On the factorizability of maps of 5" into "
by
I. Berstein (Bucuregti)

It is well known that a continuous map of §* into §* ig inessential
(7. e. homotopic to a constant) if and only if it can be represented ag
a superposition @ = @up;, @2 S1—F', @,: B'—+8%, where R' is the real line.
This iz an immediate consequence of the fact that R' is a contractible
covering space of 8. K. Borsuk [1] has shown that the corresponding
statement is in mo way true for inessential maps of §? into §%: he has
exhibited an example of a map which eannot be factored through R?
(the Buclidian 2-space). '

In his paper, K. Borsuk raises the question whether inessential maps
of §” into 8", which are not factorizable through R, do exist for all n > 2.
He also asks whether there exists a space X such that a map ¢: §2-82
is inessential if and only if it is of the form g.p, , where p;: 82 —+X, go: X 82
It is obvious, though not explicitly stated in Borsuk’s problem, that
X must be no more than 2-dimengional; for, without this restriction,
a closed 3-cell X with 82 as boundary behaves as required: ¢ is inessen-
tial if and only if it can be extended to & map y: X—82 and then ¢ = i,
where i: 82—+X is the inclusion.

The following theorem answers completely all these questions:

. THEOREM. There exists no n-dimensional paracompact space X, n > 2,
such that a continuous map ¢ of 8" into 8" is inessential if and only if it
is representable as ¢ = pupr, where ¢, and @, are maps of 8" and X re-
spectively, into X and 8" respectively.

The proof of this theorem will be achieved by producing a certain
inessential map @:8"->8", which is somehow related to that used by
K. Borsuk.

Let the sets on the left be defined by the condition on the right:

7~ §phere 8 At =1,

upper cap  HY: {(y, .oy Bas) € 8%Hny1 > 0},
lower cap  EL: {(#1, ..., Bnt1) € 8@pya < 0},
equator 8™ {8y ey Brra) € Opr = 0.
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The suspension Ba: §*—8" over a (a — any map 8" —=8") is de-
fined by

-

Eoa(Xyy voy Tpy1) = (yll"‘mf—[—... ey ey ynl'im'i—k...-}-mi, m,,+1)
where

/ - 7 _
(g very Tpaa) €87 ( = £ S T 2 2,O)s;Sn 8
Vay+...+ 2, Var+...+ay,
and
x
a( 7—@“‘—.,, ) /'—Z———n—z 10>=(y17---a?/n7 0)
Var+ ...+ Var+...+ab

(Ba(0, ..., 0, £1) = (0, ..., 0, £1)}.

For any o, Ea]sn-1= o; further the suspension over the identity
map #: 8”8 is the identity map 6: §"—~8". It is also easy to check
that if o is a homotopy joining a, to oy, Ee; is a homotopy joining Fa,
to Ha, and Bo(8"™)C 8" for all 1[0, 1]

Now, for n > 2, let = be a topologically transitive homeomorphism
of 8" onto 8™, 4. 6., a homeomorphism for which the sequence of
iterated images <*(y,) is everywhere dense in 8™ for at least a point
1o € 8. We suppose also that = is homotopic to the identity (*). Let
o = Fr: 8"—+8"be the suspension over r and let r be the reflexion across
the hyperplane o1 = 0; 7(&y, .oy Bng1) = (B o1y Bny ~—Fnia)e

Now construct a map ¢ of the closed cell B C 8" onto 8", sending
8§ into ,= (0,..., 0, —1) and sending F} homeomorphically onto
8" —m,. For instance choose the ¢ given by

P(@yy oey Trpr) = (20 @ns1y 20Lns1s ooy 2Bnlni1s 20} ,1—1)
for (@, vry Tnr) € B .
Set o
®(#), wely,
(p(r(a(w))), z fE'i .

From (8" %) = ¢p(r(a(6’“_1))) = @, we infer that @ is continuous. Next,
eonsider thé following maps

D{x) = ‘

p(z), mEE_’F7

(%) Dy(z) = \ <p(r(E’rt(w))), ze ™,

() Such homeomorphisms are known to exist for n—12> 2 and we can cho?se
it sufficiently near to the identity map (see [4]). For n= 1 we simply take a rotation
of §! with 2ra, the arbitrary a being irrational.
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1[0, 1], where 7= 7, Brv = o and r, == 0 (tho identily map). The ircon-
tinuity is ensured since Ev,(§" ™) C 8~ for all ¢, and p(8"™") == z,. Thus,
& is homotopic to the map &: §"-—8", given by

® we ]
B, (2) = @(w), »717
plr(w), @elL.
Clearly,

®y(0) = Plr(m)), @el”
for r? == identity. Since » is sense reversing, ita degree is -1 and we have:

Therefore @, being homotopic to Py, is also inessential.

Suppose now that X is a paracompact space of dimengion <<n, such
that a map of 8" into S™ is inessential if and only if it is factorizable
through X. The inessentiality of @ implies then

P=fy, p:8"->X, frX-8".

Both the restrictions of ¢ to B} and EY must be one-one sineo {o
are ¢|E¢ and @|,,. The sets w(E}) and ¢(BZ) are then homeomorphic
to open cells, and

p(F%) = p(BY) = p(B) (8",
P(BT) = p(BT) = p(BL) o p(8"7),
PEL B Ap(8"T) =@
(since B(E}) ~D(EL) = @),
Two cases are possible:
I w(BY) #(E2). Then, at least one of the sety Xy == u (T )-—~p(H_)
or X,=y(E%)—y(F%}) is non-void. Suppose X, = @ (the other case is
similar). X, = y(E}) —p(Z2.) is open relatively to ¢ (B%). Lot T Cy ™ (X,)

be an open cell and V=1y(U). Since y is clearly a homeomorphism on
p~1(X,), and in particular on U, the map of pairs

i (8% 8" U) = [p(8™), p(§") —V)

is a relative homeomorphism [3] (p(8"—U) C(8")—V). Consgider the
commutative diagram of exact sequences:

0 —H" 8", "~ 1) 5 B 8Y -0
o * Py
H{p(8"), p(8")—V) B B (p(8")
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where H" are the (ech cohomology groups with integral coefficients
and v*, jf are the homomorphisms induced by y and the inclusion maps
i1, fa- Since 8"—U is a closed coll, H"Y(8"—U) = HYS"—U) = 0. The
tirst vertical map is an ésomorphism onto due to the invariance of the
Cech cohomology groups with respect to relative homeomorphisms [3];
s0 iy also jf. We infer that the second vertical map

y*s H'y(8™) >H™(S")
is onto. ‘

IL p(EY) = p(BL). Wo claim that for all » e B2, (@) =ylr(c(2)).
Indeed, there must be & point &' ¢ i such that p(e') =p(w); it follows
that G(a') == O (@), whence &' = r{o(®)). The continuity of y yields y(x)
= qp(r(a(w))) for @ ¢ B, whence also for z 8" On 8", ro =1, so
that (@) = p{r(@) for @S The point y, € 8%, for which {z%(y,)}
is everywhere dense in ", satisties p(yo) = p(r(¥) = .= z(r_"(go)) = ...
The set y~*{p(ye) D {F"(yo)} is closed, whenee v~ (p(yy)) D {TH(yo)} = st
and p(8") = p(y,). Since p(8™) = FHe ), it follows that f‘l(mP)
= p(y,). Together with the obvious fact that f]w(,ﬂ) is one-one, this
yields that

- 8y (8™)

is a homeomophism. Therefore
(f,—-l)*: I:I'IL(S’n) _'_>'H7L(1P(S1b))

is an isomorphism onto:
Since dim X <n, H™"(X,4(8")) = 0 and the exact sequence

2'(X) S B p(87) =0

implies that ¢* is onto (32 p(8™)~~X is the inclusion). I_Jet g=9 _in the
firgt case and g = f7* in the second. The composition g4, which will also
be denoted by g,

g 8" =X
induces a homomorphism

g H'X)~H'(8")

which is onto (whence H™X) and g* are 5 0). .

Let « ¢« HYX) satisty g¥%(a) 0. From Dowker’s extefmon to para-
compact spaces of the Hopf clagsification theorem [2], it follo‘ws that
a map h: X—8" with cohomology degree o, i. 6., such that h*a)=a,
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exists, where o iz a generator of the group H'(8")~ Z. It follows that
¢*h*(a) = 0, whence the homomorphism

g ¥ = (hg)*: H™(S™)—-H"(8")

is nontrivial. This proves that hg is an essential map, contradicting the
assumption that each composition kg with g: 8"—=X, h: X —>S8" ig in-
essential.

Remark 1. In particular, the map & given above yields an exarmple
of an inessential map of 8™ into 8™ which i not factorizable through R".
Indeed, setting X = R" and assuming & = fy, v: §"=F", f: R"—+8", we
would get as above H™(R") £ 0, which is absurd.

Remark 2. If we choose v sufficiently near to the identity, we get
|® () —DPy(m)] < &; butb it is easy o check that the map @, (sce () can
be factored through R". This shows that the set of maps which are factoriz-
able through R" is nof open in the set of all inessential maps of 8" into §".
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After this paper had been submitted to the Pundamenta, professor K. Borsuk kindly

informed me that H. Hopt had already communicated to him the solution of pro-
blem 1 of [1].
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Note on dimension theory for metric spaces *
by

J. Nagata (Osaka, Japan)

Recently, a dimension theory for general metric spaces has been
established by M. Katétov and by K. Morita (see [4] and [5]) independ-
ently. They have extended the sum, decomposition and product theo-
rems to non-separable metric spaces and have shown the equivalence
of the Lebesgue dimension and the inductive dimension (*). On the other
band, the following theorem of P. Alexandroff and P. Urysohn is well
known:

In order that a T, -topological space R be metrizable it is necessary
and sufficient that there exists a sequence B> B > B, >BE > ... of open
coverings such that {8(p, Bp)m =1,2, ..} () s a nbd (neighbourhood )
basis for each point p of R.

The purpose of the present note iy to refine this theorem to a theo-
rem concerning n-dimensionality of metric spaces and to develop the
dimengion theory for general metric spaces. In §1 we shall prove that
Alexandroff- Urysohn’s theorem turns into & theorem agserfing a ne-
cessary and sufficient condition for n-dimensionality if we add the con-
dition order B, <n-+1 (m=1,2,..) to the original condition. Further-
more, concerning that theorem it will be shown that we may replace
order B, <n+1 by Alexandroti- Kolmogoroff’s length of B, <n+1
(see [1]). In § 2 we shall apply the result of § 1 to the stgdy of t.he con-
nections between dimension and metric function. § 3 contains apI?hca,tmns
of the result of § 1 to the embedding of 'n~d.imensim‘aa1 ¥netmc spaces
into products of 1-dimensional spaces. The final section is devoted to

au*’l‘io;o—l:t—e;m of this paper is a development in detail of our brief notes pub-
lighed in Proc. of Japan Acad. 32 (1956). ] ] )

(t) ind &im@ = —1 for a vacuous set @, and inddlml?:g n if and only if for an{
pair of a closed set ¥ and an open set ¢ with T'C & there exists an open set U such tha
FcUc@, dimB(U)< n—1, where we denote by B{U) the boundary of U. e

T8 Slps D)= U (V|p ¢V « B} for a covering B of B, 8(4,T)=U TWn ?; .
V ¢} for a subset A of B, T*= {8(V, DYV ¢V} B is called & star-reﬁnefnent o "
if T*< 1. The notation of this paper is chiefly due to [8]. See also [2] with respec
to the notions.
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