5(E), p > 1, a8 we shall show in §2,
and the Orliez spaces suitably defined. They also include much more
general vector subspaces of CF in accordance with the following theorem,
to be proved in § 2:

A necessary and sufficient condition that a vector subspace of C* which
satisfies Condition I be an MT-space is that for some positive constant m,

(1.4) No(o, @) < m9t (v)

for each zed and C-measure aesd'.

For the definition of Ng(w,c) see [7], p.155, and [5], p.127.

A special consequence of this theorem is that when ¥ is a diserete topo-

logical space, an arbitrary vector subspace 4 of C¥ which satisfies Condi-

tion T is always an MT-space. See § 2. As another consequence of the
above theorem we ghall derive, in § 2, & Condition III on 4 that implies

(1.4) but does not itself involve the measure dual of’.

We shall establish the existence of MT-spaces by three kinds of
processes. as follows: ‘

(21)  Logical characterization of MT-spaces. The preceding condition.
(1.4) comes under this category. See §2.

(2,) A priovi presoription of a set w of subunit C-measures. The et o
is conditioned so ag to serve as the set of subunit C-meagures
in the measure dual of a maximal MT-space 4,. “Saturated”
sets w are defined, and it is proved that the mapping o — 4,
of the saturated sets w for which the real envelope

0,(v) = sup f widla] (veXg)
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is finite valued, is onto the ensemble of maximal MT-spaces and
is one-to-one. See § 3.

(2s)  Generation of MT-spaces by intersections and unions of MT-spaces.
Given a collection (4;),iel, of MT-subspaces of C¥ we introduce
the spaces

OA1;=J, UA1= V (%EI)
and assign a semi-norm to J, and when possible to V, so as to
define MT-spaces J and V respectively. The fundamental
instrument here is the lattice 4. See § 4.

The lattice 4. As shown by Bourbaki in 5] the space 9 (F) of measures
on E i3 a partially ordered vector space such that each non-empty
majorized part of 9 (F) admits a least upper bound in ¥ (). To motivate
our generalization observe that the ordering of measures can be made
to depend upon the ordering of positive measures u, restricted to their
values on .. If u is a measure, then for e,

u(fy = N.(f, w)-

Thus the ordering of measures may be replaced by an equivalent ordering
of the semi-norms N,(-, u). We generalize by introducing the lattice A
of all semi-norms on K.

Note. The above definition of Condition I omits the condition,
found in [7] and [9], that 4 be non-trivial. The definition of MT-spaces
is thereby affected. These spaces now include those trivial spaces A which
satisfy the remaining defining conditions. We have found it desirable
to admit these trivial spaces in order to presently develop the theory
of spaces locally of MT-type. For it turns out that an MT-space A, which
is not itself trivial, may have a section 4|K by a compact set K, such
that A|K is trivial. The theorems formally stated in [7] and [9] are
obviously valid if trivial MT-spaces are admitted.

§ 2. First theorems on MT-spaces. In § 11 of [7] we have shown
that for each # in an MT-space 4 with semi-norm 94

(2.0) WA (@) = sup [ |a|dlal.
g%
The semi-norm so given has been extended in [7] as a mapping of
C® into R (the positive real axis with oo adjoined) by the formula

*
(21) 9N (y) = sup [ lyldlal
dﬂdu
Colloquium Msthematicum VI 7
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where use is made of the superior infegral of Bourbaki. The absolute
measure |a| is defined in Theorem 3.1 of [7]. Another extension iy ag
follows. Let h be an arbitrary mapping of B into K,. We define 94 (k)
by (2.1), with y replaced by h.

The subspace T4 of €. The vector subspace of € on which N (y) < co
has been denoted by 4. The space G4 iy a C-proper vector subspace of
OF on which 904, as extended, is a monotone semi-norm. We term 4,
as extended, the natural extension of 974|4. The measure dual o', with
its norm and <% are completely determined by the restriction Rl

Carrier of B. When B is a semi-normed vector subspace of ", the
subspace of (7 underlying B, taken apart from its semi-norm, will be
called the carrier of B. ‘

The MT-space 4,. Given a vector subspace 4 of CF, satistying Condi-
tion I, let 4, be the vector space with carrier that of Ky, and semi-norm
94 induced by 9% The space 4, clearly satisties Condifion I. Condi-
tion II is automatically satistied since each ved, is a-integrable for arbi-
trary C-measure o, and sinee for nedl,

(2.2) 7(0) = 7(v) = [vdn  (9eUc)
merely as a matter of notation. One thus has
(2.3) N4y =N, of = oAy, A=y

When A is an MT-space, the natural extengions of N4 and of 9
are both defined, and are identical. In this case

(2.4) ' F4 = F,

The measure dual ' is defined when A merely satisfies Condition T,
However, under Condition I, (2.1) does not necessarily hold on 4, as will
follow from Corollary 2.2. We can thus speak of (2.1) as giving the
‘“natural extension™ of 94 only when A satisfies Condition IT as well as I,
and refer to F< only in that case. The natural extension of 9“0 is always
well-defined, if Condition I is satisfied by A.

Mazimal MT-spaces. An MT-space A is termed mawvimal if 4 is
a proper vector subspace of no MT-space B with semi-norm of 4 induced
by that of B. With this understood the following theorem ig a congequence
of Corollary 12.2 and Theorem 13.1 of [7]:

THEOREM 2.1. When A is an MT-space, F* is complete and the
closure A of A in F4 is a complete amd mazimal MT-space. Conversely,
if A is & maximal MT-subspace of C%, then A = 4 in F4. )

In terms of A and its MT-subspace 4, with carrier °,, we have
the following corollary: ‘
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COoROLLARY 2.1. If A is a maximal MT-subspace of C” then A, = A,
where A, is the closure of A, in F4. :

Proof. We have already seen in (2.4) that %4 = F“. Since 4, is
everywhere dense in A in the topology of A and hence of ¥4, 4 C 4,.
Now 4 is a maxirhal MT-subspace of F4 by hypothesis, while 4, is an.
MT-subspace of 7% = F* by Theorem 2.1. Hence the inclusion 4 C A,
implies the equality A = 4,.

We come to a new theorem:

TumorEM 2.2. If A satisfies Condition I, a mecessary and sufficient

condition that A be an MT-space is that for each acA’ there exists a constant
m, = 0 such that

(2.5) Ni@, a) < m4(w) (zed).

When (2.8) holds the minimum choice of my, is |afeq.

When A is an MT-space, (2.5) holds with m, = |a||q- in accordance
with (2.0), since Ng(x, a) = [|z|d|al.

When (2.5) holds |la|l¢ is a minimum choice of m,, since, with
veXo(B) and 94 (v) < 1, ||alla = supla(v)] < supflo|dla] < m, using (2.5).

It remains to prove that (2.5) is sufficient.

Given zed and aesl we shall first prove that « is «-integrable. By
Condition I, » is in the closure of %y in 4, in the topology defined in 4
by 4. It follows from (2.5) that « is in the closure of No(B) in Lg(a),
in the topology defined by Ny(a). Hence x is a-integrable. See [7], § 4.

We conclude by showing that for ned’ and ze4, (1.3) holds. Now
{1.3) holds for @) by definition of 5. Moreover both members of (1.3)
are continuous in the topology T, defined on A by 9% The left member 7
of (1.3) is so continuous since % is in A4’. The right member f wdy is so
continuous sinece f xdy is continuous on 4 in the topology T, defined by
ANg(+, 1), and since T, is finer than T, by (2.5). Since 9. is everywhere
dense in 4 in the topology T,, (1.3) holds.

CoroLLamY 2.2. If 4 satisfies Oondition I -a necessary and sufficient
condition that A be an MT-space is that for each xed, and aecd', .
(2.6) Wh(e) = sup [ jo|d|al.

agsAY e

The condition (2.6) is necessary in accordance with (2.0). If the

condition (2.6) is satisfied, then for each wed and aesd’

(2.7) ' No(, o) < llalla N (). ,
That 4 is an MT-space now follows from Theorem 2.2." ~ ~

The filtering sets _F and ,@y. To proceed earlier notation must be
recalled. With Bourbaki let 9, denote the set of lower semi-continuous
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mappings of B into B, . For peJ, let _¢F denote the ensemble of ma.ppings
FK, (B) with f < p, «filtering” for the relation < (see [‘%], p. 35). Le1.; h
be given in RZ. Let ,gi denote the ensemble of mappings pe9,. with
p > h, filtering for the relation > (cf. also [7], § 6). When no ambiguity
arises we shall write _gp and L, in place of _py and T

Properties of A,. Given a vector subspace A of % matisfying Condi-
tion I, 4, has been previously defined in §2. In terms of the natural
extension of 970 we shall establish the relation

(2.8) Wh(p) = AN p = 9.).
ovp
By definition of the natural extension of 94

I (p) = sup [ pdla = sup sup [ fdlal,
as AW ae ¥ fo_qyp

making use of the definition of the superior integral of p. Continuing

94o(p) = sup sup [ fdla| = sup W),
fo gy aes To—ap
thus establishing (2.8).

Tn terms of A4, Corollary 2.2 may be stated as follows. If .4 satisfies
Condition I, a necessary and sufficient condition that 4 be an MT-space
is that for each wed, N4 (x) = N4 ().

We are led to Condition III:

ConDiTIOoN ITI. Under this condition A shall satisfy Condition I and
be such that for each real h > 0 in A there exist a sequence (Pn) Of Pue.pn
such that (in terms of the extended semi-norm W)

(2.9) inf<H4 (p,) < WA (R).

THEOREM 2.3. A sufficient condition that a vector subspace A of oF
be an MT-space is that A savisfy Oondition IIL.

We show that 4 is an MT-space by showing that (2.5) holds in the
form

(2.10) ["loldla] < loilsr W* (@) for cach  wed.

In accordance with formula (2.1) the semi-norm 9740 extending
W4 K, over OF is such that

(2.11) o [ pedlal < el NN (p).

_iom°®
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Making use of the monotonicity of the superior integral, of (2.11)
and of (2.9), respectively,

(2.12)  [*hd|a| < inf [*p,d|a|
< llallsy it WA (pn) < llallag W (R) (0 < Tred).

On setting 7 = |»| in (2.12), one obtains (2.10) and (2.5), thereby esta-
blishing the theorem.

COROLLARY 2.3. If A satisfies Condition 1 a sufficient condition that 4
be of MT-type is that for each h = 0 in A there ewvists a sequence (py) of
Pneponn A such that

(2.13) int WA (p,) = WA (h).

Since p, is in 9, it follows from (2.8) that ' (p.) < N (pa)-

We see that (2.13) implies (2.9). Corollary 2.3 then follows from Theo-
rem 2.3.

COROLLARY 2.4. If E is a discrete topological space any wector $ub-
space A of CF which satisfies Condition 1 is an MT-space.

When F is discrete, each zeC? iy continuous. Condition (2.13) is
satisfied, taking p; = h for each n.

The spaces B = L5(). Let f be a C-measure on E. With each
mapping xeC” let there be associated a number

(2.14) E(@, B) = [ [Tl @B (p=1)

finite or infinite. As in [5], p. 131, let F5(B) be the vector space over C
of mappings #¢C” for which 95 (», f) is finite, with a semi-norm defined
by (2.14). Let B = .L%(B) be the closure of Ny (H) in FE(B). The space B
is & vector space over C with a semi-norm defined by (2.14). Such
a semi-norm is monotone on B. We need the following:

() The application @ - |v| maps the space L5(B) uniformly conti-
nuously onto the space L¥(|B]), as defined by Bourbaki. The latier space
is a subspace of L5(B).

The proof of (i) is identical with the proot of Lemma 4.1 in [7], p. 156,
for the case p = 1, replacing the subscript and superseript 1 by p. As
a congequence of (i), 2| is.in B with ». Making use of the fact that 9F (@)

= ol (%), and the definition of B as a closure of C)CO‘(E),‘we see that =

is in B with ». Thus B is a C-proper yvector space.
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LeMwA 2.1. The space B = L% () ts an MT-space for each C-measure .
We shall establish Lemma 2.1 using Corollary 2.3. We note firgt
that B is C-proper with a monotone semi-norm. Moreover g is in B

and everywhere dense in B.
To show that B is an MT-space it is now sufficient to show that
(2.13) is satisfied. This will follow if we show that for h >0 in B

inf [*galp) = [#rdlpl.

Qa.1.h

In accordance with Theorem 3, [5], p. 151, given ¢ = 0, there exists
a 'B-integrable ke, (H) such that & > A7, and

[ (h—1?)a1p| << e
>0 in R? so that #° = k. Then * >

0< [1Pd|pl— [Walpl <e.

(2.15)

Choose 7 RP, 7 18 in g, and

Relation (2.15) follows and the lemma is proved.

§3. The a priori prescription of the measwre dual of a max-
imal MT-space. Given % we shall say that an MT-space A is induced
by an MT-space B, if 4 is a veetor subspace of B with a semi-norm jnduced
by that of B. We then term A an MT-subspace of B. To prescribe the
measure dual of 4 is to prescribe the meagure dual of A, the maximal
MT-space which induces A (cf. Theorem 2.1). The measure dual of 4
does not umiquely determine 4 in general, since there may be many
MT-spaces induced by 4, all with the same meagure dual. It is for this
reason that we twrn to the problem of the a priori prescription of the
measure dual o’ of a mazimal MT-space 4.

To prescribe a measure dual of’ (assumed normed) i3 equivalent
to prescribing the subspace #* of subunit C-meagures in o', and this
is our immediate objective. To describe the essential characteristics of
A" we begin with two definitions.

Definition of o,. Liet w be an arbitrary non-empty ensemble of
C-measures o on B. Let |w| denote the ensemble of measures |a a8 a
ranges over . The mapping o, of K, into R, with values

(3.1) 00(v) = sup [|v]dlal  (veNKo)

agw

will be termed the env.sup. of |w|.
lu] < |v|, and that

0o (8+1) < 0, (%) -+ 0,(0),

It is clear that o,(u) < o,(v) if

icm°
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The sets ©*. Given the set of C-measures o, let »* denote the set
of C-measures saturating o, that is the set of C-meagures § such that

(3.2) ‘ Bo)] < 0u(v)  (veKq)

It is clear that o C w". A set o such that o = o* will be said to be
saturated.

‘We state a fundamental theorem. .

TEEOREM 3.1 (a). Given an MT-space A set " = w. Then g, is finile
valued and o is saturated.

(b). Conversely if w is an arbitrary non-empty set of C-measures such
that o, 18 fwme -valued, there exists o unique mazimal MT-space A, such
that o = w*. For suah a space

(8.3) WA K = 0,-

Proof of (a). By hypothesis 4 is an MT-space. Hence for ve“)y
and w = of¥ N*(v) = o,(v) in accordance with the definition (3.1) and
formula (2.0). Thus g, is finite-valued. Each C-measure f such that

(8.4) 1B)] <N (@) = g,(v) (W)

is in &* = » by Lemma 1.1, so that » i3 saturated.

Proof of (b). The space B,,. Let the carrier of )y, with semi-norm
v — 0,(v), be denoted by B,. The values g,(v) are finite by hypothesis,
and as a semi-norm, g, is monotone. Conditions I are satisfied, and
Conditions IT trivially. Thus B, is an MT-space. We write 95, in place
of (9,)*

We shall prove that 9B° = o”. If BeBY, |f(v)| < g,(v) for veB,,
by virtue of Lemma 1.1, so that (3.2) holds. Thus 9; C o*. Conversely if
/360.)*

(3.5) B} <e (veB,)

by definition of o* and of 9®®. Hence f is in 9% by Lemma 1.1. We
conclude that 9B = o

The uniqueness of A,. Any maximal MT-space H such that 9" = o
must be identical with B,. For the carrier of H includes the carrier of ¥
as a vector subspace, and by (2.0) has a semi-norm such that for veXy

(v) = AP (v)

(3.6) U (v) = su'?f o|d|al = 0u(v).

In the terminology of Corollary 2.1, H, = B,, and it follows from
this corollary that H = B,. Thus H is uniquely determined.
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This completes the proof of the theorem.

We now explore the possibility of the a priori prescription of the
normed dual of an MT-space. We have seen in Theorem 3.1 how to pre-
seribe the ensemble o* of subunit C-measures of a maximal MT-space 4.
The space o’ is thereby uniquely determined as the set of C-multiples
of O-measures in w*. Moreover a norm a - [allg i8 also uniquely deter-
mined. Conversely we state the following:

TEEoREM 3.2. Let S be o non-empty vector space of C-measures o
on I with norm o — |as. Let o be the seb of subunit C-measures in . If g,
is finite-valued and if w = " there exists & unigue maximal MT-space A
(namely A,) such that of' = c§ and

(8.7) lolor = llalls  (aedl).

Tf 4 exists it is unigue. For the condition o' ~= < implies that
A* = o, 5o that 4 = 4, by Theorem 3.1 (b). The MT-space A, of
Theorem 3.1 actually has the property that o, = d, since o7y = o*
by Theorem 3.1 (b). It remains to show that (8.7) is satisfied by A = 4.

An aeof’ which failed to satisfy (3.7) could not vanish. Without
loss of generality we could then suppose that lallgr = 1, llalls =7 = L.

Our choice of A = 4, was such that of* = o, so that aeo”
= " = . As an element in o a iy subunit in . Hence r < 1. We then
have llafrlla = 1)r > 1, lla/rls = 1. Thus «/r is in o but not in A*. From
this contradiction we infer that (3.7) holds.

This establishes the theorem.

The mapping o — A, defined in Theorem 3.1, if vestricted to
saturated sets, is one-to-one. We make this more explicib.

The ensemble Q. Let 2 be the ensemble of non-empty sets « of
C-measures on B for which g, is finite-valued and o saturated.

The ensemble ©. Let © be the ensemble of maximal MT-subspaces
ot CE. )

Theorem 3.1 hag the corollary.

COROLLARY 38.1. The mapping o — A, of 2 into @ in which weQ
corresponds to A, <0 if and only if o == w, is & one-to-one mapping of 2
onto 6.

This corollary suggests a partial ordering of £ and @. We prepare
for this by the following theorem:

THEOREM 3.3. If A and B are two MT-spaces; then

(a) the following three conditions are equivalent:

(3.8)’ WPA@) < NB()  (weKy),
(3.8)” du C Qw u7

icm
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(3.8)" W (@) < WP (2)  (we07),
where N and N> in (3.8)" are the natural extensions over CF of N4 and I,
as giwen a priori on A and Bj;

(b) if any one of the three relations (3.8) is a strict equality, the remaining
two relations are likewise;

(c) the relations (3.8) imply the relation F4 D FZ and, if A is mawimal,
that 4 D B. )

Relation (3.8)" implies (3.8)"'. For the condition that a C-measure «
be in of* by Lemma 1.1, is that |a(v)] < 94 (v) for each v<N,. Hence
(3.8") implies that |a(v)| < NZ(), or by Lemma 1.1 that a<3“

Relation (3.8)" implies (3.8)’"". This follows from the formulas giving
the natural extensions of ¥4 and 9%.

Relation (3.8)""" implies (3.8)". This is a consequence of the fact that
the extension formulas are valid if restricted to K.

Proof of (b). Strict equality in any one of the relations (3.8) is
equivalent to inequality or inclusion in both senses, and so implies strict
equality in all relations (3.8).

Proof of (e). When (3.8)" holds, 74 D &%, and the topology of
%% iy finer than the topology of . Hence the closure B of 9y in the
topology of % is contained in the closure 4 = 4 of U in the topology
of F4. Thus (cf. [2], p. 21)

(3.9) A DBDB.

Note. It would be an error to affirm that when A and B are maximal
MT-subspaces of CF the relation 4 D B implies the relations (3.8). Simple
examples on a discrete topological space C® show that when A4 D B,
neither the relation 9% < 9 nor the relation 974 > Y® need hold.

In accord with Theorem 3.3 we make the following definitions:

Partial ordering of Q. We order the sets we2 by inclusion.

Partial ordering in @. We assign two MT-spaces A and B in @ the
order A < B if (3.8)" holds, or (equivalently) if (3.8)""" holds. We write
A = B in @ if strict equality holds in (3.8)’, or (equivalently) in (3.8)".

Corollary 3.1, taken with Theorem 3.3, gives the following:

COROLLARY 3.2. The one-lo-one mapping o — A, of Q onto @, and the
inverse of this mapping preserve partial order of 2 and © respectively.

The above result can be extended by the introduction. of equivalence
clagses, as follows. o

The space 2,. Let 2, be the ensemble of all non-empty subsets of
C-measures o such that p, is finite-valued. We regard two sets o, and
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w, in @, a8 equivalent if o) = w!. Under the mapping o — 4, of Theorem
3.1 two equivalent sets e, and w, have the same images 4, = 4,, in 6.
The following two lemmas are needed.
LemMA 3.1 If B is an MT-space, and o o set of C-measures on B
such that :

(3.10) 9N () = 0o(v)  (0eNo)
then

(3.11) 97 (y) = sup[lyldlal  (yeB)
while B* = o and -’
(3.12) WP (@) = sup [*|aldlal  (2<C").

Proof of (3.12). As in Theorem 3.1 let 4, be the unique maximal
MT-space such that % = w*. In accord with (3.3) and (3.10)

9o (w) = AB(w)  (veNe)

g0 that it follows from Theorem 3.3 that B" = ol .
Thus B = 0" and (3.12) holds. )
Proof of (3.11). Let A be the semi-normed vector subspace of o
with carrier that of B, and such that

N (y) = sup [yl dlo|

acw

(yeB).
Since
WE(y) = sup [ lyldlal  (y<B)

we infer that N4(y) < NE(y) for yeB. Tt follows from this relation that
not only %% but also 94 is continuous on B in the topology Ty defined
by N®. But U, is everywhere dense in B in Tg, and 94| Ky = N5 K.
Tt follows that U4B = ¥P|B. We infer that (3.11) holds.

Lemma 3.2. If w; and w, are two non-empty sets of C-measures such
that g, and o,, are finite-valued, then the relation oy C wy i equivalent
to the relation o, < Qu,, while the relation w; = oy 8 equivalent to the
equality 0, = Quy

By virtue of Theorem 3.1 (b)

o = Ao @y = dZB'
It follows from Theorem 3.3, applied to 4, and 4,,, that the relation
w1 C vy is equivalent to the relation 0o} < oy (and since g, = ouy

i =1, 2) equivalent to the relation g, < g,,- That the equality ) = o,
is equivalent to the equality ¢, = ¢,, is similarly proved.
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Given a non-empty set w of C-measures on ¥ with g, finite-valued,
let B be an MT-space such that 9%¥“~= «". Then (3.12) holds in accord
with (2.1), and reduces to (3.10) on U, thus implying (3.11). It is obvious
from these formulas that

(3.13) supf*mma\ <V @) (weCP).

If o = o” the equality prevails in (3.13). When o # o* one natu-
rally raises the question, can. the equality prevail in (3.13)% The answer
is ,,yes” for some choices of w, ,,n0” for others. The following two examples
make this clear.

Example 3.1. Let w consist of a single C-measure f. Then o*
consists of all C-measures o such that [af < |f|. The MT-space, B
= Lg(p) is such that B* = o" (cf. [7], § 14). The equality prevails in
(3.13) with the two members of (3.13) equal to Ng(w, f).

Example 3.2. Let B, be an everywhere dense set in Z and let o

be the set of point C-measures e (teHy) such that j¢ is a measure with
unit mass at ¢. Set

ol = ntng,x]v(t)] = suplo(t)] for v

teE,,
‘We have
0,(9) = supflvldlal = sup|el(|v]) = suplo(t)] = ||
acw 1eE, N

The semi-norm g, is the ordinary semi-norm of (5. So semi-normed
Ko is an MT-space B such that 9* = w*, in accord with Lemma 3.1.
Recall that €3 is the set of all C-measures.

We have seen in Theorem 15.3 of [7] that the nabural extension 9®
of p, is such that

WE(w) = sup[z(t)] (weCP)
el
while it is. clear from the choice of w that
sup f"}m}dla] =sup|a(t)| (veC").
aem LBy

Thus the two members of (3.13) can be equal for every zeC? only if
B = B,

§ 4. The lattice 4 of semi-norms on 9. Let I be the non-empty

range of an index 4. Let (4;), ¢, be a collection of MT-spaces on H.
The intersection

(4.1) J =4,
. iel
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(regarded as an intersection of carriers) is a vector subspace of €7 which
includes Nq. If J is assigned the trivial semi-norm, » — N{w) =0, J ig
certainly an MT-space. We ask the question, how can J be assigned
a non-trivial semi-norm in such a faghion that J is an MT-space? How can
this assignment be made to depend upon the collection [N44], iel, of
the semi-norms of the given spaces A4;?

The possibilities here will be illustrated by first considering the special
case in which the MT-spaces A; are the spaces

(4.2) Ay = R4 (B)  (del)

where g; is a C-measure on F. Recall that the space of measures on I

is an ordered vector space over R which is “completely rediculated”

(ef. [5], p- 21 and p. 54). In particular a measure p = inf|f;| exists. With
tel

this understood the following theorem is an analogue of the much more
general Theorem 5.1.

Let 95(-, a) denote the semi-norm with values Ni(%, @). Given
a measure u, let u, be its extension as a C-measure (see [7], p. 151).

TaeorEM 4.1. Let A; be an MT-subspace of the space L4(f;), tel.
Set J = M A; and

i
(4.3) int|f] = .
tel

If J s assigned the semi-norm Ng(-, pe), then J is an MT-subspace
of £h(ue).

This theorem could be proved as a consequence of Theorem B.1.
A brief proof may be indicated as follows. Bach weJ is p,-measurable,
since # is f;-measurable and ;| > u. For such an x

[Mloldlul < [1o)d1)

so that & is in L§(u). (Theorem 9.4, [7], p. 168). It is clear that J is
C-proper, J D% and that J admits & semi-norm induced by Ng(-, -
It will follow from Lemma 4.2 that J is an MT-subspace of £k (u,).

As we have pointed out in §1 the Bourbaki ordering of measures
@ > 0 implies and is implied by a similar partial ordering of the semi-
-norms N, (-, ») on K. Our purpose will be served by partially ordering
the monotone semi-norms onc(y.

The lattice A. Let u — M (u) be an arbitrary monotone seminorm
defined for ueXy. If M, and M, are two such semi-norms we write
M, < M, if for each ueky, My(u) < M,(u), and write M, = M, in

case the two mappings M, and M, are identical. Let 4 denote the partially ,

ordered space of these semi-norms.
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For these semi-norms
M) = Mu| = M(7).

It follows that M, < M, (M, = M,) if and only if M,(f) < M,(f)
(My(f) = M,(f) for each fe,.

Bounds in A. Let (M;), iel, be a set of semi-norms in 4. The mappings
G and g of K, into R, with values

(4.4)

(4.5) Q(u) = supM;(w), g(u) =infM,;(u)

iel iel

(ueXg)

will be respectively *termed the superior envelope and inferior envelope
of the set (M;). We write

(4.6) G = env.supM;, g = env.infM,.
el iel
Some of the values G(u) may be infinite; all of the values g(%) are
finite: It is clear that both ¢ and g are monotone in the sense of § 1, and

that for 0 = A<C,

(4.7) G(du) = A G(w), g(Au) = |A|g(w).

Moreover for u and ve%¥,
G(u+v) < G(u)+G ().

Simple examples show that g does not in general satisfy a relation
similar to (4.8). .
Let sup M; and inf M, respectively denote the least upper bound
i i

(4.8)

and greatest lower bound in A of the set (M), provided these bounds
exist in 4. This sup and inf in 4 are not to be confused with the env. sup
and env.inf in (4.6). The latter need not be in 4. '

Lemma 4.1 (a). If the mapping G defined by (4.5) has finite values,
then G is in A and

(4.9) G = sup M; = env. sup M.

iel del

(b) Inf M; always ewists in A, but its values are in general inferior to
i

those of g as defined in (4.5).
Statement (a) is immediate. That inf M; always exists in 4 follows
i

from (a). For the set of lower bounds of (M;) in 4 is not empty since it
includes the null semi-norm. The env.sup of these lower bounds hasg
finite values, and so by (a), the sup in 4 of these lower bounds exists.
By definition of inf M; in 4, this sup equals iilf M,.

i
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The natural extension of a semi-norm M ed. Provided with the semi-
-norm M, ‘K is an MT-space which we denote by 3,. The measure dual
Ny of M, is well-defined, as is the natural extension

(4.10) M (z) = sup f* || d|a|

a6y

(we CF)

of M over all of C¥. This extension induces a monotone semi-norm over

the vector subspace ™0 of C” of mappings #¢C” on which M () is finite.
We prepare for § 5 with a lemma.

LeMmA 4.2, Suppose that H is an MT-space and J a C-proper vector

. subspace with a monotone semi-norm, and such that as carriers H D J D Uy

If '

(4.11)

then J is an MT-space.

It is clear that J satisfies Condition I provided ), is everywhere
dense in J. That 9K is everywhere denge in J follows form the fact that X,
ig everywhere dense in H, and that the relation (4.11) holds.

We shall now show that J satisties Conditions II.

If £ is in J', { is continuous on J in the topology induced by ¥
on J, since (4.11) holds. Tt follows from Corollary 1 of [4], p. 111, that
there exists a continuous linear extension % of ¢ over H. Hence 7 iy in H’

.and 7 = £. Since H is an MT-space 7 (x) = [zd7 for each weH. In parti-
cular for xedJ

W (e) <NE(>) (2ed)

L) =nto) = [adi = [di.
Thus J is an MT-space. '
§5. Semi-norming (M 4; by extension of an inf in 4. We ghall
generalize Theorem 4.1 i:zx the following way: l
TEEOREM 5.1. Let (d;), i1, be o non-empiy collection of M T-subspaces
of C% with carrier intersection J. The natwral extension of the semi-norm

(5.1) lir;f [N%%,]  (Infin 4)

induces a semi-norm on J, and with this semi-norm J is an M T-space such
that
(5.2) g* = (oAt

. tel .
Let the MT-space with carrier that of 9, and with semi-norm (6.1)
be denoted by A. Then, by hypothesis, for fixed 4

N () S N4D)  (0eXy).

icm
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Tf 9 is naturally extended over CF it follows from Theorem 3.3,
applied to 4 and 4, that
(8.3) - W (@) < Ni(w) (wed).

Noting that as carriers 4; DJ D%y, we shall apply Lemma 4.2.
We understand that J has a semi-norm induced by the extended 9%
Thus J is a C-proper vector subspace of 4; with a monotone semi-norm
guch that

(5.4) W (w) < Nhi(@) (wed)

in accord with (5.3). Lemma 4.2 implies that J is an MT-gpace.
Proof of (5.2). Set o = (NoAy. We seek to prove that §J* = o.
i
According to Theorem 3.3, applied to J and A;, the relation (5.4) implies
that §" C off. Sinee this is true for each ¢el, J*C w. v
Proof that 9* D w. Since 4; is an MT-space, formula (2.0) gives

(8.5) WNi(v) = supf [v]d|al

u
aggly

(veKg)-

Now w C Af, so that we infer from (5.5) that

(5.6) Ni(v) = SUPf [v|d]a| = g,(v)

by virtue of the definition (3.1) of g,. Moreover g, is' a semi-norm in 4,
and in accordance with (5.6), is a lower bound in A of the semi-norms
G4y in A. But N |Ug is by hypothesis the greatest lower bound in A
of these lower bounds, so that g, (v) < (v) for vey. If one sets g*
= w,, then by (2.0) L

9 (v) = sup [ [o]dla] = g (v)

agmy

(’UGC}CO)‘

Thus g, < @4,y Or equivalently by Lemma 3.2, o"C w;. Since o,
is saturated this relation implies that o C wy, that is that o CJ* as
desired. i .

Thus §* = w and the proof of Theorem 5.1 is complete.

In Theorem 4.1 it is clear that the semi-norm assigned to the inter-
section J is trivial if and only if g = 0. In the case of general MT-spaces

- A;, the following theorem gives an analogous answer as to when the

semi-norm defined by (5.1) on K, is trivial.
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THEOREM 5.2. A necessary and sufficient condition that the semi-norm
(5.1) be non-trivial is that the intersection

N At

1el

(5.7)

(ef. 5.2) contain a non-zero C-measure.

Let B be the MT-space with carrier that of 9, and trivial semi-
-norm. It follows from Lemma 1.1 that 8" consists of the null meagure
alone. Let J Dbe the MT-space of Theorem 5.1. Since (% () == 0 for each
veNg, the condition that %’ be non-trivial is equivalent to the condition
that the relation 9 | Ko = ol | not be a strict equality, or by Theorem
3.3 that the inclusion §* D 9™ not be an equality. Thus if 9 is non-
-trivial J* must contain a non-zero C-measure, and conversely.

This establishes the theorem.

§ 6. Semi-norming () 4; by extension of a sup in 4. Throughout

this section we shall be concerned with a non-empty set (4,), ie<I, of

MT-subspaces of CF, and shall set

(6.0) J =) A4y,
i

V=Udi (i)

If the mapping ¢ of Y, into E+ with values

(6.1) G(v) = sup N4 (veXKy)

is finite-valued, then in A

(6.2) = sgp[%""i[c}(n] (iel.
We set

(6.3) =t

and state the following lemma:

Lemma 6.1. The mapping v — G (v
v— 0,(v) defined by (3.

(6.4)

) defined by (8.1) and the mapping
1), where o is given by (6.3), are swch that

Gv) = 0,(v)  (vey).
The:fe ig no assumption in this lemma that & or o, is finite-valued.
Taking account of the formula (2.0) applied to Ay, one hag

(6.5) U4 (o)

= sup | [o] d|al

(’l) € QCO) .
aeg{u .
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By virtue of (6.1) and (6.5) respectively,

G(v) = sup%" (0) = supsupf]md[a[

asgly

sup ldlal

since o is given by (6.3). This esmbhshes (6.4).
' The possibilities of semi-norming-J- by the natural extension of
the semi-norm &, when the sup (6.2) exists, are greatly clarified by showing
that the conjecture which & priori seems most natural, is indeed false.
The conjecture which we shall disprove is as follows:

7y If G, as defined by (6.2), exists in A, and can be naturally exten-
ded with finite values over J, then J, semi-normed with this extension,
is an MT-space.

That (Z) is false is shown by the following example

Example 6.1. We define a set (4,), n=1,2,
with intersection J and such that the

(6.6) ST [N )

., of MT-spaces,

exigts in 4 and admits a finite-valued natural extension on oJ. Semi-
normed by this extension J will be shown to fail to satisfy Condition I.
E and E,. Let B be the interval [0,1] with euclidean topology. Let E,
be an everywhere dense set (t,) of points t,¢ B, n =1,2,... Let &, denote
the measure of mass 1 at the point #,. If stE then (see [5], p. 109)

() = [ fden = f(tn).

Let e, be the C-meagure extending e, so that |e,| = &,.

The carrier J. To construct Example 6.1 let J be the set of bounded
mappings in CF

The spaces A,. Each-space 4,, n =1,2,..., sha]l be a vector sub-
space of C” with J as carrier; so that J = ﬂA We assign 4,, a.semi-
-norm
(6.7)

x> Im(tn)l

(wed).

We must show that 4, is an MT-space.

It is clear that 4, is C-proper, that its semi-norm is monotone, that
A;, DU,y and that Wy s everywhere dense in A,. Thus A, sabisfies
Condition I. To show that 4, is an MT-space we have merely to apply
Oorolla.ry 2.2 to A,. According to Lemma 1.1, =, consists of the C-mea-
sures ‘o such that |a(u)| < lu(tn)l Hence' |6, = |a| for each ae cﬂi, so that

supf lwldla! [" el djea =lo(ta)
uagdn Lo .

(6.8)

Colloquium Mathematicum VI 8
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for wsIC’E. Thus the condition (2.6) of Corollary 2.2, applied to 4, takes
the form,

WA () = |w(ty)] (zed).

It is satisfied by virtue of (6.7). Hence A4, is dn MT-gpace.
Properties of G. For vely let v — |[v|| be the classical semi-norm,
Applying (6.1) to the ensemble (4,) we have

G(v) = sup N*n(v) = sup |o(t)] = |lo]],

since the set (1,) is everywhere dense in [0,17. (Z) ecalls for the natural
extension of @ over J. As we have ghown in Theorem 15.3 of [7], the
natural extension of @ over C¥ has the values

(6.9) G(x) = sup lo ()] (weC™).

This extension has finite values for @ in J. Thus all the conditions
of (Z) are satisfied by the ensemble (4,) of MT-spaces and their inter-
section J, as semi-normed by the extended @. But o semi-normed J
is not an MT-space, since K is not everywhere dense in J. For the
closure of 9, in the uniform topology defined by (6.9) includes no dis-
continuous mappings.

Thus (Z) as stated is false.

The following modification of (Z) is true. In it we refer to the
spaces Ay J = (M 4; and set o = (J A}, ag previously defined,

k2

THEOREM 6.1. If the semi-norms
(6.11) [N49J1,  iel,

are may’or:ized by the semi-norm N7 of an MT-space H with carrier J, then
@, as defined in (6.2), exists as @ semi-norm in A, and admits a finite
natural extension over J. Semi-normed with this ewtension, J is an M7T-space
and J* = w*,

Proof that J is an MT-space. Tt is clear that G (v) < 9 (v) (weXy).

It follows from Theorem 3.3 that the natural extension of @ is at
most the natural extension of %7 on €%, ro that 97 <9 on J. Trab
J is an MT-space follows from Lemma 4.2, applied to H and J, noting
that as carriers H = J Dy, that J is C-proper, and that J has
a monotone semi-norm such that 97 < 7% on oJ. ‘

iom®
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Proof that §* = o*. By the definition of 97, as given in the thebreni,
(6.10) W) =G (0eKg).

It follows from (6.4) that N7 (v) = g, (v), and then from Lemma 3.1,
applied to J, that §" = w*.

This completes the proof of the theorem.

MT-spaces J of Cauchy type. Spaces J of this type are defined in
§6 of [9]. One of their fundamental properties is that they have the
form J = () 4;, tel. More explicitly an MT-space J of Cauchy type has

the form (;ee [9, § 1)

(6.12) J = (M L&(a).-
ael)’
This space J obviously has the representation
(6.13) J=N4. [4.=Lg(a).
U

In accordance with (2.0), for v,
9 (v) = sup [ [v|d]a] = sup Ng(v, a).
asgj# aegJ%
Thus
(6.14) WKy = sup[NNNg]  (aeFY)

where the sup in (6.14) is taken in 4, with §* affording the range I of a.

The conditions of Theorem 6.1 are satistied by the above set
(4y), aeg% of MT-spaces. The conclusions of Theorem 6.1 in this case
present nothing essentially new concerning J, but a review of these condi-
tions and conclusions in this case show the workings of the theorem.
The semi-norms (6.11) are here majorized by the semi-norm N of the given
MT-space. The semi-norm @, as defined in (6.2), is here given by (6.14),
and admits a finite natural extension, namely 97, over J. For fixed
aeJ* the set of C-measures ofy is the set of all C-measures f such that
NL(+, B) < NL(-, o) (cf. Lemma 1.1). By the definition (6.3)

o= (aeg“).'

The conclusion of Theorem 6.1 that J* = w* is independently ve-
rifiable. i
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Fvery MT-space J of the form (6.12) is mawimal. .

To verify this note that J and the closure J of J in 77 have the
same measure dual §’, since they induce the same MT-subspace: with
carrier ¥y. If follows that
(6.15) JC N .Lha)

agf)’

since each zeJ i3 a-integrable for each a¢gQ'. From (6.12) and (6.15) we
infer that J C J, and hence that J == J. ;
The question is open as to whether every MT-space J of the form
(6.12) is of Cauchy type.
‘We state a theorem which' concerns

VZL'tJAU co =) o,
i

A, as defined in Theorem 3.1, and G ag defined in (6.2).

THEOREM 6.2. If ¢, is finite-valued the semi-norm G exists in A, and
has a finite natural extension over H = V.~ 4, by virtue of which H is
an MT-space with 9" = o”. ) '

Since H=7V ~4,C4,, a semi-norm c¢an. be induced on H by
9(4s, the natural extension of 0,- Or equivalently (Lemma 6.1) 97 can
be induced by the natural extension of ¢ That H so semi-normed, is
an MT-space follows from Lemma 4.2, applied ta 4, and H, on noting
that as carriers 4, D H D 9(;, that H is. C-proper, and has a semi-norm
induced by 9“e. Since

N (v) = N0y (veKg)
'“f)rf” = of,, by Theorem 3.3. By Theorem 3.1 o* == w*. Hence 9* = o¥,
'complet;ing the proof of the theorem. ‘

The above. theorem and proof remain valid if V is replaced by J == M 4.

) o ‘ ) i

o There are two special cases worthy of note. If the range I of 4 is finite
the va.h'leé»-. of @ givgn by (6.1) are finite, so that @ oxists as a sup in 4
a,nq 0, 18 finitelvalued by (6.4). In this case Theorem 6.2 can be restated,
omitting the hypothesis that g, is finite-valued.

The second special .case arises when () 4; = No. In this case (Z)
» . . - i
-8 trye; For G exists in. 4 by, hypothesis of (2), and if G is asgigned to
Ko as a semi-norm an MT-space results, ag affirmed. R

.
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