229

Wild 0-dimensional sets and the fundamental group

by

A. Kirkor (Warszawa)

Extending a definition of Fox and Artin [5] we shall say that a compact 0-dimensional subset A of n-dimensional spherical space S^n (n > 1) is tamely imbedded if there is a homeomorphism of S^n on itself which maps A into a segment of a straight line; if no such homeomorphism exists we shall say that A is wildly imbedded. A well-known example of a wild 0-dimensional subset of 3-dimensional spherical space S is due to Antoine [1].

It seems that all the known examples of wild 0-dimensional sets have non-trivial fundamental groups of the complement. In spite of this situation

There is in a three-dimensional spherical space S a wild 0-dimensional subset A whose complement is simply connected i. e. has a trivial fundamental group (1).

The construction of the set A will depend largely on examples of wild cells due to Fox and Artin [5]; hence we shall refer to their paper as FA and use its notation.

1. A wild arc. We need some modification (2) of example 1.1 FA obtained by replacing the three arcs K_- , K_0 , K_+ by the arcs $K_-^x = r_- s_-$,

 $K_0^x = t_- r_+$, $K_+^x = s_+ t_+$ situated in cylinder C as shown in figure 1. Proceeding as in 1 FA we construct the simple arc

$$(1) X^x = p \cup \bigcup_{n = -\infty}^{\infty} f_n(K^x) \cup q$$

where $K^x = K_-^x \cup K_0^x \cup K_+^x$. X^x is contained in the ellipsoid of revolution defined by $x^2 + 4y^2 + 4z^2 \le 4$, with whose boundary it has only the points

Fig. 1

p=(-2,0,0) and q=(2,0,0) in common. Its projection in the xz-

-plane is shown in figure 2. The fundamental group $n(S-X^x)$ is generated by the elements $a_n,\ b_n,\ c_n$ and $d_n\ (-\infty < n < \infty)$ indicated in figure 2. The set of defining relations is

$$egin{aligned} d_n c_n^{-1} a_n &= 1 \ , \ d_n &= c_n^{-1} a_{n+1} c_n \ , \ c_{n+1} &= c_n d_{n+1} c_n^{-1} \quad (-\infty < n < \infty) \ , \ a_n &= a_{n+1}^{-1} b_n a_{n+1} \ , \ b_n &= c_{n+1} c_n c_{n+1}^{-1} \ . \end{aligned}$$

Elimination of a_n , b_n and d_n leads to the single set of relations

(2)
$$c_n c_{n-1}^{-1} c_n^{-1} c_{n-1} = c_n^{-1} c_{n+1} c_n c_{n+1}^{-1} c_n \quad (-\infty < n < \infty)$$

in the generating set $\dots, c_{-1}, c_0, c_1, \dots$ Using this presentation we shall prove that

(3) $\pi(S-X^x)$ is a non-trivial locally infinite (3) group.

Proof: Let

$$\mathfrak{G}_n = \{c_n, c_{n+1}\} \quad (-\infty < n < \infty)$$

be a free group generated by the elements c_n and c_{n+1} . Let

⁽¹⁾ This disproves a statement of Choquet [3], theorem 2.

^(*) Added in proof: According to a recent result of C. D. Papakyriakopoulos [7], corollaries (31.8) and (31.9), no modification is necessary for the proof of (3) is granted.

⁽³⁾ I. c. has no element of finite order except the neutral one. Fundamenta Mathematicae, T. XLV.

and let $\chi_n \colon \mathfrak{U}_n^- \to \mathfrak{U}_n^+$ be an isomorphism of the group \mathfrak{U}_n^- on the group \mathfrak{U}_n^+ defined by relations (2) and identities $c_n = c_n \ (-\infty < n < \infty)$. \mathfrak{U}_n^- is a subgroup of \mathfrak{G}_{n-1} and \mathfrak{U}_n^+ is a subgroup of \mathfrak{G}_n . Define

$$\mathfrak{A}_1 = \mathfrak{G}_{-1} \underset{\mathfrak{U}_0^+}{*} [\mathfrak{G}_0 \underset{\mathfrak{U}_1^+}{*} \mathfrak{G}_1]$$

and for $n \ge 1$

$$\mathfrak{A}_{n+1} = \mathfrak{G}_{-n-1} * [\mathfrak{A}_n * \mathfrak{G}_{n+1}]$$

where $\mathfrak{A}_{\mathfrak{A}}$ \mathfrak{B} denotes Schreier's free product of groups \mathfrak{A} and \mathfrak{B} with the amalgamated subgroup \mathfrak{A} [8]. Let \mathfrak{A} be the direct limit of groups and injections $\mathfrak{A}_n \to \mathfrak{A}_{n+1}$. Obviously $\mathfrak{A} = \pi(S - X^x)$. A theorem of B. H. Neumann [6] says that

The free product of locally infinite groups with one amalgamated subgroup is a locally infinite group.

This implies (3) by easy induction.

Observe that

The arc X^x is rectifiable.

By 1 FA the set $f_n(C) = D_n$ is the section of ellipsoid $x^2 + 4y^2 + 4z^2 \le 4$ defined by inequalities $2 - 2^{2-n} < x < 2 - 2^{1-n}$, whence D_n is contained in a cube whose edges are parallel to the axes of coordinates and have lengths equal to $4 \cdot 2^{-n/2}$. Therefore the diameter $\delta(D_n) < 8 \cdot 2^{-n/2}$. The set $f_n(K^x) \subset D_n$ can be assumed to have the total length less than a fixed multiple of $\delta(D_n)$ for n = 1, 2, ... Hence the length of X^x is by (1) less than $2 \cdot \sum_{n=1}^{\infty} \lambda \cdot 2^{-n/2} < \infty$, where λ is a fixed positive number.

2. A couple of wild arcs. Let E be the ellipsoid of revolution $x^2 + 4y^2 + 4z^2 \le 16$ and denote its vertices by $(-4, 0, 0) = p^x$ and $(4, 0, 0) = q^x$. On the arc $f_0(K_0^x) \cup f_1(K_-^x) \subset X^x$ choose two different points p', q' whose projections on the xz-plane are marked on the edge a_0 in figure 2. Join the points p' to p^x and q' to q^x by two disjoint polygonal arcs $p'p^x$ and q^xq' having only the end-points in common with the boundary of E and with the arc X^x . Denote the arcs by

$$pp' \cup p'p^x = Y_1, \quad q^x q' \cup q'q = Y_2.$$

Hence $Y_1 \cap Y_2 = 0$. The arcs Y_1 and Y_2 are arranged in E as shown in figure 3. Following closely 1.2 FA it can be proved that

(5) Both Y_1 and Y_2 are wild though the complement of either of them is an open 3-cell.

Clearly

(6)
$$\pi[E-(Y_1\cup Y_2)]\approx \pi(S-X^x).$$

is easy to notice that

(7) There is such an isotopy h_t (0 $\leq t \leq 1$) homeomorphically mapping S on itself that $h_1(Y_1)$ and $h_1(Y_2)$ are contained in disjoint solid spheres.

For the isotopy h_t may be conceived so that in the course of it the subarc of Y_1 consisting of the arc $p'p^x$, the part of the edge labelled a_0

Fig. 3

in figure 2 and the whole edges labelled d_{-1} , c_{-1} , b_{-1} and a_{-1} shrink to the edge a_{-1} , while Y_2 remains fixed. The arcs $h_1(Y_1)$ and $h_1(Y_2)$ already possess the desired property.

3. Some more wild arcs. Let Y_i' and Y_j'' be two different copies (i, e. isometric images) of arcs Y_i and Y_j (i, j = 1, 2). Denote by e_i' and e_j'' the non-singular end-points of Y_i' and Y_j'' respectively. Suppose that $Y_i' \subset Q_i'$ and $Y_j'' \subset Q_j''$ where Q_i', Q_j'' are disjoint solid spheres and their boundaries

$$\dot{Q}_i' \cap Y_i' = e_i', \quad \dot{Q}_j'' \cap Y_j'' = e_j''.$$

Denote by J_{ij} a polygonal arc having only the points e'_i , e''_j in common with Q'_i and Q''_i . Assume that

$$Y_{ij} = Y'_i \cup J_{ij} \cup Y''_j \quad (i, j = 1, 2).$$

The arcs Y_{ij} are closely related to that of 1.3 FA and using the methods of 1.3 FA we can easily see that

(8) $\pi(S-Y_{ij})$ is trivial for i, j = 1, 2.

4. Entangling operation η . Let J be a segment or an infinite polygonal are which is locally finite at every interior point. Assume $O = \{o_1, o_2, ..., o_k\}$ to be a set of points interior to some edges of J. Choose $\varepsilon > 0$ so that

$$V_i = \{u \in J \mid \varrho(o_i, u) \leqslant \varepsilon\} \quad (i = 1, 2, ..., k)$$

are segments interior to some edges of J and $V_i \cap V_j = 0$ for $i \neq j$. Let E_i (i = 1, 2, ..., k) be such an ellipsoid of revolution that V_i is its axis of rotation, $E_i \cap (J - V_i) = 0$ and $E_i \cap E_j = 0$ if $i \neq j$. Denote by φ_i a linear homeomorphism of the ellipsoid E (see 2) on E_i mapping segment $p^x q^x$ on V_i and define

$$\eta(J,\,O,\,arepsilon) = (J - igcup_{i=1}^k V_i) \cup igcup_{i=1}^k arphi_i(Y_1 \cup Y_2)$$
 .

(i) If L is a union of disjoint arcs $J_1, J_2, ..., J_m$, $O = \bigcup_{i=1}^m O_i$ where O_i is a finite set of points interior to some edges of J_i and ε is a positive number small enough, define

$$\eta(L,O,arepsilon) = igcup_{i=1}^m \eta(J_i,O_i,arepsilon)$$

so that $\eta(J_i, O_i, \varepsilon) \cap \eta(J_i, O_i, \varepsilon) = 0$ if $i \neq j$.

(ii) All components of $\eta(L, O, \varepsilon)$ are rectifiable polygonal arcs locally finite at every interior point if so are all components of L.

Now let us prove

(9) Lemma on η -operation. \mathcal{E} being a 3-cell the group $\pi[\mathcal{E} - \eta(L, O, \varepsilon)]$ is not trivial if $\pi(\mathcal{E} - L)$ is not trivial.

Proof. It will be sufficient to consider the simple case when the set O has one element only. But in such a case the proof follows easily from (3) and the Main Lemma of the next section.

5. Exchange of obstruction.

MAIN LEMMA (4). Hypothesis. (i) Let P be a tame n-dimensional curved polyhedron in S^n . Denote by G the interior and by \dot{P} — the boundary of P.

- (ii) Suppose that Z is such a closed subset of S^n that the kernels of injections $\pi(\dot{P}-Z) \rightarrow \pi(S^n-(Z \cup G))$ and $\pi(\dot{P}-Z) \rightarrow \pi(P-Z)$ are trivial.
 - (iii) Let $Z^* = (Z P) \cup M$ where M satisfies the following conditions:
 - (iii.a) $M \subset P$ and $M \cap \dot{P} = Z \cap \dot{P}$,
 - (iii.b) the kernel of injection $\pi(\dot{P}-M) \rightarrow \pi(P-M)$ is trivial.

THEOREM. The kernel of injection $\pi[S^n-(Z\cup G)]\to \pi(S^n-Z)$ contains the kernel of injection $\pi[S^n-(Z\cup G)]\to \pi(S^n-Z^*)$.

Remark: This lemma still holds when the groups involved are not defined. Its proof is based on the following

(i) $g_0 = g$ and $\varrho(g_0, g_t) < \varepsilon$,

 $(0 \le t \le 1)$ that

(ii) $g_1^{-1}(P)$ is an elementary figur [2].

Proof of Lemma h. It will be sufficient to prove this lemma in the special case when Q^2 is a 2-simplex and g is a simplicial mapping. But in such a case the proof follows easily from 7 of [2].

Proof of the Main Lemma. Let g belong to the kernel of injection $\pi[S^n-(Z\cup G)]\to \pi(S^n-Z^*)$. Hence there is such a mapping $g^*\colon Q^2\to S^n-Z^*$ that $g^*|_{G^2}=g$. By Lemma h it can be assumed that $g^{*-1}(P)$ is an elementary figur. Suppose that $g^{*-1}(P)$ is not void and denote by $\Omega_1,\Omega_2,\ldots,\Omega_k$ disjoint simple closed curves whose union is the boundary of $g^{*-1}(P)$. Let Γ_i denote the open 2-cell bounded by Ω_i , for $i=1,2,\ldots,k$.

There is such a number j $(1 \le j \le k)$ that either $\Gamma_{j} \cap g^{*-1}(P) = 0$ or Γ_{j} contains only such cells Γ_{i} 's that $g^{*}(\Gamma_{i}) \subset P - Z^{*}$. By hypothesis (ii) and (iii.b) of Main Lemma the mapping g^{*} can be deformed so in $S^{n} - Z^{*}$ that the curve Ω_{j} would disappear and the number k would be reduced by one at least. This implies the Main Lemma by finite induction.

- **6. Disentanglement.** Let L be defined as in (i) of 4. Suppose that there is such a polyhedral 3-cell \mathcal{E} that $\dot{\mathcal{E}}$ cuts L only at one point o, which is interior to some edge of J_{t_0} $(1 \leq i_0 \leq k)$. Assuming the arcs $J_1^*, J_2^*, \ldots, J_{k+1}^*$ to be components of the set $L^* = \eta(L, o, \varepsilon)$ let $L^* = L' \cup L''$ so that
- (i) L' is the union of those J_i^* 's which either lie in $\mathcal E$ or have with J_{i_0} that end-point in common which belongs to $\mathcal E$.
 - (ii) $L'' = L^* L'$.

Obviously neither L^{\prime} nor $L^{\prime\prime}$ are void. By means of (7) it is easy to prove that

(10) There is such an isotopy h_t $(0 \le t \le 1)$ homeomorphically mapping S on itself that $h_1(L')$ and $h_1(L'')$ are subsets of two disjoint solid spheres.

Proof. Let E denote the ellipsoid of revolution by means of which the operation η is defined at the point o. Choose e > 0 so small that $\overline{\mathcal{E} - E} = \mathcal{E}'$ is a (tame) 3-cell whose boundary \mathcal{E}' cuts L' only at the vertex of E, say e. Let E' be such a small, closed, spherical neighbourhood of E that E' and E meet only the same edge of L. The isotopy h_t may be carried through in three steps:

⁽⁴⁾ The author owes the idea of this lemma to Professor K. Borsuk.

235

First, let us perform an isotopy which shrinks \mathcal{E}' to a 3-cell $\mathcal{E}'' \subset E'$ which lies in a sufficiently small neighbourhood of the vertex e and does not change L''.

Secondly, let us denote by Y_1 that component of $\eta(L, o, e) \cap E$ which contains the vertex e, and by Y_2 —the other one. Now apply an isotopy that leaves $(S - E') \cup Y_2$ fixed and which, shrinking Y_1 and dragging G'' behind, moves the set $G'' \cup Y_1$ into a full sphere $Q \subset E$, $Y_2 \cap Q = 0$. This isotopy can be constructed by means of (7).

Thirdly, let us perform an isotopy which carries Q far away and leaves $L^{\prime\prime}$ fixed.

7. Thickening operation θ . Let J satisfy the conditions of 4. If J is a segment let $\theta(J,\varkappa)$ be the ellipsoid of revolution whose axis of rotation is J while $2\varkappa$ is the length of each of the other two axis. In the opposite case $J = \bigcup_{i \in N} I_i$, where N is the set of all integers

or of all positive integers, I_i 's are the edges of J and $I_i \cap I_j \neq 0$ only when $|i-j| \leq 1$. Then let

 $\theta(J,\varkappa) = \bigcup_{i \in N_2^*} U_i$

where U_i is either such

(a) a tabular neighbourhood [4] of I_i when J_i does not contain any end-point of J, or

(b) a pyramid in which I_i joins the vertex, which is an end-point of J, with an interior point of the base, that the following conditions are satisfied:

(i) $\theta(J,\varkappa)$ is a polygonal 3-cell locally finite almost everywhere, the only singular points being one or both end-points of J,

(ii) \varkappa is the Hausdorff distance between J and the boundary of $\theta(J,\varkappa)$.

There is a homeomorphism which maps $\theta(J,\varkappa)$ on a solid sphere and J on its diameter. Hence

(11) If $\mathcal E$ is an open or closed 3-cell the injection $\pi[\mathcal E-\theta(J,\varkappa)]\to\pi(\mathcal E-J)$ is an isomorphism into provided the involved groups exist.

Assuming L to be the union of disjoint arcs $J_1, J_2, ..., J_k$ and z to be a positive number less than a half of the least span between any two components of L, define

$$heta(L,arkappa) = igcup_{i=1}^k heta(J_i,arkappa)$$
 .

(12) Remark. Let J denote any of arcs Y_i , Y_{ij} (i, j = 1, 2) and let u be an interior point, e an end-point of J. Using θ -operation we can construct such a polyhedral 3-cell \mathcal{E} that $e \in \mathcal{E}$ and $J \cap \dot{\mathcal{E}} = u$.

8. 0-dimensional set A. Now let Q be a solid sphere in S and let the segment J_0 be a diameter of Q. Denote by \varkappa_0 any positive number less than $\frac{1}{2}\delta(Q)$. Define two sequences of sets $\{L_n\}$ and $\{A_n\}$ by induction:

$$L_0 = J_0$$
, $A_0 = \theta(J_0, \varkappa_0)$.

Let o_0 be the centre of Q and let ε_1 be a positive number less than $\frac{1}{2}\varkappa_0$. Assume that

$$L_1 = \eta(L_0, \sigma_0, \varepsilon_1), \quad A_1 = \theta(L_1, \varkappa_1)$$

where the positive number \varkappa_1 is so small that $\theta(L_1, \varkappa_1) \subset A_0$ holds.

Suppose the sets L_n and A_n to be already defined for some $n \ge 1$, L_n having a finite number of components which are rectifiable polygonal arcs, locally finite at every interior point (4, (ii)); denote by δ_n , δ'_n the greatest of the diameters which have the components of sets L_n and A_n respectively and choose a finite set O_n of points interior to some edges of L_n so that the diameter of any component of $L_n - O_n$ is less than $\frac{1}{3}\delta_n$. Then the positive numbers ε_{n+1} and ε_{n+1} can be chosen so small that the sets defined by

$$L_{n+1} = \eta(L_n, O_n, \epsilon_{n+1}), \quad A_{n+1} = \theta(L_{n+1}, \kappa_{n+1})$$

satisfy conditions: $A_{n+1} \subset A_n$ and $\delta'_{n+1} < \frac{1}{2}\delta'_n$.

Now let

$$A = \bigcap_{n=0}^{\infty} A_n.$$

It is easy to see that the Menger-Urysohn dimension of A is zero. Using (11) and (9) we can easily prove by induction that the injection $\pi(Q-J_0) \rightarrow \pi(Q-A_n)$ is an isomorphism into and therefore $\pi(Q-A)$ is not trivial. Hence the set A is wild.

In order to prove that $\pi(S-A)$ is trivial let us observe that

- (i) $\pi(S-A)$ is a direct limit of groups and injections $\pi(S-A_n) \rightarrow \pi(S-A_{n+1})$ (n=0,1,2,...);
 - (ii) by (11) $\pi(S-A_n) \rightarrow \pi(S-L_n)$ is isomorphism into;
- (iii) any component of L_n $(n \ge 1)$ is an arc which is isotopic in S with one of the arcs Y_i or Y_{ij} (i, j = 1, 2);
- (iv) following the final remark of 7 it can be proved by induction that for any interior point u of L_n there is such a polyhedral 3-cell $\mathcal E$ that $\dot{\mathcal E}$ cuts L_n only at the point u and $\mathcal E$ contains only one end-point of J_0 , fixed beforehand;
- (v) using (iii), (iv), (12) and (10) we can prove by induction that for any given $n \ge 1$ there is such an isotopy h_t $(0 \le t \le 1)$ mapping homeomorphically S on itself that every component of $h_1(L_n)$ is a subset of a different solid sphere, any two of them being disjoint;

A. Kirkor

236

- (vi) $\pi(S-L_n)$ is a free product of all groups $\pi(S-J_i^n)$ where J_i^n denotes a component of L_n . This follows by theorem 1 of [9];
 - (vii) by (iii) and (8) all groups $\pi(S-J_i^n)$ are trivial.

References

[1] L. Antoine, Sur l'homéomorphie de figures et de leurs voisinages, Journ. Math. pures appl. (8) 4 (1921), p. 221-325.

[2] K. Borsuk, Über die Fundamentalgruppe der Polyeder im euklidischen drei-

dimensionalen Raume, Monatsh. Math. Phys. 41 (1934), p. 64-77.

- [3] G. Choquet, Prolongements d'homéomorphies, C. R. Acad. Sci. Paris 219 (1944), p. 542.
- [4] R. H. Fox, On the imbedding of polyhedra in 3-space, Ann. of Math. 49 (1948), p. 462-470.
 - [5] and E. Artin, Some wild cells and spheres in three-dimensional space, Ann.
- of Math. 49 (1948), p. 979-990.
 [6] B. H. Neumann, An essay on free products of groups with amalyamations, Phil. Trans. Roy. Soc. London (A) 246 (1954), p. 503-554 or "Anlang" in Kuros Gruppentheorie, Berlin 1952, p. 343.
- [7] C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957), p. 1-26.
- [8] O. Schreier, Die Untergruppen der freien Gruppen, Hamb. Abhd. 5 (1927), p. 161-183.
 - [9] H. Seifert and W. Threlfall, Topologie, Leipzig 1934, p. 177.

INSTYTUT MATEMATYCZNY UNIWERSYTETU WARSZAWSKIEGO MATHEMATICAL INSTITUTE OF THE UNIVERSITY OF WARSAW

Reçu par la Rédaction 4.3.1957

On the convergence of nets of sets

by

S. Mrówka (Warszawa)

The topological convergence of net (1) of subsets of a topological space X may be defined in the same manner as the topological convergence of a sequence of sets: if $\{A_n, n \in D\}$ is a net of subsets of X, then $\operatorname{Li} A_n$ ($\operatorname{Ls} A_n$) is defined as the set of all $x \in X$ such that every neighbourhood of x intersects A_n for almost all (arbitrarily large) n (2). A net $\{A_n, n \in D\}$ is said to be topologically convergent (to a set A) if $\operatorname{Ls} A_n = \operatorname{Li} A_n$ (= A) and in this case the set A will be denoted by $\operatorname{Lim} A_n$.

Hausdorff ([2], p. 145) has shown that if X is a compact metric space, then in the space 2^X consisting of all closed non-empty subsets of X a metric may be defined such that the convergence of sequences of sets induced by this metric (*) coincides with topological convergence. This result has been generalized by Watson [7] who has shown that if X is a locally compact separable metric space then another metric may be defined in 2^X which induces topological convergence. Watson has also shown that if X is not locally compact, then the space 2^X considered as a L^* -space (see [4], p. 89 and p. 274) topological convergence is not a topological space.

The present paper is devoted to generalizations of the above results. It will be shown that:

⁽¹⁾ A net is a function defined on a directed set (a partially ordered set D is called directed if for every $n_1, n_1 \in D$ an element $n \in D$ may be found such that $n_1 < n$, $n_1 < n$, where < is the relation which partially orders the set D). If a net defined on D assigns to an element $n \in D$ an element x_n , then it will be denoted by $\{x_n, n \in D\}$ (see [3], p. 65).

⁽²⁾ We say that a statement T on elements of a directed set D is fulfilled for almost all n ∈ D if an element n₀ ∈ D may be found such that T is fulfilled for every n > n₀;

arbitrarily large $n \in D$ if the set of all $n \in D$ for which T is fulfilled is cofinal with D.

^(*) We say that a metric ϱ (a topology \mathcal{I}) for a set X induces a certain convergence of nets in X of some sort if each net in X of that sort is convergent with respect to this convergence if and only if it is convergent with respect to the metric ϱ (the topology \mathcal{I}).