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Note on dimension theory for metric spaces *
by

J. Nagata (Osaka, Japan)

Recently, a dimension theory for general metric spaces has been
established by M. Katétov and by K. Morita (see [4] and [5]) independ-
ently. They have extended the sum, decomposition and product theo-
rems to non-separable metric spaces and have shown the equivalence
of the Lebesgue dimension and the inductive dimension (*). On the other
band, the following theorem of P. Alexandroff and P. Urysohn is well
known:

In order that a T, -topological space R be metrizable it is necessary
and sufficient that there exists a sequence B> B > B, >BE > ... of open
coverings such that {8(p, Bp)m =1,2, ..} () s a nbd (neighbourhood )
basis for each point p of R.

The purpose of the present note iy to refine this theorem to a theo-
rem concerning n-dimensionality of metric spaces and to develop the
dimengion theory for general metric spaces. In §1 we shall prove that
Alexandroff- Urysohn’s theorem turns into & theorem agserfing a ne-
cessary and sufficient condition for n-dimensionality if we add the con-
dition order B, <n-+1 (m=1,2,..) to the original condition. Further-
more, concerning that theorem it will be shown that we may replace
order B, <n+1 by Alexandroti- Kolmogoroff’s length of B, <n+1
(see [1]). In § 2 we shall apply the result of § 1 to the study of the con-
nections hetween dimension and metric function. § 3 containg applications
of the result of § 1 to the embedding of n-dimensional metric spaces
into products of 1-dimensional spaces. The final section is devoted to

% Tho content of this paper is a development in detail of our brief notes pub-
lished in Proc. of Japan Acad. 32 (1956).

(t) ind &im@ = —1 for a vacuous set @, and ind dim B < n if and only it for any
pair of a closed set ¥ and an open set ¢ with T'C & there exists an open set U such that
FcUc@, dimB(U)< n—1, where we denote by B(U) the boundary of U.

) 8lpsBy= U {V|p <V «V} for a covering ot B, 8(4, B =U{FV~4£0,
V ¢} for a subset A of B, T*= {8(V, DYV ¢V} B is called & star-refinement of U
if T*< 1. The notation of this paper is chiefly due to [8]. See also [2] with respect
to the notions.
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the embedding of »-dimensional metric spaces into a product of Huclidean
{2n +1)-space with a zero-dimensional space and to its modifications.

Throughout this paper all spaces are metrie or metrizable, and all
coverings are open, unless the contrary is explicitly stated.

§ 1. The main theorem.

Depirron. For two collections U, W' of open sets we denote by
W -2 W the fact that U C U’ for every U < W and for some {7’ ¢ U,

Drmyrrion. We mean by a disjointed eollection a collection W of
open sets such that U, U’ ¢ i and U# U’ imply U~ U == @.

Temorem 1. In order that dimRE <n for o metric space R & 4
necessary ond sufficient that there emist m--1 sequences Wi .» W ..
(i=1,2,..,n41) of disjointed collections such that {ufn!z' a1y i, fA-1
m=1,2,..} is an open basis of R.

Proof. If dimR = 0 (3), then by [5] there exists u soquence B,
(m=1,2,..) of locally finite coverings (*) consisting of opon and closed
sets such that S(p, By) (m==1,2,...) is a nbd basis of each point p of R.
Liet By, = {Vola < 7}, then we define a sequence of coverings by

By = Vo U Vyla < 7}
?

S

and

1:‘%1{: 2:111/\9-%1 ua’*uw/\%ﬁv---
It is clear that U, > U, > ... is a gequence of disjointed collections, and
{Wpjm=1,2, ..} is an open basis of R.

Conversely, if there exists a sequence U, > U, > ... of digjointed col-
lections such that {Y,lm=1,2,..} i3 an open bagis of R, then for an
arbitrary point p of R, p e U ¢ 1, implies

UnU'=@ for U with U U’ e,
and p ¢ U for every U e, implies

M@ Wi =1, .., m-1; S(p, Wy) 540} == p

by the fact that {W,lm=-1,2,...} is an open basis of B, and 20, = Wy g 2> ..
Hence each U, is locally finite and consigty of open and. clo
hence dimR = 0 follows from [B].

Now we proceed to n-dimensional cages. Lot dim < n; then we
can decompose R into n-+1 0-dimonsional gpaces By (i==1, .., n-1)

sed soty, and

(") From now on we assume I # @,

(*) We call O a locally finite covering if every point of & hus somo wbd inter
decting only finitely many elements of .
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by the general decomposition theorem due to Katdtov and to Mo-
rita, . 6., .
N
R=JR: dimBk;==
=1

Then there oxists a sequence Bi > B} > ... of disjointed collections of B;
guch. that {%in\m == 1,2, ..} i8 an open bagis of R;. As is obvious from
the above discussion for 0-dimensional cases, we may agsume that every
BT covers Ry, Wo put Bl == (V.mla e A} and take the maximal positive
number & for cach x eV, such that 8 (@)~ R;C V,n (%). Furthermore
we define :

e(my @) min(ljm, /2), U= U {Sona(ol® € Vim}
" ufn = {Uuml aed}.

Then it casily follows from > ‘:Bé ... and from the disj9intedness

of B/ that Wi Uk ... and each 1, 18 o disjointed collection. Next
m ! L - - .

we take an arbitrary point « of B and a positive number 5. We can select

positive integers m, 1 such that

b
ojm < 8, Lwm, weVyCSyn(e) for some VaeDBi.

Sinece for thege integers
e U“z C b'g/,,.(w) ,C_ Sa(w)

is obvious, it follows that (Whli-= 1, .., n+41; m=1,2,..} i3 an open
basis of R, ) ; .

Conversely, if B admits # 4-1 sequences 111. > > o (0 = 1, .. n+1)
gueh that {Uhlé==1,..,n+1;m=1,2,..) is an open basis of R, then
wo define m--1 subspaces RB; of B by

Ri== 0|8 (w, W) (m=1,2,...) is a nbd basis of z}.

tongidering 1, o disjointed collection of Ry, {1[,’},Em=‘ 1,2,. ...}1is ::
open busis of Ry hence dimI;-= 0 follows from the 0-dimensional case.

7L
Thus we deduce dim R « n from I == };{ Ry.

TiorsM 2. In order that a Ty-lopological space I be_ @ mfmzable
space with dim R = n 5 18 necessary and sufficient that there exists _(f .sleq;wnm}:
Byz BE > Vy o B o> . 0f open coverings such t}zat {S(p, Bm)|m —58 ) ,m
is a nbd basis for cach point p of R and such that cach set of Bmi
dersects abt most n-| 1 sets of By,

) 8, () {ylo (e, y) - the distancs boetwoon & and ¥ < b
f !
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Proof. Neecessity., If R is a metric space with dimR - 7, then
L N
by the general decomposition theorem 1 == | Ry for some 6-dimensional
fem,
spaces By (i==1,..,n+1).
(A) Let W= {Uaecd} be an arbitrary locadly finite covering of R;

then there exists a digjointed covering By = {Vae AY of R; such that
¥.C U,. By putting

Vi= U {Bumplt)wel,} for e(w) >0
BirBun(@) CVy  Siml) C U,
we get a disjointed collection Bj== {Vila e} of B wuch thatb B« .

such that

N-kL . . ) .
Hence B'==1_J B{ is a loeally finite covering of I of order -.m -1 and
d=1

is a refinement of 1 (). Hence there exists an open covaering B (V|8 B}
of R such that V5 CV; for B’ = {VilB e B}. It is easily soen from order
B'<n-+1 and from the property of B” that every point p of I has
some nbd intersecting at most n -1 of the gets bolonging to B; we eall
such a covering to be of local order <n--1.

Now let ;> > ... be a sequence of coverings of R such that
8@, Up)lm==1,2,..} is a nbd basis for each point p, then from the
paracompactness (7) of B we may assume that all W, are locally finito.
Henee from (A) we get a refinement By of U, such that the local order
of Uy <n-+1. Furthermore, we can select locally finite coverings P, Q
such that P* < B, and such that every set of Q intersects ab most » -1
sets of B;. Since U APAD is locally finite, from (A) we obtain a re-
finement B, of W,APAQ with the local order of B, <n-+1. Then it
follows clearly that B,< 2, B¥< B, and each get of B, intersects ab
most n+1 sets of B,. By repeating such processes we obtain a sequence
B, > Bf > By > Bi > ... of open coverings such that B, < i, and such
that each set of B, intersects at mogt # +1 of the sets belonging to B,,.
Since {§(p, Up)|m =1, 2, ...} is a nbd bagis of D, 80, Buw)m=1,2, ..}
is also 2. nbd basis of p, and hence the necessity is proved.

Sufficiency. The metrizability of such 2 space in obvious from

Urysohn - Alexandroff’s theorem. We divide the proof. of n- dimensionality
into three parts.

(") We call T a refinement of U if @’
U el with UDV.

(] Evgry fully normal gpace is Daracompact by [6]. B is called paracompact if
overy covering of B has a locally finite refinement, and it is called fully normal if

every covering has a star-refinement. It is well known that every metric space is
fully normal.

<U 4. e, for every V « 0’ there oxists

Nole on dimension theory for metric spaces 145

1. If B> Bi> ... is » sequence sabisfying the condition of this
proposition, then it Iy easily seen that for each point p of R
8" (9, Buyrinie) (%) is contained in some set of By... Therefore each
8""(p, Brpgryniz) intersects at most -1 sets of B,. Putting

Wy = SBL—H‘M—I)(H# 3) (m = 1,2,..) y

we get a sequence Uy > UWE > Wy > U > ... of open coverings such that
{8(p, Un)lm =1,2,..} is a2 nbd basis of peR and such that each
8" p, Wp.q) intersects at most »-+1 sets of MU,,.
Let Uy = {Ua << 7}; then we can prove first that there exist open
sots Uﬁ such that
1 . . ) . X
VU UiC U, UiAUL =0 for asp
51

and such that
Uy,DMely,, implies MCU, for some U,.

To prove this we define UL (a < ) by induetion such that
T--1

1 Uu.Lcu,

=
2 Uln U/', - for f<a- -
3) U,DMel,,, implies MCUL forsome UL,
1) Ul Wr g (i=1,..,n+1)
where we put 85 - {p|S’“(p, W,uq) inbersects some % sets of U, (y > a)}
(F=1,.,n+1) and Wi=SEo 8™ o .. o80T
For a==0 we define

Ub=U,, Ui=0 (i==2,..,02+1).

Since S(p, Up1) intersects at most n+1 of U, (a < 1), UsnWitt= 0
is obvious from the definition of Wit'= 8™, and also the other three
conditions are obviously satisfied. .

Lot us agsume that U,'; are defined for f< a; then putting

Vies L) US and  Ub== U ~VioWi™™ (i=1,..,0+1)

e ‘
wo gob Ul satistying 1)-4), Since the validity of 1), 2), 4) for .U,, is
¢loar from the abovo definition, we prove 3) only. If M e, ; i3 an
arbitrary sot contained in U,, then

el . n1 w-l
Mo "VZ} 1 _C_ UinW." "= U8

) 81, B) == Sp, V), " p, V) == S(8"(p, T), ).
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On the other hand U,~ 8% = @ is easily seen from the fact that every
8M%(p , Wpyy) intersects at most -1 sets of U, (y 3 a). For lot @ ¢ Uurn 8™,
then 8™z, Wypyq) intersects U, and some n-+1 sets of U, (y=- a), which
ig impossible. In consequence we, get M WP 2 @8, Tlence it follows
that either MAW: = @ (£ =1, ..., n-F1) or MAWI ™ o 68, M AW
= @ for some ¢ such that 2 < n—i4-3 < w1

If the former is the cage, then M~Wi=: @. Since U,C8;CW} is
obvious for every g < a, and since Uy '~nWji= @ (f < a) from the as-
sumption of induction, it follows that U.~Up*'= @ for every g < a.
Therefore U, V"= @, which implies MAVi' = @. Combining this
with M~W.= @ wo conclude that MC UL

If the latter iz the case, 4. e.,

Ye MNWZ_’H.Z#Q7 ﬂ[r\W‘Slwiy}‘“ o (‘d, LESE RN @|3 win 1 - 1 ,

then y e 8%**** for gome k>0, 4.e. 8§ "'* ¥y, Wpya) intersects some
n—i+2-+k sets of U, (y>a). Accordingly 8™ %z 11,..,) intersects
n—1i+2-+k+1 sets of U, (y > a) for every e M. ILlence

we 8y C WY for every < a,

and hence "MCW; ™. Since Ui AWy .20 (f<a) from the as-
sumption of induction, we get MAU ™ =@ (f < a) and consequently
M Vf,"1= @. Combining this conelusion with the assumption M~
AWE = 0 we obtain

from the openness of M. Therefore MC U™ Thus the condition 3) is
valid for o, and hence we can define U (i=1,...,n+1) satistying 1)-3)
for every a < 7.
2. Since
Whis < Uy < {Ufll’b = 1,.., 0+l a1},
if we put

W= (U8 (BT}, Uy, )l = 7},
ntl
then ¢L=J1 Uy, is an open covering refining ,,, and Uy, U, € N, and Uy £ U,
imply .
S(Uyy Wyni2) ~ 8( Usy Wingo) == @

by condition 2) of Uy. From now on let us denote Wy, and Wi, by

Uy, and W, (m=1,2,..) respectively for brevity; then W, and Uy
satisty "

icm
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nt1
(B) um~H << LJI u-fn < um,

(B’) S(Uu umH)"‘S(Um Upmps) =0

it Uy, Uyelly, Uy#U,- g
For o fixed ¢ and for every U e Wy, we define inductively

S(U) == G U) = {U'|U" ¢ Upps 5 for some positive integer j,
S( U’y u?.lc-l-}'lj) ~U# Qj}a

SN U) = | J{S(UNU @MU} (m=1,2,...
(C) ¥rom now on we denote by U«-U' the fact that

S(U', Usper 1) AU £ 0 for U eWuayey, Ue Wpe—s -

Then
G™U) = {U'|UsUy<-Ups- ... <= Up = U" for Uje W1 bnti
(G=1,2,.) 0<n(l) <n(@) <. <nlm}.
Furthermore, we define

S(U) = U (T[]0 ) & (D)}

me=1
The principal object of the second part is to prove that
) Uy, Use Wi, and U,#U, imply S(T1) S{U,) =9,
(i) Uy e Wi and U, e Wiy for some even L > 2 imply S( U)CR(Ty)
or S(U)~8(U,) = 0. :
To prove (i) we take an arbitrary Vel JS™UL). I Fe &'(U,), then

m=1

there exists a sequence

Uy = Ve VeV o < V=V of Vie uék—l») 2(p) (p=0,1,.., 9)

for some even numbers #(p) (p=10, 1, ..., j) such that n(p + 1) =n(p)+2.
Bspecially we notice that n(1) > n(0) -+ 2= 2. Since U—14nm< Wor—14-nim)—1
and 15, < U, by (B), from (C) combined with the above remark we
eagily see that » :
Vi C8(Vyy Warmrinip) G A (Viery ot cni—n) © 8 (Vg Uskring—2)
C .. C:)S’(‘fl, ugk 14 n(l)) g U’ for some U'e uﬁk—l-{—] .
Sinee

U' AUy D 8(Ve, Unemrynr) ~ Uz 0 Dy the fact that  UyVy,
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we obtain.
(D) VCU for every Vel)S"(Uh), Uyely., and for some
- =
U'e quﬂ with U'~ U’l :75- [%3
=]
Tt follows from (D) that V; C 8 (Uy, Wap—i41) for every Vo Viel ) &™(Uy),

- M=
Therefore we can conclude that

(E) S( [T]_) C S(U;[, uzk_1.1-1) .f()l' overy U]_ € 11‘_.;;-,"‘1 .

In consequence, if Uy, Use Wy and U, #T,, then by (B') we can
conclude that S(U)~S(T,) = @. As iy casily seen, it follows from (1)
that

(B) {S()|U e W} = Wl s
which will be used later. .

Next we proceed to the case of (ii). T §(Uy) S (U,) # ¢ for U L€ Mgy
and U, e UWh.y1, then there exist somo Vi, e &™), W,e S U,) with
VoW, @ and consequently two sequences

Ulr: VO\'-—V1<~VQ~Z—— vee Vj, of ‘V:[E l[ﬁk,“,,,(;) (7 : U, .1‘, saay 1)),
Uym== Wy W« Wyer ... «- W, of W;e Wt 11, I LA LT )
We take j » 0 such that

- L4-n(fy < 2k~ 1T < 2k -1 {n(j | 1);
we notice that

(@) 2%—1+1+2 = 2%~T4n(j+1),
because 1 and n(j--1) arc even. Sinco 2k 1--n(j) = 8k--1 -1 implies
8(U,) =8V, C8(Uy) by (i), we agssume

(H) 2b-14a(j) <2k—1-+1.

If j=p, 4. e 2k—1--n(p) < 2k-~1 14 then since by (D) there
exists W' e Uspoyqr4r Such that W' I W, and W'AU,+ 0, wo geb
8(Usy Uoprq) "V # @ from V,, AW, 60, 4. e, V,< U, Ience S(17,)
C8(Vy) C8(Th).

If j<p, then by (D) there exist W' e Wup gy and Ve Wor g in
such that

(I) W2OW,, WnrUss, VIOV, VYAV /sio.

(If §4+1 == p, then we put V.= V,.)
Bince Vi<« Vi, there exists V" € Wopr | ny 1o with
@) V'AVia#0, VIAV£0.

Therefore we get
(K) 'VIUVJ'»HU V' e uifkﬂ.-i nty 1) < uj'.’.ln_-l-l Ll
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from (G). Since VAW 2V AWy 5 6 from (I), it follows from (1), (J)
and (K) that '

WOV OV V' =W e W ii1sy < Wor—141
and
WNUDW AU, #£6, W'A VidV'AV; 40,

Thug we deduce V; <« U, from (H) and consequently S(U,)CS(V;)CS(U,).

3. We put &= {8(U)| Uelpy} and define induetively open
collections S, (j=1,2,..) by

Cmgr == Gl (8] 8 € Glyyrs 8 3,; 8 forevery 8 &L},
Gi=1,2,..)

7 . . ¢
'm.G:n g1 ;)LG::L»I-}V {S|S € 6?}14-7‘4—1, 8 g& 8’ for every 8'e 77),6})1-}—7'}
. '3 o i . )
for a fixed m. Then Ty, = \J,,Gh; is a disjointed collection from (1),
j=1

(ii) of 2. It follows from

N

. i . .
i — % 7
m 167114-1-{-9' QkU 6m+1+k < 7ngm+1+j
=0

that
i o q < ¢ 0o : .
1
(L) Im p1 == { m-H.Gm Pl < U meH < U meM = zm .
i1 j=2 =1
Sinee
1 : n+1 :
) G > U Uagpy > Uy
Fusl i=1
. N1 i, X
by (B), \J €, is an open covering of R; moreover it is a refinement of
im1

. a4l
Win1 by (F). In consequence {8(p, I Sn)im=1,2,...} is & nbd basis
i1

for ¢vory point p of B; hence it follows from &, C Th, that {Thli =1, ...,
w15 moe=1, 2, 0.} is an open basis of R. Combining this conclusion
with (L), we get n4-1 sequences T > Ti> .. (f=1,..,n+1) of dis-
jointed collections such that {Th} is an open basis of B. Thus we con-
clude that dimZ -~ # by Theorem 1.

From this thoorem we casily obtain the following main theorem.

Truorsm 3. In order that o T')-topological space R be a metrizable
space with UmR <. n @t 4y necessary and sufficient that there exists a se-
quence By > BI - By > By > ... of open coverings such that {S(p, Vo))
moe== 1, 2, ..} 48 o nbd basis for each point p of B and such that order
By on-f-1 (ms=1,3,..).

Fundamenia Mathematicae, T. XLV, 11
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Proof. Since the necessity is contained in Theorem 2, we prove
only the sufficiency. Let B, = {Vi|a ¢ 4}; then we define U, by

(8) U= U8V, B) CVo, Ve By}
Since BE < B,, Uy = {U.|a e 4}is an open covering of K such that U, = B,.
Furthermore we notice that

(B,) each set of B, intersects at most n 41 sets of U, by (A) and
the condition: order B,, < n-1. :

Next, we assume B,= {Vs|f ¢ B} and define U, by

Up= U ISV, B)C Vs, V e Bil .

Then U, = {Us|8 « B} is an open covering of R, and it follows from
W < B, that

We notice that

(B,) each set of B, intersects at most n-+1 sets of 2.
Thus we can repeat this process and get a sequence

W8> WUy B> U > U > By > .

of open coverings such that

(Bm) each set of B, intersects at most n 41 sets 0f Wap—y .
Hence by (By) W > U > Wy > UF > ... is a sequence such that each set
of Uspm .y, Intersects at most n 1 sets of Way—; and guch that {S(p, Usm—1)|
m=1,2,..} is a nbd basis of p. Therefore we conclude that dimR - n
from Theorem 2.

Firgt, let ns apply our theorem to the notion “length of & multi-
plicative covering” due to Alexandroff and Kolmogoroff (see [1]).

DerinITION. We call a covering W a multiplicative covering if every

W Vo> B> U > Wy > By

k
non-empby’ intersection M\U; of elements U; (4==1,..,%) of U is an
i=1

element of 1. :

Dzerixirior. The maximal number n such that there exists a se-
quence Ulﬁ Ugﬁ ﬁUn of elements of a multiplicative covering 10 is
called the Ilength of 1.

DEFINITION. We mean by the rank of an element U of n wwulti-
plicative covering U the maximal number r such that there exists a so-
quence U == UlﬁUzﬁ o B U, of elements of 1I.

TrmorEM 4. In order that a Ty-space B be a metrizable space with
AmRB < n it is necessary and sufficient that there exists sequence
Wy > US> Uy > W > ... of maltiplicative coverings with length . n+1 such
that {S(p, Walm=1,2,..) is a nbd basis of p.
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Proof. If dimR <« n, then there exists, by Theorem 3, a sequence
Uy > U > Uy> ... of coverings of order < n--1 such that {8(p, Uy)]
m=1,2,..} is a nhd basis of p. Since U, plus all the intersections of
a finite number of elements of 1, is obvionsly a multiplicative covering
with length <<% +1, the necessity is valid.

Let us assume the existence of a sequence satisfying the condition
of the proposition. If we denote by U,, (a € 4,) all the elements of u,
with rank 7, then

U= {Unlaed,, r="71,..,2+1}.
We define V§ (i=1,..,n+1) by

Vid=Un, V0 ={@|8 W) CVE e (1=2,3,.., 1) ().

It follows directly from the above definition and W¥ < U;_, that

P '] Yoy
(B) W< {Vilaed,, r=1,.,0+1} (i=1,..,0n+1),
© ST, UYCVE"  (i=2,..,0n+1).
Next we define M,, (r=1, ..,2+1) by

M=V = U,

D) M=V = {8V, Wap)a € A (S (VY i)l e Ay} ..

GV W) laedy)  (r=2,..,0n+1).
Let us show that ,
EB) Wppo< Wy = {(Mpfaed,, r=1,..,0+1}.
Let U be an arbitrary set of U,..; then by using (B) for i =n+1 we
get VO with U C Ve, U C v follows from (A), and hence

W, s < {Vﬁ?[a ed,, r=1,2,..,n41}.

Therefore we can find for every U e U, the minimum number » such
that 7 CVI). Mo prove (B) we show that

TSV, Uy ) =0

for this » and overy & with 1 <k <»r—1 and for every aedy. X we
agsume the contrary: UnS(VE, W) # 0, 10k <r—1, aedy, then
we have, from U% ., < U, (A) and (Q),

UCRWVEP, W) CviCvid,

(") A1° deuotes ihie interior of .
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which contradicts the character of r because % < 7. Ilence wo must have
UV, Wps) =0 (1 <k <r—1, aedy). This combined with T CV
for a definite a ¢ 4, implies U C M,, by (D), proving (E).

Now, to show that :

(F) order M <n+1,
we prove

(G) MunMyz=@ for as£f.
In the case a, S ed;, o= f implies clearly

My~ M 1= Ut U]/I == P H

because the ranks of Uy, and of Uy are 1,
-To show the same assertion for » > 1, we prove that
. xn 5 o e
(B) UwnnUp= Uw for a,fed,, yecAy implies V;‘Zz)mVr;l) v Vy(-”g'-
First, V. CVE AV is obvious from the definition of V{y. Conversely,

suppose that « € V5o ~V3; then there exist nbds P(w), @ (x) of = such that

S[P(w); uz) C U, S(Q(m)s uz) CUp.

Hence
S(P (%) ~Q (x), 1I2) CUunUpy=Up,.

This means that x e V), proving V= V& VY. Repeating this pro-
cess, we conclude that VI =Vav A%,
‘We now retwrn to the proof of (G). By using (I} and (D), we have

Mo n Mg CVD AV — S VD, U)o € Ay} o (S (VY Wn ) € A}
e WSV oy Wno)lo e Ay} CVIZ ATV — SV, Ways) = 0

for +' determined by U,an U= U, because v’ < r and consequently
BVE, Wnso) CUBS VR, Uniala e Ao oo GES (V0 Wy )aedrs} .

Thus (G) is proved for r =1, ..., n+1. Since Py == {Myae d,, r=1,..,
n+1}, the assertion (F): order My < n--1 follows directly from ().

Bince 9 < Uy is obvious,’ from (D) combined with (1) we obfain
a covering M satisfying

Wpyo <My < Uy,  order Oy < n-1.

Repeating the same process, we get a sequence M, (mo=:1,9,...) of
coverings of order < -1 such that

Wyt mry < Mo < Wiy renmry -

Therefore we have, from Theorem 3, dim R < n.
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§ 2. Dimension and metric function.
o(, ¥:) <& () (=1, 2, 3) in Euclidean 1-space
for some two points y;, y; of the three Points g, ¥s, ¥, and the same is
also valid for seven points y; (i = 1,..,7) and a point p of E,, and that
the number of y, having such character increages with the dil’nension n
of B,. To begin with, we shall characterize generally the dimension of
a metric space with a similar property of metric function.

THEOREM 5. In order thet dimB < n for a metrisg
necessary and sufficient to be able to define o metric ol
the topology of B such that for cvery ¢ >0 and for

We know that if
By, then o(yi,y;) <e

ble space R it ig
1Y) agreeing with
every point x of R,

olSel@), i) <& (i=1,..,n+9)
imply
oy Yg) < e for some i, 5 with T5£4.

Proof. Necessity. 1. Let B be a metrizable Space with dim R < n;
then by Theorem 2 there exists a sequemce > Mi*> [, W~ ’
(U** = (U*)*) of open coverings of R such that 8(p, UWp)m =1, 2,..
is a nbd basis for each point p of B and such that each §%(p, Wt1) inter-
sects at most » 41 sets of U,,. Now we define Smgngeem (T) for 1 < m
< My < oo <ty and for T el by ’ '

B U) = {8, W )nU##83, U ¢ Wy} = ST, Uny),
S1n9,...,711p( U) = U {UIIS( U/, u:mp) m Smg,...,mp_l( U) # 0, e ump}
= S2(Smbm’,.np_1( Uy, Hmp) s :
and .
S'mg,‘..,mﬂ( U) =U for P = 1.

Furthermore we define open coverings of R by

Gml == lIml 3 Gml,...,m’, = {sz‘,_,,mﬂ( U)l Ue Hml} .

‘We ghow firgt that

1 11 1,
(A) g T T g 2 g Tt 7 implies  Gm,...m, > Sy,..1,-

Since in the case p > g and my==l (i ==1, ..., q) the validity of (A) is
evident from the definition, we concern ourselves with the other cases
only. We can easily prove the important proposition:

B) Sk {U) ST, Uy,) for every U’ e Wy,

(*) We denote by ¢(w,y) the distance of x and y; see (5).
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which will often be used in the remainder of this proof. For it follows

from k; << &y << ... < k, that

We, > Wi > Wy, > U > > WET,
and hence

St T') C8S iy, 2

') ] ulcr) __C_ S(Slﬂg,.u,k’._ﬂ( UI); uk,._u)

C o C8(SK(U"), W) ST, Wy
Therefore, if

1 1 1 1
é_;n'i + aee + é;,“p > é_l; + e _l‘ é’ll;
and
My= Ty, Mp=lo, evv, My_y= Ly, My<"l; for & definite ¢ with 2<li-ip,q,

then from (B) we have
0) Sppy,i (TN E ST, W) C U” for every U’ el and for some

U’ ¢y, I further this U’ satisfies Sp,.5 (U) U’ for Uell, (M),

then from (C) we have

D) U A S (T) = U RS,

pelia U) 7D
Therefore by (C) and (D) '

Slﬁ,.--,%(U)—__Slg ..... I 1( )U[U{Sliu g U )ISL’ Sl 1 U)"‘ U’ euh}]cém& ..... mg,( U)7

proving &, ..., 1, < Gml,...,mz, .
. In the cage of m, <l

8.1 LTV ST, W) C U C Sy, (U”)

,,,,,

for every U’ e and for some U” ¢ Uy, follows directly from (O). This
completes the proof of proposition (A).

2. Now we define a non-negatively valued function o(z,y) on
RXR by

(¥) o(z,¥)=inf {1/2™ 4 .. +1/27"1’ y eS8z, Sy ,,,p)}
el y)=1 if yéSz, Gml‘--»mp) for every m; (t=1,..,1).
Let us show that o(x,y) satisfies the axiom of metric function.

() We use the notation 4« U’ in a somewhat different sense from that of the
proof of Theorem 2, 4. 6., 4« U’ for U’ ¢Y; means §(T’, U)~4A @ in this proof.
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Sinc(.z {8(p, Un)m=1,2, ..} is a nbd basis of p, o(z, y) obviously
agrees with the topology of R, 4. e., {S.(z)z > 0} is a nbd basis of each
point p of R.

To prove the triangle axiom g(z, ¥)+o(¥,?) , %) We assume

> o
that o(x,y)=a >b= g(y,2). For an arbitrary ¢> 0 we can select
My, ooy Mpy by vy Iy SUCh that

T my <o <<y, 1l <l <y,

ate> 12" 4 £12™ e, b4e>1/20 4 4 1/25 )

and such that
12™ e 1277 2 120 . 4 1/2%
Since y e 8(#, Sumy,my)y 2 S (Y, Syy,.p) ave obvious from (F), we assume
(G) x,ye ‘S'mg,...,m,p( U), Ue Hml; Y, 2e SIQ,...,Z,)(V)y Vely.
Moreover we notice that we can assume
(H) p,¢=2, my>]
without loss of generality.
(i) Let us consider first the case of m,=1,. Since S,,,_A,_,,,g,p(U)
C8(U, Wyy) and 8,1 (V) SV, Uy) = S(V, Ui, hold by (B), it follows

200l

from (G) and WH: < um1—1 that
z,2e8(U, W )8V, U, ) CW

for some W e, ;. Hence 2z eS8 (x, &,,_:), which implies

olw,2) <1/2™M71 <1/2™M 4. +1/2" 4 1/2% 4 4 1/2 <a L b+ 2
because my = 1,. ’ )

(ii) To conmsider the case of m, < I, we notice that there exist two
sequences .

() U=Ui« Uy < Up, V=V, <V, .. <V, with Usely,
(t=1,,p), Vyelly (j=1,..,0), y«UpnV,and sueh that

(12) xe Smﬁ ..... n%( Ul); e SI,,..,,IG(VI) .
By (M) we can take ¢ » 1 such that m; <[ < M.

a) In the case of I, < m,;,, we can select 8,8, e Ui, such that

yeSnly, SnUi#06, SinV,#0.

For it follows from 1, b > h+1 that Upwre Wpy,, < Wyia a0nd Vo e Uy
< ull.m Hence

Ye Sm;_,,;,,...,m,,( U‘H 1) _Q S( Ui+17 um(+1) g_ S( Ui-l-l’ uh 'rl) g. S’
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for some S, ¢ W, and
I Y € 8y, 1{V2) C8(Vay Uy) C 8,

for some Sy e Ui 41 follows from (B). Then Sy~ Uis=@ and 8~V @
are obvious because U< U1, Vi<V, On the other hand, since
Ye8inS#@ and W, <y, S;ulCW holds for some W ey,
Hence S(Vy, W)~ Ui @, 0. 6., U< Ve Uy, We can consider 8y, ( Uy
because U; e Wy, and m; < by, and hence from the above discussion we get

3 2e84,.1(U0) CBmypomiypd{ Un) -
By (1) there exists a sequence

(K) UyUbs . < Ups o with Uje U (j=2, .., p)
It follows from (B) and from I < miy, that @ e 8(Uipr, Umy,,) &8 for
gome 8 ¢l Sinee 8"~ Ui £ @ by Ui Uiy, wo got @ € Simgymyn( Us)
Therefore @, 2 € Smy,...muh1l U1)y and hence 2 e 8(2, Suypiiolyyeety) Thus
we get .

o(m,y) <12™ o 412" 12 4. 12 < a+ b+ 2.

b) If Iy = myy, then we take k such that

(L) 0 <k <d; Mpgy—1 5= My, My—1 = Mgy oy Mimgpr2— L = Mijpy1,
Mi_gs1—1 > m;_x, where k=0 means My —1>my, and k= ¢ means
Mmip—l=m; (j=1,2, 7"’)

In the case of k < 4 it follows from (I;) and (B) that
S(U‘i—k+17 um,-_k.;.l)ﬁ -z 70 and Ye S(U‘i-—k»kh u‘m{_kﬂ)ﬁ S(Vl) ull) % g s
which implies

M) Wnliw#0, W28V, W)
for some W e W, . 1 because [ > m;p4q and ¥ < Wyg. Since we can
consider Spm,...,m_pm_pn—1(U1) because of m pui—1>m: s and since
z € 8(Vy, W) C W by (I,) and (B), we can conclude from (M) and (I,) that

(M) 2 € Smym;_my_gsa—1(T) .
with respect to @, we select a sequence satisfying (K). Then

@ € 8Tt Wy gpa) % (Soyom o T2))° (2)
by (B), and hence there exists W' e, ..o satisfying oW’

% (Smgpmy_y(U2))". NGO @ € Suy..ing_ymy_giy—1(Us). This combined with
(N) implies 2 € 8(%, Gmy,...my_pimg_psa—r)s a0d hemce

o(@,2)<1/2™4 .1 j2mk 1 fomi-en T g oy | g ot j9h & gt D26
by b= m, and (L).

' \
() 4° denotes the complement set of 4. Hence B g A° means BrA=-9.
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In the case of k& = ¢ we select, by (I,), (I,) and (B), P,Q ¢ Uz, with
neP, 2e@, P~Q 0. Then zeS(w, Wep,—1) (%), which implies

oy 2) <1/2" 7 = 1/2™ 4 4 1/2™0 1120 <atb+2.

Thus we get, in every case, g(w,2) <a+b+2¢ for an arbitrary & > 0,
proving

e@2) <a+tb=rp(z, 9 +ely,2).

3. Now itremains to prove that o(Sye(@), yi) < & (i=1,...,1+2) imply
Q(ﬁ/i, ¥7) < & for some distinet two points y;, y;. Since Q(Selﬁ(w),yi) < &,
we can choose n 12 points »; and a pogitive number 8 such that

om, ) <o <ef2, olm,y:)<e.

Let mq, ..., my De positive integers satisfying
26 < 1/2™ 4. +1/27 < g5

then there exist 8; ¢ Gmy,.im, (E=1,...,n+2) satisfying u;, y; € 8; becanse
of g(®;, ¥;) < & On the other hand, since & < 1/2™* 4 .. +1/2™" we
must have )

because of o(wi, ®) < 8. Liet Si= Smy,.m,(Ui)y Use Up,; then by (B) there
exists S« U5, satisfying 8;~U; 5@, 8} o;. Hence it follows from (O)

Sim 8w, Whyt1) # O
which implies

(i=1,..,n+2),

Sz, Up 1) n Ui =0 (1=1,..,0+2)

because Wy, < U, ;. Since by the first assumption 8%z, U ) inter-
sects at mogt n—+1 sets of Wy, , we must have U;= U, for some ¢, j with

.....

oy, ¥y) <1/2™ 4. 4-1/2™ < 5.

Sufficiency. We denote by o(#, y) a metric satisfying the condi-
tion of this theorem. Then we denote by M, a maximal subset of E such
that @, y ¢ M, and # %y imply ¢(z,y) > 1/2. By the maximal property
of My W= {Sip(®)|® € My} is evidently an open covering of B. Let Sy(z)
intersect each of Syp(2;) for #;e M, (i==1,..,n+2); then it follows
from the property of o(z,y) that o{m;, w5) < 1/2 for some distinet points

(35) Sinee g(z, 2) << a+ b+ 2¢ is obvious in the case of m, = 1, we assume m, > 1.
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&g, 1;. This implies ;= 2; by the property of M,. Therefore Sypa(x) Lov
an arbitrary point z of B intersects at most n-+1 sets of Wi Put

Uy = (U {(Sums()]y € S} € Mo},
then order 1, < n-1. Using the notation Sy == {8,(%)
Sl < Gy < Wy < Sjarges -

Next we denote by M, a maximal subset of R such that x,y e M,
and @ £y imply oz, y) > 1/28 W= {8yy{@)|m ¢ My} covers R, and each
Sy(z) intersects at most n-+1 sets of Wy in the same way. Tlence
Uy = {U{Sus(y)|y € Sys(@)} 2 € M. o} 18 an open covering with order <n -1
and satisfies

Wy > Glas > Gy > Sypasrs > Uy > Sypos > Gl
By repeating such processes we get a sequence Xy > U > Uy > ... of open
coverings of R such that ovder 1, <n-+1 (m=1, 2,...) and such that
Wy < Syt rim-1s g ygstim=5 (=1, 2, ...). Hence we conclude that dimE < n
from Theorem 3. :

As is easily seen from the proof of this theorem, we can state this
theorem in the following form. ‘ '

COROLLARY 1. In order that dimR < n for a metrizable space B it
is mecessary amd sufficient to be able to define a metric o(x,¥) agreeing
with the topology of R such that for every e >0 and for some ¢(e)> 0,
o (Suo(@)y i) < & (i =1, ..., n+2) imply o(ys,yy) <e for some &, ] with
i .

In the compact case we get the simpler conclusion.

COROLLARY 2. In order that dim R < n for a compact metrizable space B
it is mecessary and sufficient to be able to define a metric o(®,y) agreeing
awith the topology of R such that for every e 0, o(@,4:) <e (b=1,2,...,n+ 2)
imply o(ys, y;) < e for some i,] with 7.

'We can deduce the following theorem proved by J. de Groot (see [3])
from our theorem for the special case of n = 0.

COROTLALY 3. A metrizable space R is 0-dimensional if and only if
one can define o metric which satisfies

ol@, ) < max{o(®, ¥}, o(y, 2}l

Prootf. Let dimR = 0; then by our theorem we can define a metric
o(m, y) such that o(S.u(e), ys) <& (i=1,2) imply o(y1, #.) <~ & Heneo
if we assume p(x,2) = ¢ > max[p(z,y), o(y,2)] for some x,y,? ek,
then o(S.e(y), #) < &, o{San(y), 2) <'s and p(x, 2) = ¢ which contradicts
the character of (=, y). Therefore we must have o(x, 2z) < max{o(z, ¥),
ely, 2)1

v e Ry, we lhave
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Conversely, let g(z, ) be a metric satistying o(x, 2) < max[e(z, ¥),
2(y,2)), and let us assume that o(S.e(w), ) <e (=1,2). Then there
exist @, @, € Syp() such that o(w:, ;) <e (=1, 2). Since el®y, ) < &,
we  get o (Yu, ¥a) < max [o(yy, @), ¢ (2, ¥,)] < max Lo (31, @), ol@y, @,),
0@y Yu)] < &

DEFINITIQN. A real-valued function ¢ of two points of a topological
space R is a non-drchimedean parametric if

1) o, 4} >0,

i) elz 9)=oly,u),

i) f{yle(=,y) < e 1is open for every ¢ < 0,

iv) (e, y) < max[e(, ), o(y,2)].

Now let us prove the following decomposition theorem for the met-
ric function.

THEOREM 6. In order thet dimR < n for a metrizable space R it is
necessary and sufficient to be able to define a metric p(x,y) agreeing with
the topology of R such that

0@, ) = 0t {0o(, 2) + 0o(2, ) + -+ aal2 1) % € B,
eo®, ¥) = min{o(z, y)|i =1, ..., n+1}
for some n+1 non-Archimedean parametrics gz, y) (i =1, ..., n+1) (*).
Proof. Necessity. Let dim B < n; then there exist n4-1 0-di-
mensional subspaces R, such that B =7C)11R,- by the generalized decom-
=

position theorem. We assign a metric ¢'(z, ¥) of R such that ¢'(z, y) < 1.
Since B; (¢ = 1, ..., n+1) are 0-dimensional, we get digjointed coverings
W, i=1,...,0+1,m=1,2,..) of B; satisfying

uinﬂ < u;'n, u}n <Bp= {Sl/gm(w)!d} € R} in R;.

Tet W, = {Uua e A}; then for every point x e B; we can find « e 4 such
that 2 « U, and e(x) > 0 such that

Ss(w)(m) o} R’L' _g U, H

where we denote by 8, a definite set 8, e S, for U, such that 8, 2U,.

Put W= U {Syuyel®)|® € Uy~ By}; then we have a disjointed collection
m= {Wiaed} satislying Wi, < G,,. By applying W, we define open

disjointed collections BY, (f=1,..,n+1, m=0,1,..) as follows:

Be(®) C Say

BE = {R},

(4) This theorem is also a gemeralization of the above theorem of J.de Groot
to the n.dimensional case.
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if B¢ iy defined, then we define By, by

Wy = B AWy (=1, b], m=0,1,..).

Then it follows that Bh: < Bt < B,. Now we define a real-valued
function g; of two points by

oil@, ¥) = inf {1/2" y e 8 (=, BT .

Then it iy easy to see that ¢; is 2 non-Archimedean parametric. For
N :
oile, v) < max[ei, 2), eil#, ¥)] 18 evident from the disjointedness of B.

Since ] : -
Siw) = {ylew,y) < e} = U 8w, B)]e >1/277},

Six) is open for every &> 0. Moreover, (i) and (ii) are clearly satisfied,
and hence p; is a non-Archimedean parametric of K.

Since y e 8(w, BY) implies o'(z,y) <1/2™ by Bh < Sm, we have

(A) o, y) > '@, y) for every z,y ¢ B.
Now we can easily see that .

(B) olw, y) = inf{oo@, 21) + .. + eol2w) Y)|2i € B}

(ol y) = min{e:(, yli=1,..,n+1})

is a metric of R. Tt is enough to show only the agreement of ¢ with the
topology of R. For a given ¢ > 0 and z ¢ R we take m such that ¢ > 1/2mt
and R; with @ e Ry ¥ € 8(z, Bl) (% @) generally implies gi(w, y) < & and
consequently g(x,y) <& by (B). On the other hand e(w,y) > o'(z, ¥)
is obvious from (A) and (B), and hence g(z, y) < ¢ implies o'(z,¥y) <s,
which proves that {{y|¢(z, y) < e}|e >0} is a nbd basis of @, 4. ¢., ¢ agrees
with the topology of R. Thus we dednce the necessity of the condition.

Sufficiency. Let g(x,y) be a metric of B satisfying the condition;

n+l
then we easily see that B = R; if we put RB;= {#|e(z, z) = 0}. To see
i=1

nt1 .
this we assume the existence of # ¢ R such that = ¢ iL_) R;. Then we must
=1
have gi(x, o) = &> 0 (=1, ..,n+1), and hence by the property of o;
oz, y) = max gz, ¥), o, y)] = Qi(w’ x) =&

for every ueR. Therefore go(z,y) > min g >0, and hence o(x,2)
>mineg; > 0 for every z ¢ R, which is a contradiction.
Putting

Siim(®) = {y] 0@, y) < 1/m},

we see, that Sim(@) ~ Sim(y) = @ implies Sim(@) = Sim(y). For, if we
choose 2 € 8}m{®) ~ Sim(y), then gi(z, 2) < 1/m, gy, 2) < 1/m, and hence

icm

Note on dimension theory for metric spaces™ 163

oi{@,y) < 1/m Dby (iv). Therefore piy,u) < 1/m implies gz, u) < 1/m,
which proves Sym(y) C Sim(®). In the same way we get 8in(y) D Sim(2)
and consequently Sij(x) = Sym(y). Thus

Uy = {Sim(@) " Rilw e R} (m=1,2,..)

are open disjointed covering of R;. Moreover, since y ¢ § (x, U, implies
o(@, ¥) < oilz, ¥) < 1jm, {UWy|m=1,2,..} is an open basis of R;. Thus
+
we conclude that dim R; = 0 by Theorem 1. This combined with R =1LL JlR,-
i=1
implies dim.E < »n by the generalized decomposition theorem.

§ 3. Imbedding of a metrie space in a product of 1-dimen-
sional spaces. We shall start with the following theorem, which is
a generalization of the sufficiency part of Theorem 3.

THEOREM 7. Let n =y + %+ . 4+ 0 for non-negative integers
(f=1, ..., k). If there exist sequences

By > B> By > B> ... (t==1,.,k)

of open coverings of a T'-space R such that order Bp; << +1 (m=1,2,...)

kK
and such that {8(p, Bu)lm=1,2,..} for V= A By 15 ¢ 2bd basis
=1

of p, then R is a metrizable space with dim R < n and can be imbedded in
a product of k metrizable spaces R; (t =1, ..., k) with dim R; < »;.

Proof. As is easily seen from the proof of Theorem 3, we can select
sequences

111,5 > uﬁ‘ > 112,1- > 11;,’:- >

of open coverings such that S(p, Wyi1,) intersects at most n;+1 sets

(=1, ..,k

k
of Uyn; and such that {S(p, Un)im =1,2, ..} for U= A Wy, is a nbd
=1
basis of p. Let W, ;= {U. ae A} for fixed m, d; then we put
(A) Vo= 8(Uay Wini1y);

Wl.’ﬂm'l =k, I'Vlli’“ = S(ng Woptn,i) s
WVI/’Z"WI/‘-’"’"” = S(VVIIQ"”; um»{-s,i) y W1/:m“ = S(Vﬁ, um+3,i) ;

Wagmgyamtg st = S (Wym i yamert, Wa'essdy, Wypmenrrr= 8(Wymm , Unssi)

1V1J'2m+2 = S(Vﬁ7 |3 PRI ION

Wl."l""*1+l/:’4"'+s == S(er/znl-(»l, Wntai)s

Defining f,mq(z) = inf {#|z ¢ W,}, we get continuouns functions f, (a € A}
satisfying
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(B) fa,W)L,i(T'7z) = 03 fu,m,i(Uu) = 1/27”-1 (15) .
Clearly, for every &> 0 there exists I;=li{e) such that y eS8z, W, )
implies

\fa,m,i(w)_fa,m,i(y)! <e (aedp;, m=1,2, )

‘We consider a topological product
Pi= ” Tolaedpy, m==1, 2,0

of

L= {20 <z <1/2""  (aedni),

and consider f,.; & mapping of B into I,. Then we define a continuous
mapping F; of R into P; by

Fiylx) = {fa,m,i(fl")ta eApi, m= 1,2,...}

Now we proceed to prove that Fy(R) (CPy) is a metrizable space
with dimF;(R) < n;. Since :

N, = FoR) ~ {{p.} pa > 0}

(xeR).

((1 € -Am,i)
are open sets, and since
frx,m,i( Uu) = 1/2m ’

by (B), Rmi= {N,Jaed,;} is an open covering of F(R). First
{8(p; Rums)lm =1,2,..} is a nbd basis of each point p of F;(R). Let
p={pae dms m=1,2,..} eF(R); then for a given nbd

(C)y Ulp)= {{Qa}l 12%“9«,-1 < & 0y eAmi,i (=15 h)}
of p we choose an integer I such that y e S(z, Ups,;) implies

(D) ]]‘a,m,i(m)—fa,m,i(y)l <& (a eAm,i, m = 1, 2, ) .
I ge{g}eS(p, Ri), then Pi(w) = p, Fi(y)==¢ and p, qeN, for some
2,y ¢ R and N, e Ny;. Since

L/J {I]uia € Am,t} =R

fa,l,'i(*v) = Po > 0’ fu,l.i(?/) =y > 0,
it must be a, y ¢V, for ¢ ¢ 4;;. Hence it follows from (4) and W= < Uy,
that ¥ € 8(2, Wy_1;). In consequence
%pn]-_qﬂ]-! == lfﬂj.mj,z'(x)“fui,m,-,i(?/)l <e (.) = ]'7 ey h‘)

by (D), %. é., g € U(p) follows from (C). Thus we conclude that S(p, Ny
CU(p), and hence {8(p, Nns)| m=1,2,..} is a nbd basis of p.
Next let us show that

order mm,i <ty 1; gz?;wl,i < mm,f .

(¥) f{(F) = a means f{z)=a («eT).
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I3
If N, #0 and aje Ay (j=1,..., k), then we can choose p = {p,} e F4{R)
j=1
and « ¢ R such that
h
(B) pe 'mlN""’ Fiz)=1p.
=
Since fa}.,,,,,,,-(w) =Py, >0 (j=1, .., 1) follows from (E), we have
(F) @eVy, 1,..., k).

On the other hand, since each S(p, W, ;) interseets at most n;+1 sets
of U, we have

aj eJim,i (] ==

order {V,la e Ay} <n;+1

from (A). Therefore we obtain h < a; —i—*l from (F), which means order
Enm,i < n; + 1.

We have learned from the above discussion that N, ~ N, # 0 im-
plies Vo~V = @ for fixed m, ¢ and for arbitrary a, o’ ¢ 4,,;. Hence
it follows from N,C F;(V,) that

(G) S(]Vm mm-H,i) _C_Fi(S(Vay %m+ 1,1’)) R
for every a e Amyyi,r, where we denote by B,,.,,; the covering {V,la e 4,75t
of B. Let N, be an arbitrary set of R,,,;, then there exists, by Ukt 1 ;< Wi,
Up € Up,; such that §(V,, Buiy,:) C Us. Thus we have

S(Nm mm«‘»l,f) EF’L(S(TI(X! %m»ﬂ,ﬁ)) E-Fz( Uﬁ) _Q AT,-I € mm,i

from (G) proving Wit < Nm,s. In consequence . we can deduce from
Theorem 3 the metrizability of F;(R) and dim¥;(R) < ;4 1.
Now we define & mapping F(z) of R into Fy(R) X Fy(R) X ... X Fi(R) by

k
F (&) = (Fy(@), ..., Py () € nF,~(R) (zeR).

First F(z) is one-to-one. If x,y e R and x£y, then y¢é Sz, Uy, for
ke

some U, ; because {8(p, A Upi)im=1,2,...} iz a nbd basis of p. Hence
=1

@e Uge Wy, y €V, for some ae Ayyq,;. This means that f, ,.1:(2) > 0,
Jame1(y) = 0, 1. e., Fi(x) 54 Fi(y). Therefore F(z) is one-to-one.

It remains to prove that F(x) is homeomorphic. Since F(x) is evi-
dently continuous by the continuity of F;(z), we shall show the conti-
nuity of the inverse mapping. For a given nbd U(z) of z ¢ R we select

I
W = A Uy, satisfying S(z, Un) C U(x). Choosing U, e Wy (E=1,..., k)
i=1

k
such that xe (T, we have
i=1
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(H) = eéVuigS(m, W) C U ()
from (A) ané—uml,KumH, and hence fym+1:(®)=1/2" > 0. Hence if
]fa;,m+1,i(m)_fai,1n+1,i(?/)l< 1/2m+1 (i=1,.., k),
then fomera(y)>0 (E=1,..,%). Therefore y eV, (i=1,..,%), e,
y e U(x) by (H). This pmves the continuity of F(x), and consequently

R is homeomorphic with the subspace F(R) of the product space H F(R
with dim Fy(R) < (i =1, ..., k). From the generalized product theorem
due to Katétov and to Momta, (see [4] and [5]) we have dimRE <+

g = . p

TH}ORE\I 8. Ewery imetric space R with dim B < n can Dbe topolo-
gically imbedded in a topological product of n-+1 ai most 1 - dimensional
metric spaces. )

Proof. If dimR < n, then it is easily shown that

(A) we can define a covering B and open collections W; (i==1,...,n+1)
to every ecovering U of R such that B < UII1< U and such that each

Sz(p, ) intersects at most one of sets belonglng to W, for a fixed <. For

UR for some R; with dim R; = 0, and hence there exists a disjointed

('OHECtIOIl B, of R; satisfying B; < . For every point o of I; wede note
by e(z) a positive number such that

SE(I)(‘T) m Ri_C_Va € By, Se(z)(m) CU,e u
for U, defined by V, so that V, C U Then B = { U {Scaya()|t € Vo}[Vae By}

is an open collection of R with U Bi < W Selectmg a covering 96 with
A* < UQ},, we can define an open collection U; by

=1
W= (U {W|S(W, W) CVi3|Vie B}

It i3 easy to see from the disjointedness of W; that i J W; covers R and
i=1

that each set of I intersects at most one of sets of U;. Choosing a cov-
ering ¥ with B** < MW, we have open collections and a covering satis-
fying the required condition (A).

We denote by G, > 6f > S, > &f > ... u sequence of coverings such
that {S(p, Gm)|m = 1,2, ...} is a nbd basis for each point of R, and take
a covering B and colleetions Wy ; (1 = 1, ..., n4-1) satisfying (A) for G,, . e.,

ni1
B < III,Z- < &,
=1
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and 8%p, B) intersects at most one set of 1U;.
and define R by

= {§(T,, T

Let Wy ;== {U, a4}

3), R— ) Tjaed}

for a fixed ¢;
a€.d

then SRl ;18 a eovering of order <

and UII“I)R that /\sn“< ..

=1 v
Now we notice thafo

(B) every covering 9 of order < 2 has a locally finite star-refine-
ment Q' with order < 2.

To show this we put P =
ment of P. Then

() M= {M;={P|S(P',P)CPs, P cPB}éeD)}
is a locally finite refinement of P of order < 2
ILs for every 8 ¢ D such that

(D) My— U MyCIL;CL;C M,

d#6'eD

2. Moreover, it follows from 8% < G,

{Ps|6 € D} and denote by P’ a star-refine-
. We define an open set

and put
(B) @s=Ls—J Ly,
&#d
It is easy to see that Q is an open covering satisfying Q! < B (*%) order Q < 2.
To show that Q covers R we take an arbitrary point p of R. If p e M,

and p ¢ My (8’ + 8), then p ¢ Ly by (D). Since {L,|3 ¢ D} is locally finite,

it follows from (D) that there exists a nbd U(p) of p such that U(p) n Ly =0

for every §: &' = 6. Hence p ¢ | Ly and consequently p e@s by (B).
578

Q= {Qs, My~ Ms|8, 0, BeD, ap).

Therefore from (C), (D), (E) we get that Q covers R and that S(p, Q)
= QsC M;CPs. If pe M, My, then p ¢ M, for every y with y#a, 8.
It follows from (E) that either p ¢ @, or p ¢ @;. Therefore either

S(p, Q)
S8(p, Q) =g (Myn M) C M;C Py,

=Quu (M, M) C M,CP,
or

which shows that Q4 <P and order Q < 2. Repeating such a process
we have & locally finite A-refinement Q' of Q with order < 2. Q' sat-
isfies the required condition of (B).

To show the existence of sequences Jti;> Ni;> Noy> Nii>

w1
(=1,..,n+1) of coverings of order <2 such that A Mui< S,
i=1

(%) 7= {8(p, Q)|p <B}.

Pundamenta Mathematicae, T. XLV. T2
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we assume the existence of such 9y; for I < m. Then there exists by (B)
a locally finite covering M; of order < 2 such that Nf < RNy, Let us

select a covering I with IN** < /\ ;. Next we select by (A) a covering

2 and open collections PB; (¢ = 1 «ry n+1) such that

®» L< UEBL< MA St
=1

‘and snch that each 8%(p, Q) intersects at most one of sets belonging
to P for a fixed i. We put P;= {P4|f e B}, Ty= {N,ly < 7} and denote
by y(B) the first ordinal o satisfying

6y 8B, QYCH,eN
for feB. Then we define a covering Jmr1: by

(H) Rmpri= {E,y, S(Ps, Q)|y <7, B},
where we put

@) E,=N,—U{Psly =7} v (8FsQ) |y #v(B)}-

It easily follows that

() Nmr,i < Ny and order Ny, < 2.

Since Mmi1,s < N; is obvious, let us prove the latter assertion. We
denote by 2 an arbitrary point of R. First we consider the case of
@ ¢ 8(Pp, Q) (f ¢ B). Then either z ¢ 8(Pp, L) for some feB orw¢ S(P,, F)
for every B eB. If the former is the case, then x ¢ §(Py, Q) for every g’
with B’ s~ f because 8w, Q) intersects at most one set of ;. Hence
it follows from (G), (I) that 2 ¢ K, and « ¢ K, (y #(B)). If the latter
iz the case, then it follows from (I) and order N; < 2 that z ¢ K, for some
{at most two) y such that » ¢ N¥,. Next we consider the case of x € §(P;, Q).
Then « ¢ 8(Py, Q) for every p' with g+ f as in the above discussion.
Since x ¢ K, for y # y(8) is obvious from (G), by (H) z is contained in
at most two sets of Npy1,. Thus in every case x is contained in at most
two sets of Mytsiy 4. 6., Nmy1,¢ I8 & covering of order < 2.

Let K, e Mty (¢=1,..., »+1) and let & be an arbitrary point

net1
of B; then x e P;e®PB,; for some ¢ because U PB: covers R. Hence ¢ K,

by (I), which shows ﬂ K, = @. Therefore every set of /\ Rmyr,s 18

cqntamed in 8(P, Q) w1th Py e P; for some 4, which 1mp11:;§1

(K) /\mm+1i<(VEB1) < Bz < Gppr

by (F). It follows from (J) and RNI< R that Wiy < Ryns. This com-
bined with (J), (K) completes the induction, and hence we get sequences

e > R > Mos > Ny > (=1, ..., n+1)
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n-+1
such that A Mpm:< Sp, order Ry < 2. Hence by Theorem 7 we can

imbed R iﬁt:) % topological product of n-+1 metrizable spaces E; with
dimE; < 1.

§ 4. Imbedding n~dimensional spaces in F,, ., X N(Q).

DeriNirIoN. We call a covering U star-finite (siar-countable) if every
get of U intersects finitely (countably) many sets of .

An open basis consisting of an enumerable number of star-finite
(star-countable) open coverings is called a o-star-finite (o -star-countable)
open basis.

Remark. A regular space R has a o-star-finite basis if and only
if B has a o-star-countable basis. Moreover K. Morita has proved the
following theorem: A regular space having a o¢-star-finite (o-star-count-

able) basis can be imbedded in the topological product N (Q)xI® of
a generalized Baire 0-dimensional space N (2) (%) a.nd HJlbert cube I°,
and the converse is also true.

Remark. A metric space having a o-star-finite basis need not have
the star-finite property or the star-countable property (*). For example,
N(Q) % {x|0 < x < 1} has obviously a o-star-finite basis, but it has not
the star-countable propetry if the cardinal number of Q is greater than .
For if we put

Blayy aay ooy an) = {p|p = (0n, aay -ery iy -
then it is easily seen that the open covering .
{N(Q) X {|1/2 <2 <1}, 8{ag) X {81/ << 1/24-1/22), ..., S(agy .oy az) X

X @12 <o <128 1125, L e R (i=1,2,..))

of this space has no star-countable refinement and accordingly no sbar-
finite refinement. To see this we assume that U is a star-countable re-

finement of this covering. Then U §YU, M) for an arbitrary U e U con-
L ap) XICT.

) e N(Q),

sisting of countably many sets of u We can select S(ay, ..
It follows from the connectedness of {#0 < # < 1} that

CJ 8™(T, WD 8™ (g, oo, 1) X {0]0 <z <1}.
n=l

(1) This notion is due to [6]. For any two sequences of elements from an abstract
88t 2 a= (a, g «ee)s B =By, Pas+), We define the metrie d'(a, f) by

&'(a, f) = 1/min {k]a, #8,}, d(a,a)=0.

Then the set N (2) of all such sequences turns out to be a zero-dimensional space.
(%) We say that B has the star-finite (star-countable) property if only if every
open covering of B has a star-finite (star-countable) open refinement.

12%
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Hence Lj 8™ U, ) contains every set of U contained in 8(ay, ..., ap, agpl) X
n=1

o
X {@[1/2" < 1 < 125"+ 1/251%) for some apya €@, Qe ST, W)
=1
containg non-enumerably many sets of U, which is a contradiction.
THEOREM 9. Suppose that B is a regular space having a o-star-finite
(c-star-countable) basis and dimR < n. Then R is homeomorphic to a sub-
set of N(Q)X Iony1, where Ionyy is a (2n+1)-dimensional Euclidean cube
and N (£2) is the generalized Baire 0-dimensional space for a set £ whose
cardinal number is not less than the cardinal number of an open basis of R.
Proof. 1. There exists, as is seen from the above Morita’s theorem,
a sequence N, > N, > N3 > ... of star-finite open. coverings N, of R such
that {S(p, Rw)|m = 1,2, ...} is a nbd basis of every point p of R. We
define a disjointed covering S, of B by Spu= {87 (N, Nw)|N ¢ N}, where
SPUH, R) = U 8"V, Npo). Lot S= {Su]aedly} and 8,nSp= 0 (a #8);
n=1
then for every aeAd,, S, is a countable sum of sets of Ny, 4. e.,

(m) nm
Natr':‘ € mm .

o= NPi=1,2,.1, (i=1,2,..)

Since Ny, is locally finite, there exists an open covering P, of R such that

P = {(PPacdp, i=1,2,..), PRCN,

Next, we define ;a.»sequenee of open coverings by

Wi = (VD 8,—PPlac Ay,
W=Wny Wom WAWe s Aliey vy W= Wy AW g AW 10 A oe AWy, oo
Then 10, > ﬁ2> Uy > ..., and {S(p, Wp)m =1,2,...} is a nbd basis of

each point p of R, and
(A) U, is finite in every 8, (aedy, k >m).

Let @ =1J A,; then it is clear from the disjointedness of &, that

n=1
|Q] < the cardinal number of any open basis of R. We define a contin-
nous mapping ¢(z) of B into ¥ (2) by
e(®) = (ag, 0y, o.)  (BeSy, tmedn; m=1,2,..)
and denote by M(R) the totality of a continuous mapping ¢ of R into
N(Q) X Ionyy such that (z) = (¢(2), P(z)) (z ¢ R) for a continuons map-
ping &(z) of R into Iy,y;.
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Moreover we define the following notions, which will be needed
later on.

Ty= 0(8,) = {(on, gy -..) | am = a} ~ o(R)

for A
To= (T X S1ym(@)| @ € pny3} edmy

where we denote by 8ym(z) the spherical nbd of radius 1/m around z

in Isnyr- We mean by a star-decomposition a disjointed covering of R

consisting of open sets contained in | JSy. Let C:{S.lye 0 (C GAm)}
m=1

m=1
be a star-decomposition; then for every y e ¢ we denote by m(y) such
a number that y e ). '
‘We denote by M (R, m) the totality of mappings of M (R) satisfying

j—_](x*,') e {ihl(T)l Te z‘,’} < um (’)/ € C)

for some star-decomposition €: {8,}y ¢ C}.of R. Finally we define (-neigh-
borhood Ng(f) of fe M(R) by

No(f)={glg « M(R), sup {d(xf(z), ng(x))|x e8,} < Lim(y)}

for a star-decomposition C: {8,|y ¢ 0}, where = and d denote the pro-
jection of N (2)X Iz, onto I,y and the metric of I.,,, respectively.

9. First we prove

(B) No(fym~ M(R,m)=@ for every fe M(R), every star-decompo-
sition ¢ and every positive integer m.

Take I(y) = max (6m(y), m) for every y e ¢ and put

D,= {816 edy,, T, CT, (or §;C 8, as the same)}.

Since we can cover I..y, by a finite subcovering of {Sie)(®)® ¢ La,21},
we denote by {Sym@)|i=1,2,..,a(y)} such a covering; then
L= {Ts x Q)| 4= 1,2, ..., a(y)} is a finite subcovering of
Ts == {15 X Buyin(@)] @ € Ingr} (8 € Ayy). Sinee f7HITs) = {f(T")| 1" ¢ Tj} and
U, are, by I(y) > m and (A), finite open coverings of 8;, we have an
open finite covering B, of §; satistying order B, < n+1, Bi < Wpn 1 H(T).
B==\_J{BsldeD,, y e C} is an open covering of B of order < n-+1.

Let us consider fixed ye ¢ and d ¢ D,, and assume that V,,...,V;
are all the numbers of B;. Then we select vertices (Vy) (i=1,..,s)
in Iy, for which it is true that d{=f(V,), 2V} < 13m(y) (i=1, ..., ),
the (V) are in a general position in Fpyy, . €., 10 m+2 of the vertices
z(V;) (m= 0,1, .., 2n) lie in an m-dimensional linear subspace of B, . ;.
We define a barycentric mapping @; of 8; into I,y by '
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. ‘
2 o0, 79a(T)
(0) Op) = g {p e8s),
§ (», 73

where we consider z(Vy) (i=1,...

e(z, Viinf{o(p, 9)lq < V3 ().

,8) as vectors and denote by

Thus we get a continuous mapping

B(p) =DBsp) (pelsy SeDy, yel)
of Rinto Toy 1. We now prove that the mapping ¢ (p) = (¢(p),
is contained in the common part of N¢(f) and M(E, m).

To prove ¢ ¢ No(f) we take an arbitrary point p e S, for y « ¢. Then
p e S, for some 8 e D,. Assume that ¥V, are so numbered that {V,, ..., V;}

is the set of all the Ve i’}d which contain p. Then g(p, V”) == 0 for i >t.
From

8laf (V) <21(y)
we get

&(p)) € M(R)

<13m(y) and d=xf(Vs), m(Vf)) < 1/3m(y)

(V) of (p)) < 2/8m(y)
A fortiori, the centre of gravity @(p) of the z(V,) satisfies

(B (p), nf (b)) < 2/3m(y) < 1jm(y)

Therefore ¢ € Np(f).

Next in order to show that g« M(R,m) we fix ye (0 and 6D,
and suppose that Vy, ..., V; are all the members of B, containing a given
point p of 8,. Consider the linear (t—1)-space Lsx) in I, spanned
by the vertices #(V.),...,#(Vy); then t <n+1 and Pe(p) « Ls(p) are
obvious from (C).

Since there are only a finite number of linear subspaces Ls(p), there
exists a positive number h(d) > 1(5) such that any two of these linear
subspaces Ls(p) and L(p’) either meet or are at a distance > 2/h(5) from
each other.

Putting Hs= {e|e e App, T. C Ts}, we consider a star-decomposition
E:{8.|ccBs, §eD,, yeC}.

I ¢(p), ¢(p') e T X Syn(x) for p,p’ R, then it follows that ¢(p),
e(p’) e T, and

(i=1,2,..,1).

(@ (p), o) <1/h(6), AB(p"), w) <1/h(5);

(®) o(p,q) denotes the metric of R.
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hence p,p’ ¢ 8, C8;. Therefore we get d(P(p), D(p’)) < 2/h(8), which
implies Ls(p) ~ Ls(p’) % @. If we suppose that I,(p’) is spanned by
(V) -y ®(Vy,), w <m-1, then since z(Vy), ..., 2(Vy), #(Vy), ., 2(Vy)
are in a general position in Fouys, it follows that at least ome of
m(Vﬁ),...,w(V;u)' is also one of =(Vy),..,x(V;). Hence p and p’ are
contained in a common member V; of B;, 1. 6., p’ e 8(p, B,). It follows
from B < Wy, that ¢ (Te X Syne(@)) C U for some U e W, Thus we get
¢~1(T,) < U, for every s e, proving ¢ ¢ M (R, m). We now prove that

(D) for a given ¢ ¢ Ngo(f) ~n M(R,m) there exists a star-decompo-
gition ¢’ satisfying Ne(p) C No(f) ~ M(R, m).

Since @ € No(f) implies

(ye0),

we take a positive integer h(y) for y e C: 1/h(y) < 1/m(y)—q, and define
a star-decomposition D by

D:{8s6eD,, yeO (Dy={8|8edpny, T:CT)).

Let w ¢ Np(p); then taking p e&;, éeD, for a given pomt p of §,,
we get d(np(p), mp(p)) < Lh(y). Therefore

sup {&(nf (p), 7 (p))|p € 8} = @, < Lym(y)

sup {d(=f (p), wp(p))|p € 8} <a,+1/h(y) <Limly),

proving v e N¢(f), 4. e., it holds that

(E) Nolp) S No(f)

Moreover, since ¢ ¢ M (R, m), we have p=T;) < Upn ( € B) for some
star-decomposition B, where Tp= {Ts X Siym(®)|® € Lonsa} a5 above de-
fined. Putting Dy = {8|6 € Aoy, Ts C Tp} for every § e B, we have a star-
decomposition E: {S,|e ¢ Dy, § € B}. Let yp ¢ Np(p); then we easily see that
£ e Dy implies

T X S1me(@)) C ¢~ Ts X Suymier())

for every o els,,,. For if we assume the contrary, then there exists
a point p of R such that

p(p) € ToX S1pmep(@),  @(p) ¢ Lo X Suymp(@) -

Hence pef,, np(p) e Symp(®) and x(®) ¢ Symp(z), and hence
d(my(p), mp(p)) > 1/2m(B), which contradiets v e N.(p). Thus we must
have .
w—l(T‘, X Sl/‘_’m(ﬂ)(w)) §_¢_1(Tﬂ X Sl/m(ﬁ)(m)) cu

for some U e1,,. Therefore p—YT.) < Wy (¢ € B), proving y ¢ M(E, m),
i. 6., Np(p) C M(R, m). This combined with (B) shows that ¢'= DA F
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={8;~8,]6eD, ecB} i3 a star-decomposition satisfying Ne(p) C No(f)
~AM(R,m).

3. We can select by (B) and (D) two sequences ;> Gy > Cy> ...,
D, > Dy> Dy > ... of star-decompositions and a sequence fi, fy, fs; ... of
elements of M (R) such that

y €Oy implies m{y)>m,

Ney(h) C MR, 1),
Dy: {Ts|6 € Dy, v € Ci}
Nelfe) S Np () ~ M(R, 2},

(.Dl,’, = {6' 1) EAgm(y), lvg_C_ TV} ()/ € Ol)) s

Dy: {T5!6 € Dy,

! S

y e Oy} (-D2,'y = {6]5 € Aomey, Lo S Ly} (v e 02)) ’

Ney(fn) S Np, y(fomr) ~ M(R, B),

Dy: {Ts|0 € Dy y € On} (Dhn/: {86 € Aoy, To C Ty} (y e Oh)) ’

Then, since f, e Np(fz) (b >k), we have

dafu(p), whip)) <1/2m{y) <1/k (b >F)

for some y € Cx, and hence {mfy(p)|h =1, 2, ...} uniformly converges to
a continuous mapping G(p) of R into Iup.y.
Let us show that

(e(p), @) = p(p) € () M(E, m).

Me==1

Since fre Npffi) (R >k), if we take, for given ye(; and peS,,
deDy,: pels, then

dfalw), 7)) < Lj2m(y) (b 1)

hence
dD(p), wflp)) <12m{y) <1jm(y) (pef,).
Therefore
p0) e No(fi) CH(R, ), e, on)e VMR, m).

m=1

Thus we get a homeomorphic mapping ¢ of B into N (2)xILsi1-
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CoROLLARY 4. Let R be a metric space having the local Lindelsff prop-
erty (20) such that dimR <n. Then R is homeomorphic to o subsel of
N(®) X Lopya- .

Proof. Since every metric space with the local Lindeloff property
has a o-star-countable basis, this proposition i3 a direct consequence
of Theorem 9.

TazorEM 10. In order that a wmetric space R with o o-star-finite
(countable) basis have dimensions <n and have an open basis whose car-
dinal number is not greater than w it is necessary and sufficient that R
be homeomorphic with o subset of N(Q)X Mz, .1, where Q is a set with
|Q| = m, and M i1 18 the set of points in sy, of most n of whose coordinates
are rational.

Proof. Since it is well known that dim My, . = n, dim ¥ (Q) x M3, 1=n
from the generalized product theorem (see [4] and [5]). Hence the suf-
ficiency is obvious.

The proof of the necessity is analogous to that of Theorem 9. Let
L, Ly, ... be a gequence of n-dimensional linear subspaces in Ig.; then
we shall prove generally that R is homeomorphie with a subset of
N (@)X (Lan 11—\ L) IE I{l: Ly, ...

=1

are all the linear spaces in Isuy; of

the form @, = 1, ..y %1y, = Tny1, the r's being rational, then we get the
necessity part of this proposition. To show this we generally use the
same notation as the above, but we replace M (R, m)in the above proof by

N(R,m)= {(Plfﬂ](R)y W—I(ZT) < U {ye0),
ap(8,)nLn =0 (y¢0) for some star-decomposition C}.

The part 1 of the above proof (of Theorem 9) is suitable for the present
proof too.

We now prove No(f) N (R, m) # @ for every f e M(R), every star-
decomposition ¢ and every positive integer m. We define D, (ye0)
and B, (5 ¢ D, y « C) in the same way as in the proof of Theorem 9 (*1)
and consider fixed y ¢ ¢ and 8¢ D,. Assume that Vi, ...V, are all the
members of B,. Then we select vertices x(Vy) (1= 1,..,8) in Ln,, and
Poy D1y ooy Pu i Ly, for which it is true that d(ﬂf(Vrj), w(Vy)) < 1/3m(y);
the (V) and p, are in a general position in Bonii. Defining ¢(p) e M(R)
by (C) in the above proof, we see ¢ e Ne(f) in the same way.

(**) We mean by Lindelsff property the property that every open covering has
a countable subcovering. If every point of B has a nbd whose closure has the Lindelstf
property, then R is said to have the local Lindeldff property.

(#) Prom now on we omit “in the proof of Theorem 9" for brevity.
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To show that ¢ e N(R,m) we consider fixed y ¢ ¢ and d €D, and
suppose that Vi, ..,V are all the members of B, containing a given
point p of 85. We denote by Ls(p) the linear ({—1)-space in Iy, spanned
by the vertices @(V.), ..., ®(V;). Then Py(p) e La(p) C Ioni1— L and there
exists 1(8) > 0 such that Ly(p) ~Ls(p’) = @ implies d(l}é(p), La(p')) >2/h(8).
Defining a star-decomposition F in the same way, we have o~ (T,) < 1,
(¢ € E) and

9 (8.) = @s(8:) C U {La(D)[p € S5} € Lonsr— Loy

proving ¢ e N (R, m).
i Next, in order to show that for every @ e No(f)~N(R,m) there
exists a star-decomposition ¢’ satisfying Ne(p) C No(f) AN (R, m), we
shall prove Ng(p)C N(R,m) for some star-decomposition H. Since
p e N(R, m),

T <Wu  (BeB), 8lwp(Sp), L) >1/L(F) >0 (B eB)
for some star-decomposition B and positive integers I(f) (8 ¢ B). Letting

max(2m(8), Up) = k(B), Fy={elecdup, T.CTs) (BeB),
we have a star-decomposition E: {S,ce B, feB}. For an arbitrary
yeNg(p) v T)<U, (¢e¢B) is proved in the same way. Moreover
p €8, implies .
dfay(p), 2p(p)) <1/k(B)—n(e) <L/L(B)—n(e)
for some 7(e) > 0. Therefore

d(mp(&), I’m) = 7](8) >0

which means ap(8)~L,=0 (e eE)‘. Hence y ¢ N(E, m), . e, Nglp)
C N(R,m). Thus we can copclude that Ne(p) C Nelf)AN(R,m) for

(eeB),

C¢'= DAF. Since we can prove ﬁ N(R,m)# @ in the same way, we
m=1
have @(p)e (| N(B,m) which topologically maps R into N (2)x My,.s-
m=1

DerinirioN. We say that the p-dimensional density of a subset S
of a metric space is zero if and only if for every e > 0 there exists a de-
composition 8 =J{4;,lye 0, i=1,2,..} such that 6{d;,) <& (yeC,

i=1,2,..), S[8(4s )P <e(yeC) and such that () Ay, = 8, is open
gl

g=

in § for every y e 0 and S,n S, =@ (ysy') (2).

) (*) This notion and the following theorems are deeply related with Hausdorff’s
p-dimensional measure and Szpilrajn’s theorem respectively. See [71. We denote by
8(4) the diameter of 4.
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TumoreM 11. Every melric space R of (n+1)-density zero has di-
mension < n (%),

Proof. Let us show that inddimR < n. We congider an arbitrary
pair F, G of closed sets with ¢(F, &) > 0. If we can show the existence
of an open set U with dim (T—U)<#n—1, then inddimR<n is
proved (). Select a positive integer m with 1/m < o(F, @), and let
R=U{dylyel, i==1,2,..} be a decomposition of B such that

8(Aiy) < 1pmp, D [8(A ) < 1ym2

i=1
and such that §,=\_J{4:,/t=1,2,..} is open for every ye C. We put

Uiy = SUp {o(F, @)w € A5}, Vip=ink{o(F, w)jw e d;,}.

Then it is easily seen that w;, —v;, < 6(4,,). We define a non-negatively
valued function d,(r) for every y ¢ C by

( 0 _ (0 L1 < v'i,y Or g, <’I')
WA=\ (4 (a7 <),

a,r) = D duyr).
i=1
It follows from !
1/m

[ diyr)ar <[8(Ae )]

that‘
1jm 1m oo o 1fm o ,
[ amar=[ D agmar=3 [ aymar < D 6(4)I <1me
1 0 T=1 =1 @ . i=1

(y<0)

since considering d;,(r) >0 we may interchange integration and sum-
mation by Lebesgue’s theorem. This implies dr(r(y)) < 1/m for some
r{y) with 0 < r(y) < 1/m. We denote by S(¥, r) the set of all the points
satistying o(F,z) <» and by S(r) the boundary of S(F,r). Then
[8{4sy ~ Slr())]" < degfr(y)) combined with d,fr(y)) <lm implies

E [81, ~8{r(»))]" < 1/m. We notice that | {8, ~ 8(F,r())ly « O} =T

(*) This theorem is an extension of Szpilrajn’s theorem “every metric space of
(n- 1)-meagure zero hag dim<{n to a non-separable case’’. See [71. )

(*) inddim R << » if and only if B has a o-locally finite open basis U such that
the houndary of each set of U has inddim < n—1. See [5].
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is evidently an open set of R satisfying FC UC G . Since TU--U
= {41, ~8[r(»))ly € C,i=1,2, ..}, the n-dimensional density of U—U
" is zero. The above arguement is also valid for n=0; hence U~ U =@
for a space R of 1-dimensional density zerd, proving inddimR < 0.
Thus we can induetively establish this theorem.

THEEOREM 12. If a metric space R has dimension < n and has o o-star-
finite (countable) basis, then it is homeomorphic to a subset 8 of N (£2) X Ly, iy
such that (n-++1)-density of 8 is zero.

Proof. We define the distance d”'(x, y) between two points & = (z,, 2,),
Y= (U1, %) of N(Q)XIsnsy for @y, % e N(Q), @y Yaelnnir by d'(a,y)
= d'(®y, ¥y) + A{Ba, Ys). Repla,cing M (R, m) in the proof of Theorem 9 by

O(R, m) {§0|<p e M(R), p7(T,) < Uy (y € C) for some star-decomposition

¢ and there exist decompositions @(R)~T,=1{J 4:, (y€C) such that
i=1

8(Ai,) <1m, M[8(4

=1

) <Lm (ye €, i=1,2,.)},

we can analogously prove ro‘o\ O(R, m) = @. Part 1 of the proof of Theo-

M=l
rem. 9 is suitable for the present proof.

To prove No(f)~nO(R,m) @ for every fe M(R), every star-de-
composition € and every positive integer m, we define ¢ ¢ M (R) by (C)
in the proof of Theorem 9. Since m(p(R)~ Ts) = np(8s) for a fixed o is
contained in an n-dimensional polytope in Inu.:, m(p(R)~ T4 is also
contained in an n-dimensional polytope because '

(g (B)  Te) C g (8;) C g (S5)

It is well-known that the (n41)-dimensional measure of an #-dimen-

sional polytope is zero (see [7]), and hence, by the compactness of

7{p(R) ~ T, there exist open sets K, (=1,2,...,p(8)) of Iy, such that
27@1)7

S(Kig) <lpm, O [S(E) """ < 1fm.

i=1

we)
77(99( )f\Ta) ,C,_Ulflz',a,
i=

We can select a positive integer h(3) satisfying

()

N [a (Hoo) +1ROT < 1fm,  8(Kip) +1/R(8) <Lfm (i=1, ..., p(8)).

‘L

L(p)~L(p') = implies

UL(p),
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Then we congider a star-decomposition
B: {8|ecBs, 6D, yeC} for By={e|e e Ansy, T.CTy). .
“NT.) < Wy, is proved in the same way. Moreover it follows from

1

M) <31

that
(T X I 5p) << B(H 1) +1/h(8) < 1[m,

2(8) 2(a)

DT X K < S’ [6 (Kus) +1/h BT <1m.
;=]
J— 2{(0)
Bince p(R)~T. C (T,
i=1

Next let us prove that ¢ e No{f)nO(R,m) implies Ne (¢} C No(f)
~O (R, m) for a suitable star-decomposition €’. We have, by ¢ « O(R, m),
& star-decomposition B such that qv_l(‘l,;) < W, and such that

« X H;5) 18 obvious, we have ¢ e O(R, m).

NS < 1pm

T==1

[— o0
(p(R)m 1’5 = LJ] .A.i,,}, 6(4‘11”/;) << ]/m,
i
(BeB,i=1,2,..)
for some A4;;. This implies

mlp(R)~Ty) = U (A}, )] < Lym

Sltata

=1

8(m(dyp)) < 1jim,
(BeB,i=1,2,..).

Hence, by the compactness of = (p(R)~ Ty); there exist open sets Hiz
(BeB, i=1,..,q(B)) of T, satisfying
)

y[é ) R B

(BeB,i=1,..,q(p).

S i) .
alp(R)~ 1y C U1 Hiyy  0(Hyp) << 1/m,
=

‘We choose a positive integer h(B) for every fe B satisfying

a@
2 [0(Hyy)
=1

FORETT <Vm,  S(Hip)+5h(B)<1m

fi=1,.,q(8).


Artur


180 J. Nagata
Letting
k(B) = max(2m(B), h(B)),

we have a star-decomposition E: {S,)s e Hy, § < B}.

To prove Nzlp)C O(R,m), we consider a given pe Nz(p). Then
P N(T,) < W, (¢ ¢ H) is proved in the same way. On the other hand, for
any weyp(R)~T, there exists yep(R)nT.=yp(S,) with d(z(z), n(y))
<1/h(B). Let p(8) =y, p €8 then it follows from

Ay (p), ne(p)) < 1/k(B) <1/k(B)

for feB with ¢e By that d(n(m),nq:(p)) < 2/h(f). That is to say for
any zep(R)~T. we can select zeg(k)n T, satistying d(m(a), n(x)
< 2/h(B). Hence letting

By={ele e Ay, T.C Ty} (BeB)

Bio= @z e p(B)n T., dn(z),7(2)) <2/h(8) for some m(2) e Hypl}

(8) .
we have y)(R)nTa:qU B;,. For given m,#,¢ By, weo take 2,2, with
i=1

dln(@), n(a) < 2/h(B),  dlw(@), nla)) < 2/R(B), (@), w(e) € Hep.

Therefore  d(n(2,), 7 () < 6(Hyg) + 4/h(B), which implies d"(xy, z,)
< 8(Hyg)+B/h(B) since @y, x, ¢ T,. Thus we have

8(Bye) < 8(H;p) -+ B/h(B) < 1jm,
[1()] a(8)
Y 0B < 3 18 (H) + 3R < 1m,
41 4=1
proving y ¢ O(R, m), i. 6., Ng(p) C O(R, m). This combined with Np(p)
C N¢l(f) for a suitable D implies No{p) C No(f)~O(R, m) for ¢'= DAE.

-] oo
Sinee we can prove {) O(R,m) @ in the same way, we get p(p) € (M O (R, m),
m=1 Ml
which topologically maps B on ¢(R) of (n+1)-dimensional density zero.
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Addendum. Recently we have proved by applying Theorem 3 that every
metric space can be topologically imbedded in a product of an enumerable number
of metric spaces B, of dim R, <1 (¢=1,2,..). See On imbedding a meiric space in
o product of one-dimensional spaces, Proc. of Japan Aead. 33 (1957), p. 445.449.
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