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On simple regular mappings
by

J. W. Jaworowski (Warszawa)

1. Introduction. X. Borsuk and R. Molski studied in [3] a class

of continuous mappings, called the mappings of finite order. A continu-
ous mapping f of the space X onto the space Y is of order <% if for
every point y ¢ ¥ the set f'(y) contains at most % points (see also 9},
p. 52). A mapping of order <2 ig called by K. Borsuk and R. Molski
a simple mapping. The authors have given many examples which show
that simple mappings may have many singular properties, e. g., they
can raise the dimension. Moreover, the authors have distinguighed a cer-
tain class of mappings of finite order, called elementary mappings, and
have proved that, in particular, every elementary mapping may be ob-
tained by finite superpositions of simple mappings.
" In this paper we shall study some properties of a certain class of
simple mappings, called by us regular mappings, which contains, in partic-
ular, all simple elementary mappings. For a simple regular mapping f
of a space X we introduce the notion of so-ealled doubling of X by f,
which enables us to reduce the study of regular mappings to the study
of gimple interior mappings ().

2. Let f be a simple mapping of a space X into ¥. The union X,
of all sets f'(y), with y < ¥, containing two different points is called
in [3] the seam of f. Leb us denote, for every z ¢ X, by @(x) a point of X
such that f'l(f(w)) = {&, Ps(x)} (*). Then &; is an involution of X; it is
called in [3] “the involution assigned to f” and is denoted there by s
(see [3], Nt 3). We shall call it the involution induced by f. The set X—X,
is the set of fixed points of &,.

8. Let § be an upper semi-continuous decomposition of a compact
space X and let ¥ be the hyperspace of this decomposition. Then, by

() A continuous mapping f: XY is called interior if it carries open sets onfo

open ones.
(2) We denote by {a,, @s, ..., an} the set composed of the elements 4, @, ..., On
and by (a,, ds, ..., an) the ordered sequence of these elements.
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Alexandroff’s theorem (see [9], . 42), the decomposition § induces 2 con-
tinnous mapping f: XY such that the sets of § are the same as t.;he
sets f(y) with y e Y. Moreover, in order that the decomposition % e
continuous it is necessary and sufficient that the induced mapping f be
an interior-mapping (see [4]).

4. Let § be a continuous decompokition of a compact space X on
sets containing at most two points. Hence the mapping f induced by ¥
is a simple interior mapping. It is evident that the involution @; induced
by [ is continuous. :

Conversely, let g: X—~X be a continuous involution of a compact
space X and let §, be the decomposition of X on the sets of the form
&, p(2)}. Now, let E be an arbitrary subset of X. Then the union S of
all sets of ¥, intersecting B Is equal to Fup(E). Hence, if B is closed
(or open), then § is closed (or, respectively, open). It follows that the
decomposition %, is continuous and the induced mapping f, defined by
fie) = {®, p(x)}, for every v e X, is a simple interior mapping of X onto
the hyperspace ¥ of the decomposition F,. The simple mapping f,: X ¥
is said by us to be induced by the vontinuous involution g.

Let us observe that if, for some p € X, we have ¢(p)+ p, then there
exists a neighbourhood U of p such that U~ g(U) = 0. Hence f, maps U
homeomorphically onto a neighbourhood fo(T) of fu(p) in Y. In partie-
ular, if the involution ¢ has no fixed points, then the indunced mapping
f» 18 5 local homeomorphism. Therefore, we have obtained

TagorEM 1. In order that a simple mapping | of a compact space X
be am interior mapping it is necessary and sufficient that the involuiion @y
induced by f be continuous. Moreover, every continuous involution @ of X
induces a simple interior mapping .3 #f @ has no fiwed points, then the
induced mapping I, is & local homeomorphism.

5. A simple mapping f of the space X with the seam X, is said by
us to be regular provided that the partial mapping #| X, is interior. Theo-
rem 1 yields

TamoreM 2. Let f be a simple mapping of a compact space X and
let X, denote the seam of f. Then the following conditions are equivalent:

(@) 7 is regular. .

(ii) The involution ¢ =, X, s continuous.

6. A mapping f of a space X is called in [3] an elementary mapping
if there exists an e > 0 such that, for every two different points 2’, #" ¢ X,
from f(z') = f(z”) follows p(', 2") >e.

TurorEM 3. Let f be a simple mapping of ¢ compact space X and
let X, be the seam of f. Then the following conditions are equivalent:
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(i) f is elementary.

(ii) f 4s regular and the seam X, s closed.

(iif) The involution p= 0| X, is continuous and has no fized points.

Proof. The implication (i)—(iii) is proved in [3]. Nr 3, Corollary 1

(iif)—(ii). Since the involution ¢ of X, is continuous, then, by Tfleoj
rem 2, f is Eegular. Let {#,}CX, be a sequence which is convergent to
a point x « X,. Since =, 7 ¢(2,) and since the involution ¢ has not fixed
points, then g(x) 5 @. Therefore, z ¢ X,. Hence X,= X,.

{ii)—+(i). Since X, is closed, then it is compact. By Theorem 2, the
involution @ of X, is continuous. Moreover, it has no fixed points (since
X, is the seam of f). It follows that there exists a number ¢ > 0 such
that efp(z'), p(x”)) > & for every two poinis «/, #” belonging to X,.
This means that f is elementary.

This theorem shows that an elementary mapping may be defined
as a regular mapping with a closed seam.

7. Let % and B be two groups and let f: A—B be a homomorphism.
Then f is called an r-homomorphism, if it posesses a right inverse, i. .
if there exists a homomorphism h: B—% such that fh is the identity
on B (see [2]). If f is an r-homomorphism, then f(Y) = B.

Let ® be an abelian group which is a D-module over a domain
of integrity D, such that every element of & is divisible by 2. Let Hy(X)
denotes the kth homology group of a compact space X over G, in the
gense of Vietoris. The homomorphism of H,(X) into Hi(Y) induced by
a continuous m@pping f: XY is denoted by f,. The rank ‘r(H,,(X)),
4. €., the kth Betti number of X over @, will be denoted by pu(X).

8. Simple interior mappings.

THEOREM 4. Let f be a simple interior mapping of the compact space X.
Then the homomorphism f,: Hk(X)—>Hk(f(X)) induced by f is an r-homo-
morphism.

By theorem 1, this theorem can be formulated as follows:

TueEOREM 4. Let ¢: X—~X be a continuous involution of the compact
space X and let f = [, be the simple mapping induced by p. Then f induces
an r-homomorphism f,: Hy(X)— Hyf(H)).

Proof of theorem 1'. Let p be a metric in X. Setting
0 (@, @) == p(, %) +§(‘P(m1); ‘P(f’f'z)) s

we obtain & metric ¢ which is topologically equivalent to g and which
satisfies the condition

(1) e{@y, 1) = Q(Sv(wl)y ‘P(mz)) ’
for every =, @, ¢ X.

('L
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The space Y = f(X) is the hyperspace of the decompositiqn FofX
on the sets {2, ¢(#)}. Thus ¥ is metrized by the Hausdorff metric (see [8],
p. 106). Therefore, if #,%:¢¥Y and ¥, = {0, @)}, Y= {&, p(m)},
then, by (1),
(2) 0(Y1y Y2) == min {_Q(wl; Za), Q(wu ‘P(wz))} .

Since the decomposition § is continuous, it follows that the diameter
8(77'(9)) is a continuous function in Y. Let us set for ¢ >0

Y(e)= F [8(f(y)) <.
yey
Hence the set Y(e) is open. If X, is the set of fixed points of the invo-
lution ¢ (4. 6., the complement of the seam of f), then

Y,=f(Xo) C X(e)-

Let . .
Z(e) = Y—Y(e) i@ B @) =¢] -

Hence the set Z{e) is closed.

Now let B be an arbitrary subset of Z(z) of the diameter 5(E) < fe.
Ii @, @, « f(E), then o(f(2y), f(2)) < }¢, and 8(f (wm)) > s form =1, 2.
Hence, by (2), either o(z;,,) < e or oz, (@) < de In the first
case, by (1),

9(3717 ‘P(wz)) > 9(561: ‘P(mj.)) - Q(¢(-”1)s 9’("”2)) =
= Q(mu ‘P(“"l)) —o(@, @) > e—te= i
and, similarly, in the second case .
o(@,; @) = 9(991: ‘P(-’ﬁ)) - 9(‘?(“‘1); ‘1’2) =
= Q(mlv 9’(“‘1)) ‘“Q(mn fp(mz)) >e—}e=de.

Therefore, either o(m,®) < e and ofm, p(a)) > ke, or o(wy, ) > s
and gz, p(2,)) < ¢ Hence the set f~'(H) splits uniquely onto the sum
of two disjoint sets:

(3) FHE) = BP L BYY

such that if @, %, ¢ B®, ¢ = F1, then

(4) (@1, @) = o(f(my), () < %¢,

and if o, e B® and z,¢ BP, then g(wy, #,) > e Moreover,
(5) HET) ={(BY) = B.
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It follows from (1) and (2) that if y,e Xy, y e Y, yo=f(z,) and
y = f(a), then
(6) o(®y; ) = o(y,, 9) .
Let us denote by &, the function which assigns to every point yeXY(e)
@ certain point from among the points of ¥, nearest to the point Y.

Let A= {4,} be a sequence of k-dimensional , - chaing with coefficients
of the space Y with coefficients in the group &, such that e, > 0 and

(1) lime,=0.

n=00

Let 7= (¢¢; @1y -, @) be a k-dimensional e,-simplex which appears in 4,
with the coefficient a. We may assume that ¢, ¥(2s,) for 0 <» <j
and g, € Z(2e,) for j <v <k where 0 <j<%. Let ¢, = B, (q,) for 0 <v<i.
By (7)

ﬁ Y (2e,) = ¥, .

n=1
Hence there exists a sequence of positive numbers s, such that
(8) lim g, =0

and e
(9) oly, Do (w)) <ma, for every

ye¥(2e,) and n=1,2,..

By-(9) the simplex "= (g4, ..., Gj—1, @45 -y @x) 18 81 nn-simplex\ of ¥
and the set B = {g;, ..., gx} is of the diameter §(H) < &,. Let

[(B) =BTV B

be the decomposition of f Y(E) of the form (3), where ¢= 2¢,. Since
g e Yy, for 0 <v <4, let us set

g =p, for
ey = 8, 950y, for

where p® ¢ B#Y for i = F1.
Let us assign to the chain ar the chain

0<r<y,
and

j<v <k,

faoy+ a0y

where oy == (Pgy -5 Di1s Py oory PP fOr 4= F1.
By (4) and (6) this correspondence carries the e,-chain 4, onto an
7n-chain x, of X and, by (8), it induces & homomorphism % of the group
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of true chaing 1= {i,} of ¥ into the group of true chains » = {x,} of X.
Moreover, % satisfies the condition

(10) oh(y) = MaA)

for every true chain i of ¥. It follows from (9) and (5) that if y is a true
eycle in ¥, then fh(y)~y, and therefore, by (10), # induces a homo-
morphism .

such that 7,k is the identity in Hy{X). Then h is a right inverse of f,.
Hence the proof of theorem 1! is finished.

TrEEOREM 5. If f is a simple interior mapping of the compact space X,
then dimf(X) == dimX.

This theorem may also be formulated obtherwise:

THEOREM 5. Let ¢: XX be a continuous involution of a compact
space X and let | = f, be the simple mapping induced by p. Then dimf(X)
= dim X.

Proof of theorem 2’ (3). Let ¥ = f(X). It suffices to show that
dimY <dimX (see [3], Nr 4).

Let dim X < n. Theorem 2’ is true if n = —1. Let us suppose that
it is true for n =k—1.

Let p e X. I ¢(p)=~p, then there exists a neighbourhood U of p
in X such that f maps U homeomorphically onto a neighbourhood of
f(p) in Y (see Nr 4). Hence dim,X = dimy,¥Y.

Now let ¢(p)=p and let ¥V be a neighbourhood of f(p). Let U be
a neighbourhood of p such that f(U)CV. Since dimX <k, there
exists a neighbourhood U, CGiU of p such that dimFr(T;) <k—1. Let
U, = U; ~@(U;). Then U, is a neighbourhood of p such that

(11) o(Uo) = U,
and since Fr(U,) C Fr(U,) uFl'(qJ(Ul)), then
(12) dimFr(U,) <k-—1.

By (11), the partial mapping f|Fr(U,) is a simple interior mapping
of the compact set Fr(U,), whence from the hypothesis of induction
and from (12) follows

(13) dimf{Fr(U,)) < &—1.

(%) Theorem 2 also follows from a more general theorem proved by E. E. Floyd:

see {6], Nr 4, p. 35.
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Let us observe that, by (11), f(z) = {z, ¢(2)} ¢ f(U,) if and only
if e U,. Therefore f(U,) = f(U,). Similarly, since p(X—TU,)= X—U,,

we have f(X—U,) = f(X—Uy) = ¥ —7(U,). It follows that f(Fr(Uy))

c =f{UenX—To) = f(U) nf(X—To) = f(Up) nY —F(U,), that is

(14) _ H{Fr(Uo)} = Fr(f(T,)) -

Thus, by (11), Vo= F(T,) is a neighbourhood of the point f(p) in ¥
such that Vo CV and by (13) and (14), dAimFr(V,) < %—1. It follows
that dimye,Y < %. Therefore theorem 2’ is proved.

9. The notion of the doubling of the space by a simple
regular mapping. Let 7 be a simple regular mapping of the compact
spacé X. Let X, denote the seam of f and &; — the involution of X in-
duced by 7. Therefore ¢ = &,/ X, is a continuous invelution of the com-
pact set X,.

Let Z = X x {—1, +1} be the Cartesian product of X by the two-
point set {—1, +1}. The points of Z are of the form (x, %), where eX
and i = T1. Let § be the decomposition of Z on the two-point sets of
the form {(z, 9), (p(@), —i)}, where z ¢ X,, = F1, and on the one-point
sets of the form {(z, 2)}, where & ¢ X—X,, i = F1. We shall show that
the decomposition is upper semi-continuous.

Tet 4 be a closed subset of Z. Tt should be shown that the sef

S=\J[0nA0]
CeF
is closed. _ ’
Tetus put 27 = X X {—1}, 2= X x {+1} and Z,= X, x {~1, +1}.
Moreover, if E is a subset of Z, let us put BO=E~Z7, and
E(+): EA Z(+)_ . ]
Since the sets AT and A™ are closed, it, suffices to prove that
the set
8= [0~ AT 0]
oy

is closed. Let us consider the sets 8 and (7. We have

Sg—) — A(—-)
and

(15) 8= F [z, 1) 47 ~ 2071,

(q:(z),Jrl)
Let us observe that from the continuity of ¢: X,~+X, it follows that
the involution a: Z,—~Z, defined by

a(z, i) = (p(@), —1)
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is continuous. Moreover, by (15), a(AT~Z57) = 8, and since 47~ 2
is closed, it follows that S{" is closed. Therefore § is a closed set and
hence § is upper semi-continuous.

Tet us demote by D(X,f) the hyperspace of the decomposition ,
and by ¢: Z—~D(X, f) the mapping induced by §. Then ¢ is continuous.
We define in D(X, f) an involution pubting

y{{(@, ), (p(@), -0 = {lp(@), 4), (x, =)}, for

reX—X,.

and

"P({(wa 7’)}) = {(z, —¥)}, for
We shall show that the involution v is countinuous. It should be proved
that if the set A C D(X, f) is closed, then (4) is closed. Set P = g—l(A)
and @ = g-{p(4)).

Putting f(z, ¢) = (z, —i) we obtain a confinuous involution g of Z
such that B(P)= Q. Therefore, since P is closed (from the continuity
of g), it follows that @ is closed and hence compact. Consequently, the
set p{4) = g(@) is closed. Thus ¢ is continuous.

Tet us put D, = g(Z°7) and D,= g(Z"). Then

D(X,f)=DyuD,.
Moreover, the mappings h;, and h, defined by

hfz)=g(z, ~1) and o) =g(z,1)
map topologieally X onto D, and D,, respectively, and X, onto
Dy=D, ~ D,
guch that
(16) ho(®) = yhy(z), for every weX,,
and, similarly, h,p(z) = yh(z).

Let F be the simple mapping induced by the involution w. Thus
F(D(X, ) = F(D,) = F(D,). It follows by (16) that F(D,) (and F(D,))

is homeomorphic with f(X). Hence F(D(X, f)) is homeomorphic with
¥ =f(X).

The space D(X, f) will be ca]led by us the doubling of X by the map-
ping { and the involution v — the natural involution of D(X,f). We have
proved the following :

THEOREM 6. Let f be a simple regular mapping of the compact space X
with the seam X,. Then the doubling D = D(X, f) of X by f is of the form

D=D;wD,,
such that Dy and D, are homeomorphic with X, and
Dy=D, ~.D,
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1]
s homeomorphic with Xo. Moreover, the simple mapping F induced by
the natural involution of D maps D onto a set homeomorphic with ¥ = f(X).
By theorem 1, this yields the following

CororrArY 1. If f is8 a simple regular mapping of a compact
space X, then f(X) is an image of the doubling D(X,f) by a simple
interior mapping.

! Now let us suppose that f is a simple elementary mapping. Then
the geam X, of f iz closed and the involution ¢ = @;X, has no fixed
points. Hence the natural involution y: D(X, f)—=D(X, ) has no fixed
points, either. It follows by theorem 1 that the simple mapping ¥ in-
duced by v is a local homeomorphism. Therefore we have

CorOLLARY 2.7 f is a simple elementary mapping of a compact space X,
then (X) is an image of the doubling D(X,f) by a simple mapping which
is @ local homeomorphism.

Corollary 1 enables us to reduce the study of cerfain invariants of
simple regular mappings to the study of invariants of simple interior
mappings. Similarly, corollary 2 sometimes reduces the study of simple
elementary mappings to the study of loeal homeomorphisms.

10. Simple regular mappings.

THEOREM 7. Let f be a simple regular mapping of a compact space X
and lot X, denote the seam of f. If pu(X) =0 and py_.(X,) = 0, then
pr(f (X)) = 0. v

Proof. Let D= D, D, be the decomposition of the doubling
D=D(X,f) as in theorem 6. Applying the Mayer-Vietoris formula
(see [B], p. B3), we have

amn PiD) = 204 Dy) — Pl Do) +7(Ni) + 1 (Ne-1) 5
where N,, is the kernel of the homomorphism
Hu(Dy)— Hp{Dy)

induced by the inclusion mapping ¢: Dg—D;. By theorem 3 we have
pu(Dy) = pu(X) and pa(Dy) = pu(X,). Since pi(X) = 0, hence Hy(D;)=0
and then Nj, = Hy(D,). Therefore r{Ny) = pu(D;) = pi{X,). Since px_.(X,)

= Pp1(Dg) = 0, hence Ny_;=0 and then 7(Nz,)=0. It follows
from (17) that
(18) (D) =0.

By corollary 1, and theorem 4, the group Hy(f(X )} is & homomorphie
image of Hy(D). Hence, by (18), 2i(f(X))= 0.
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Now, let ® be the field of rational numbers. If X is locally connected,
then the condition p,(X) == 0 means that X is unicoherent (see [1], p. 230).
Therefore, theorem 7 yields

COROLLARY 3. Let | be a simple reqular mapping of a compact locally
connected space X and let X, denote the seam of f. If X is unicoherent and
the set X, is connected, then f(X) is unicoherent.

Remark. Corollary 3 is an answer to a question posed by K. Borsuk.
An example given, by K. Borsuk and R. Molski (see [3], Example 6)
shows that the hypothesis that f is regular is essential in theorem 7 and
in corollary 3. We shall show that the hypothesis of local connectedness

~of X in corollary 3 is also essential.

Exawpre. Let (p,d) denote the polar coordinates on the plane

and p — the antipodal mapping, 4. ., v(¢,d) = (¢, #+n). Denote by K
the eirele p = 2, by D the ring 1 < ¢ < 2 and by § the spire defined by
the equation ¢ = (1+28)/(1+49). Then the set 8w (8) cuts the ring
1<o<?2in two parts A and B such that B=p(4). Let X = 4.
" Let F be the simple mapping induced by the involution 3 on I and
let f = F|X. Hence f is & simple regular (even elementary) mapping of X
with the seam X,= 8§ v 9(8) v K. Thus X is unicoherent, the seam X,
is a continuum. However, the set f(X) is homeomorphic with F(D),
whence with' D, and thus it is not unicoherent.

THREOREM 8. If f is a simple regular mapping of a compact space X,
then dimf(X)= dim X.

Proof. It follows from theorem 6 that dimD(X, f) = dim X. By
corollary 1 and theorem 5, we have dimjf(X)= dim.D(X,f). Hence
dimf(X) = dim X.

11. Simple elementary mappings.

THEOREM 9. Let f be a simple elementary mapping of the compact
space X and let X, denote the seam of f. If X and X, are ANR-sets, then
F(X) is also an ANR-set.

Proof. In this case, the sets D, and D, in theorem 6 are ANR-sets.
Since X, is closed, it is homeomorphic with D,. Hence Dy= D, ~n D,
is also an ANR-set. Consequently, the doubling D(X,f)= D, v D, is
an ANR-set (see, for example, [9], p. 260, Nr 1). According to corollary 2,
f{X)is animage of D(X,f) by a local homeomorphism. From a local char-
acterization of ANR-sets (see, for-example, [7]) it follows that f(X) is
an ANR-set. -

Remark. Theorem 9 constitutes a slight extension of a theorem
proved in an another way by K. Borsuk and R. Molski (see [3], Nt 6).
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If dim X< co; then, by using a theorem of E. E. Floyd (see [6],
p. 38, (4.6)) it my be shown that theorem_ 9 bolds for any regular
mapping f. The question is open if it is so in the general case.
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