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On some equation in transfinite ordinals

by

S. Swierczkowski (Wroctaw)

In thig paper we consider the equation

1) £=n"+g,
where ¢,y > 1 are not limit numbers and ¢ is finite.

TaroREM 1. If ¢=10, then all ordinals &, n which are not Vil
numbers and satisfy (1) are given by the formulae

g=w =,
where the exponents m,n are finite and satisfy
W = P .

THEOREM 2. If ¢ > 0, then no transfinite ordinals &, n satisfy (1).
Theorem 2, for g = 1, p = 2, = 3, wag proved by W. Sierpinski [2].

1. Let ug denote by (a, b) the largest common divigor of a and b.

AuxitiARY Lomma. If k,1 are natural numbers, s = (k,1), k= k's,
1==1Us and for an ordinal v and @ sequence of ordinals g, -.., y which has
at least kl'—1 elements (3. e., t = kl'—2)

(2) v+ g =+ ppaa= i
holds, then
(3) i = ¥ iyt -

Proof. Bvidenily we can assume that s <k, l. There exist such
numbers p, ¢ that 0 <p <V and

(4) pl'—ql' =1, phk—gl=s.
Trom (2) and (4) follows
(5) i = P+ py o= v+ @l + pirara = ¥+ P14

for j-+pk < t. We shall prove first that (3) holds for j=0, ey B— 1.
It is p < I'. Indeed, if p = 1’ then from (4) follows I’ = 1, which contra-
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dicts s< 1l From p<l follows j+pk<j+('—1)k<hl'~2 gt for
j=0,..,k—2 Thus (5) holds for j <k—1 a;nt_i consequently (.32 also,
From (3) (where j < k—1) iti follows by easy induction that Hs1 == v/ (5'~1)4
+ pg—ngre—1 = ¥(F'—1)+ pr—1. On the cher hand‘ g1 == v/o. - fp14s
by (2). Comparing the last two equa,litle.s we obtain (3) for 7= E—1.

We proved that u = v+ ui, holds for ¢ < k. Thus fr.om ‘(2) it follows
that vk's + pipee = ¥+ k" + thiyernr for each s and '@ < k. Therefore
Bivir= ¥+ Mirrs - Since each integer § is of the form ¢+-kr, our lemma
follows,.

2. DerNITIONS. We introduce the notations

wre = [y, ¢], 2 [ye; 6] = [y1y Cilrsctscn »
r&i<s

As we know, each ordinal § can be nniquely represented in the normal form

& = w¥ey+ w6 + ... A wPney = [y, Cili<n 5
where y,> > ...> ¥, = 0 and the numbers #, ¢4y ..., ¢, are ﬁnitg_._
Let g be any ordinal. If u is transfinite, then we denote byﬂ the
limit number for which —z +  is finite. If u is finite, then we set i = 0.
We suppose that

&=l alick, 0 =1[fibilica, @=9+¢, p=p+d.

3. We assume that (1) holds and £, 1 are not limit numbers. The normal
forms of £° and %" are then (see [1])
& =[aw; @] +Lalp—1) + ary tlicicr + Laolg—1), ae@] -+
+lalp—2) + iy tilicick +[aolp—2), @otz] + ... +[00P + ) Gl
= [ 0%, ok 5

© 7= [Bep, bol +[Bolw—1) +Bi; biliica+[Bolw— 1), bobi] + ... +
+ B+ Bis bilicta
=B, bilica -
Equation (1) implies
ch=dl=u, a=0b for i<wu, a=4 for i<u, ap=2btq

We define s, k', I’ as in the Auxiliary Lemma. Then

3.1. There ewists such an ordinal x that ag= sk’ and f,= xl'.
Proof. It is ay¢ = —ay,+af = ~— B, + i = f.d. Comparing the normal
forms of a,¢ and f,d we easily find a number » for which a,= xd and
o= ¢, where ¢=¢'(¢,d), d= d'(c,d). It remains to observe that
¢k = dl implies d' =¥, ¢’ =1".
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3.2. w=rn+to;,.
Proof. Let us observe that in (6)

(7 Ui = P +ag{e—r—1)+o; for i<k v<e.

We define of'= —ay,+aj, = =— Bu+pi. Bvidently of = Y. From (7)
follows o' = ag+ o and consequently, by 3.1, & = ul'+ of,,. Similarly
we arrive at fi'= xl’ 4 1, which implies o == wl’ + a}};. Since u =>c'k
=1k, we can apply the Auxiliary Lemma. We obtain o = x+ail,.
From these equalities and from (7) for ¢ << %k—s follows

agle— 1)+ a; = %+ ay(c—1) + g -
It remaing to substitute x&' for o.
3.3, If 7 =[x, ay]+[a, Ailo—pich, then &=,
Proof. From 8.2 follows a; = »(k'—1) + O-ap1. Since, by 3.1, o < xh,

we obtain x > a;_g.i. This proves that 7 is defined by its normal form.
Let us compute ++';

™ = [y @]+ [ (B’ —1) + Oy OiJimscicn +
+ (k' —1), aote] + (5~ 2) + oz, @J—scsar+or + [, O l—s i »
One easily sees that &= +¥ iy equivalent to

L a =x+an,,
IL Ay = Ui..q for B
IIL. a,= aya if

121,
E>1.

The first of these conditions was proved in 3.2. Let us prove that
II holds. We consider the sequence a] y ooy @y—y. From (6) follows a} = af,.
Since similarly b; = bj,; we obtain a} = ai41- From the Auxiliary Lemma
follows aj= a{;,. Thig implies II.

We shall prove that IIT holds. If ¢ > 1, then af= a.a. Since IT
implies a7 = a@;, IIT follows. If ¢ =1, then @ is transfinite by ¢ > 1.
Therefore £” ig a limit naumber and ¢ == 0. This implies az == b, and con-
sequently aqop = byb;. Now from % = @I follows d = %’ and thus d > 1.
Thiy implies b == bol; == aga,. It remains to observe that b = aj = a,.

3.4, Ro=1ly,

Proof. We have agp == aj == f} = . Bvidently op = @ and dy = y.
Thus ayp = Bedp. Since e = fud by 3.1, we obtain & = i. The rest of
the proof is given by the equalities

i+s<k,

Kp=dg=d(p+e)=g+do=9+cd=0dyp=1y.
4. In this section we shall prove Theorem 1 and 2.
4.1. Proof of Theorem 1. If (1) holds, then #v= t¥¢= 7 by
15%
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¢ =¥ and ko = l'p. Since p is not a limit ordinal, it follows that # == 7.
Detining m =%, n=1 we have &= 1™, n="1"

Tt is evident that, conversely, the equalities £ = 7, 9 = T, TP == N
imply (1)

4.2, Proof of Theorem 2. We suppose that (1) holds for ¢ > 0.
Then & is not a limit number and thus & is given by (6). Since & ig not

a limit ordinal, we obtain ¢ = ¢.
Tet us suppose that x is & limit number. Then (see [1])

(8) v = [Boly—1) + fr, bili<t -

Comparing the firgt and the last but one terms in (6) :m.d (8) we obtain
at = By and op-1= Bolw— 1)+ fia. Since o < 0y, it follows from
these equalities that (y—1)o <. This is impossible by ¢,y = L. ‘

We suppose that # is not a limit number. Then u = d by 3.4. From
¢, d > 1 follows o= @ and B; = bob. Since, by 8.3, of = @) (cf. proof
of II), we have af= ai= ai. Thus, by aj=Dbj, we have &= boby.
This contradicts a= be, @x=Db+4¢.
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On a closed mapping between ANR’s
by
Y. Kodama (Tokyo)
1. Let X and ¥ be topological spaces. A continuons mapping f

of X into Y is called a closed mapping it and only if, whenever A is
a closed subset of X, f(4) is a closed subset of ¥. In the present note,

~we shall show that if X and ¥ ave ANR’s for metric spaces and there

exists o closed continuous mapping 7 of X onto ¥ satisfying a certain
condition, then there exist some intimate relations between combinatorial
invariants of X and Y. In more detail, if ¥ is a finite dimensional ANR
for metrie spaces and for each point y of ¥ Y y) is an ANR for metrie
spaees having a certain acyclic property, we shall prove that there exists
a continuous mapping ¢ of ¥ into X such that fg==1. Moreover, it X
is a finite dimensional ANR for metric spaces, we shall prove that X
hag the same homotopy type as Y.

In 2, several notations and lemmas which we shall need later on
are given. We shall prove our main theorems in 3. In 4, we shall prove
some theorems strengthening the main theorems.

2. A topological space X is called an AR (resp. ANR) for metric
spaces if and only if, whenever X is a cloged subset of a metric space ¥,
there exists a retraction () of ¥ (resp. some neighborhood of X in Y)
onto X. (Cf. [1] or [13], Definition 2.2, p. 790.) A topological space X
is called an NES for metric spaces if and only if, whenever Y is a metric
space and B is a closed subset of ¥, any continuons mapping of B into X
can be extended to a econtinuous mapping of some neighborhood of B
in ¥ into X. (Cf. [13], Definition 2.1, p. 790.) A metric space X is called
an LO" space if and only if for each point @ of X and for each neigh-
borhood U of 2 there exists a neighborhood V of @ such that any con-
tinnouy mapping ¢ from an é-gphere & to V is extended to a continuous
mapping § from an (Z--1)-element 7' with the boundary & into U,
Pwms 0,1, 0,0 (CE [12], . 79.) A metric space X is called a O space
it and only if any continuous mapping ¢ from an i-sphere §° to X is

(1) By a relraction h of ¥ into X we mean a continuous mapping from ¥ onto X
such that h(w) =z for each point @ of X.
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