Wild 0-dimensional sets and the fundamental group
by
A. Kirkor (Warszawa)

Extending a definition of Fox and Artin (5] we shall say that a com-
pact 0-dimensional subset 4 of n-dimensional spherical space 8™ (n > 1)
ig tamely imbedded if there is a homeomorphism of 8" on itself which
maps 4 into a segment of a straight line; if mo such homeomorphism
exists wo shall say that 4 is wildly imbedded. A well-known example
of 2 wild 0-dimensional subset of 3-dimensional spherical space S is
due to Antoine [1].

Tt seems that all the known examples of wild 0-dimensional sets
have non-trivial fundamental groups of the complement. In spite of
this sitnation

There is in « three-dimensional spherical space S a wild 0-dimensional
subset A whose complement is simply connected 4. e. has trivial funda-
mental group (*).

The construction of the set A will depend largely on examples of
wild cells due to Fox and Artin [5]; hence we shall refer to their paper
as FA and use its notation.

1. A wild are. We need some modification (?) of example 1.1 I'A
obtained by replacing the three arcs K_, I,, K. by the arcs K% =r_s_,
KZ=t_ry, K =s,t, situated in cylin- . -

&
der O as shown in figure 1. Proceeding
as in 1 FA we construct the simple arc b
(1) X=po U f(E)vg S
f=—00
where K= K* v Kt u K%, X® i con- f

tained in the ellipsoid of revolution
defined by a* + 44° + 42 < 4, with
whose boundary it has only the points
p=(—2,0,0) and ¢=(2,0,0) in common. Its projection in the az-

(*) This disproves a statement of Choquet [3), theorem 2.
() Added in proof: Aecording to a recent result of C. D. Papakyriakopoulos [7],
corollaries (31.8) and (31.9), no modification is necsssary for the proof of (3) is granted.
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-plane is shown in figure 2. The fundamental group = (8—X%) is generated

by the elements a,, b, ¢, and d, (—oo <% < o) indicated in figure 2.
The set of defining relations is

dnczlan =1 ]
Qo= Cp Q16 ’
Oni1= Cnlni16n (—o0 <M < 00,
== G} 1 D Wy
by == (/'n»l-lcnci:ll—l .

Elimination of a,, b, and d, leads to the single get of relations

—1 1 ~1 -1
(2) Cnln-10n Cn—1= Cn Cni1CnCnt1ln  (— 00 < 0 < o0)

e

p. “.»M
by by

G-3

dg

Fig. 2
in the generating set ..., ¢_y, ¢y, ¢, ... Using this presentation we shall
prove that
(3) @(8—X%) is o non-trivial locally infindte (*) group.

Proof: Let
G = {tn; 1} (o0 <M <o)

be a free group generated by the elements ¢, and ¢,.,. Let

Uy = {(071077—1-1 cf;;lon-—l)v n}
. M o (—oo <1< oo,
Wy = {6n, (Cr" Ciit10nCrt10n)}

(®) I. e. has no element of finite order except the neutral one.
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and let z,: Uy -1} be an isomorphism of the group A on the group Uy
defined by relations (2) and identities ep= & (—oo <<l oo). Uy is
a subgroup of &, and W is a subgroup of &a. Define
W=06_ » [Gy * &]

u} uf

and for » =1 ]
‘ mn+1= Gt t [gln : ®, r1]

u“ﬂ u?H‘l
where QI;} % denotes Schreier’s free product of groups 9 and B with the
amalgamated subgroup N [8]. Let 9 be the direct limit of groups and
injections W, —+Wpss. Obviously A = n(§—X%). A theorem of B. Il. Neu-
mann [6] says that

The free product of locally infinite groups with one amalgamated sub-
group is a locally infinite group. .

This implies (3) by easy induction.

Observe that

The arc X* is rectifiable.

By 1 FA the set f»(0) = D, is the section of ellipsoid o+ 4y* - 4e* < 4
defined by inequalities 2—2"" <@ < 2—92"" whence D, is contained
in a cube whose edges are parallel to the axes of coordinates and have
lengths equal to 4-27"°. Therefore the diameter 8(Dy) < 827" The
set f4(K%) C D, can be assumed to have the total length less than a fixed
multiple of 8(Dy) for n =1, 2, ... Hence the length of X° is by (1) less
than 2- 5 A-27™ < oo, where A is a fixed positive number.

=1

2. A couple of wild arcs. Let E Dbe the ellipsoid of revolution
22+ 497 + 422 < 16 and denote its vertices by (—4, 0, 0) = p* and (4, 0, 0)
= ¢& On the arc fo(Kj)wf(KZ)C X* choose two different points p’, ¢
whose projections on the zz-plane are marked on the edge a, in figure 2.
Join the points p’ to p* and ¢’ to ¢* by two disjoint- polygonal arcs p'p®
and ¢°¢' having only the end-points in eommon with the boundary of B
and with the arc X”. Denote the arcs by

pp'op'p*=Y,, gugq=1Y,.
Hence ¥, ~¥,=10. The arcs ¥, and ¥, are arranged in B as shown in
figure 3. Following closely 1.2 FA it can be proved that

(5) Both ¥, and Y, are wild though the complement of either of them 18
an open 3-cell.
Clearly -

(6) A[E— (Y0 Yy)]ms m(8—X") .

im Wild O-dimensionul sets and the fundamental group 231

1o is casy to notice that
(1) There is such an isotopy by (0 <<t < 1) homeomorphically mapping §
on dtself that hy(XY,) and hy(Y,) are contained in disjoint solid spheres.

For the isotopy %, may be conceived so that in the course of it the
subare of ¥, consisting of the are p'p®, the part of the edge labelled a,

Fig. 3

in figure 2 and the whole edges labelled d.;, ¢y, b and ., shrink to
the edge a@..,, while ¥, remains fixed. The ares hy(¥y) and hy(Y,) already
possess the desired property.

3. Some more wild arcs. Let ¥; and Y7 be two different copies
(4. e. isometric images) of ares ¥, and ¥y (4, =1, 2). Denote by ¢ and
¢ the non-gingular end-points of Y; and ¥y respectively. Suppose that
Y:C @ and Yy CQY where Qf,Qf are disjoint solid spheres and their
boundaries ) .

QinY=¢, QinY/=¢.
Denote by J,; a polygonal arc having only the points ¢, ¢ in common
with ¢} and . Assume that
Y“m Y{UJ[]\JY}' ('L,:’=1,2).
Thoe ares Yy are closely related to that of 1.3 FA and using the methods
of 1.3 T'A we can easily see that ’
(8) @(8—Yy) is trivial for 4,§=1,2.

4. Entangling operation 7. Let J be a segment or an infinite
polygonal ave which iy loeally finite at every interior point. Assume
0 = {04, 0y, ..., 03} t0 be a set of points interior to some edges of J. Choose
e >0 so that .

Vi={ued|glopu) el (@E=1,2,.,k
16*


Artur


232 A. Kirkor

are segments interior to some edges of J and ViAV;== 0 for is&j. Let E;
(i=1,2,..,k) be such an ellipsoid of revolution that V; is ity axis of
rotation, By~ (J~Vi) =0 and E;~nB;= 0 if ¢+ i. Denote by ¢; 2 linear
homeomorphism of the ellipsoid B (see 2) on E; mapping segment prg
on V; and define

k I .
dy 0,e)=T— U V)w ij] e Yoo X,).

=1

m
(i) If L is a union of disjoint ares Jy,Js, .oy Im, 0 == rU1 0; where

0, is a finite set of points interior to some edges of J; and & is & positive
number small enough, define

m
(L, 0,¢) = L:JI 7y Oy )

s0 that n(J:, O, &) An(J;, 05, 8) =0 i £555.

(ii) All components of 7(L, 0, ) are rectifiable polygonal arcs locally
finite at every interior point if so are all components of L.

Now let us prove

(9) LEMMA ON %-OPERATION. & being a 3-cell the group a[&—n(L, 0, ¢)]
is mot trivial if n(&—L) is not trivial. -

Proof. It will be sufficient to consider the simple case when the
set O hags one element only. But in such a case the proof follows ecasily
from (3) and the Main Lemma of the next section.

5. Exchange of obstruction.

Mawy Lemma (). Hypothesis. (i) Let P be a tame % - dimenstonal
curved polyhedron in 8. Denote by @ the interior and by P — the boundary
of P.

(ii) Suppose that Z is such a closed subset of 8™ that the kernels of in-
jestions w(P—Z)—>n(8§"—(Zw @) and n(P—Z)~>n(P—2Z) are trivial.

(iii) Let Z* = (Z—P)w M where M _ satisfies the following conditions:

(iii.a) MCP and M~P =Z~P,

(iil.b) the kernel of injection m(P—M)—>m(P—M) is trivial.

THEOREM. The kernel of injection n[8"—(Zu@)]—>n(8"—Z) contains
the kernel of injection w[8"—(Zw @)]—n(8"—2Z*).

Remark: This lemma still holds when the groups involved are not
defined. Its proof is based on the following

(#) The author owes the idea of this lemma to Professor K. Borsulk.
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Levma h. Let Q* be a 2-disk, P a polyhedron in a metric space R

and & a positive number. If g: Q*—R there is such a homotopy g;: Q*—R
(0 <t <L) that

1) go=yg and o(go, 1) <&
(i) ¢7UP) s an elementary figur [2].

Proof of Lemma h. It will be sufficient to prove this lemma in
the special case when @* is a 2-simplex and ¢ is a simplicial mapping.
But in such a case the proof follows easily from 7 of [2].

Proof of the Main Lemma. Let.g belong to the kernel of in-
jeetion n[8"—(Zw &)]—>m(8"—Z%*). Hence there is such a mapping
g*: Q2>8"—Z* that g*|g==y¢. By Lermama h it can be assumed that
¢*YP) is an elementary figur. Suppose that ¢*-1(P) is not void and
denote by £, £, ..., £, disjoint simple closed curves whose union is
the boundary of ¢*-!(P). Let Ij denote the open 2-cell bounded by @,
for i=1,2,..,k . .

There is such a number j (1 <j << k) that either Iy~ g*-Y(P)="0
or I'; contains only such cells I'’s that g%(I;) C P— Z*. By hypothesis (ii)
and (iii.b) of Main Lemma the mapping g* can be deformed so in §"—Z*
that the curve 2; would disappear and the number % would be reduced
by one at least. This implies the Main Lemma by finite induction.

6. Disentanglement. Let L he defined as in (i) of 4. Suppose
that there is sueh a polyhedral 3-cell & that & euts L only at one point 0,.
which is interior to some edge of Jy, (1 << ¢, << k). Assuming the ares
J¥,JE, .oy Jh1 to be components of the set L* = y(L, o, ) let L* = L'V L'
§o that _

(i) L' is the union of those J}’s which either lie in & or have with
J;, that end-point in common which belongs to &.

(i) L"=IL*~L". |

Obviously neither L’ nor L'' are void. By means of (7) it is easy to
prove that

(10) There is such an tsotopy hy (0 <t < 1) homeomorphically mapping
8 on itself that hy(L') and h(L'") are subsets of two disjoint solid
spheres.

Proof. Let B denote the ellipsoid of revolution by means of which
the operation % is defined at the point ¢. Choose &> 0 so small that
E—F =& iy a (tame) 3-cell whose boundary &' cuts L’ only at the vertex
of E, say e. Let E' be such a gmall, closed, spherical neighbourhood of E
that B’ and E meet only the same edge of L. The isotopy  may be car-
ried through in three steps:
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Tirst, let ns perform an isotopy which shrinks &' to a 3-cell &” C K
which les in a sufficiently small neighbourhood of the vertex ¢ and does
not change L.

Secondly, let us denote by Yi that component of #(L,0,8)nE
which contains the vertex e, and by ¥, — the other ome. Now apply
an isotopy that leaves (§—E')w ¥, fixed and which, shrinking ¥, and drag-
ging &' behind, moves the set &"UY, into a full sphere QC T, Yan @ =0.
This isotopy can be constructed by means of (7).

Thirdly, let us perform an isotopy which carries @ far away and
leaves L' fixed.

7. Thickening operation 0. Leb J satisfy the conditions of 4.
T J is a segment let 6(J, ») be the ellipsoid of revolution whose axis
of Totation is J while 2x is the length of each of the other two axis.

In the opposite case J :-E‘szIi’ where N is the set of all integers
1

or of all positive integers, I;'s ave the edges of J and I;~I;0 only when

ji—4] < 1. Then let .
07, ) =) U

where U; is either such

(a) a tabular neighbourhood [4] of I; when J; does not contain any
end-point of J, or )

(b) a pyramid in which I, joins the vertex, which is an end-point
of J, with an interior point of the base,
that the following conditions are satisfied:

(i) 8(J, ) is & polygonal 3-cell locally finite almost everywhere, the
only singular points being one or both end-points of J,

(ii) » is the Hausdorff distance between J and the boundary of
6(J, ).

There is a homeomorphism which maps 8(J, ») on a solid sphere
and J on its diameter. Hence

(11) I & is an open or closed 3-cell the injection al&—0(J, n)]—>m(E—J)
is anm isomorphism into provided the involved growps ewist.

Assuming I to be the union of disjoint ares Jy,J, ey and 2 to
be a positive number less than a half of the least span botween any two
components of L, define

. . .
6L, )= U1 B(Jqy %) .
=
(12) Remark. Let J denote any of ares ¥y, ¥y (i,7=1,2) and let
be an interior point, e an end-point of J. Using 6-operation we

can construet such a polyhedral 3-cell & that ¢ e & and Jn~ &= u.

icm

l
|
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8. O-~dimensional set 4. Now let ¢ be a golid sphere in § and
let the segment J, be a diameter of @. Denote by x, any positive number
less than 446(Q). Define two sequences of sets {L,} and {4,} by induction:

Ly=dy, Ag=0(Jy, %0) .
Let 0, be the centre of @ and let & be a positive number less than
$r,. Assume that

Ly = n(Ly, 09, &), v = 0(Iy, )

where the poxitive number x; is 8o small that 0(L,, »,) C 4, holds.

Suppose the sets I, and 4, to be already defined for some # =1,
I, having a finite number of components which are reectifiable polygonal
ares, locally finite al every inferior point (4, (il)); demote by 6,, &, the
greatest of the diameters which have the components of sets L, and 4,
respectively and choose a finite set O, of points interior to some edges
of I, so that the diameter of any component of L,— O, is less than }é,.
Then the positive npmbers enp1 and g4, can be chosen so small that
the sets defined by

LnH == W(Lny Om e11,—}-1)7 An+1 == G(Lnﬂ, Hnt1)
satisfy conditions: A,y ,C A, and d,.q < $80.
Now let
A= 4,.
=0

It is easy to sce that the Menger-Urysohn dimension of A is zero. Using
(11) and (9) we can easily prove by induction that the injection n(Q——J o) =
—m(Q—A,) is an isomorphism into and therefore w(@~4) is not trivial.
Hence the set A ds wild.

In order to prove that m(S—A4) 4s trivial let us observe that

(i) m(S—A) is & direct limit of groups and injections = (S—A4,)—
—)'ﬁ(‘g"'AﬂrH) ('n' =0, 1’ 27 )5

(i) by (11) #(S—An)->n(8—Ly) iz isomorphism into;

(iii) any component of L, (n = 1) is an arc which is isotopie in 8
with one of the ares ¥; or ¥y (i,§=1,2);

(iv) following the final remark of 7 it can be proved by induetion
that for any interior point u of L, there is such a polyhedral 3-cell &
that & euts L, only at the point % and & contains only one end-point of
Jq, fixed beforehand; .

(v) using (iil), (iv), (12) and (10) we can prove by induction that
for any given n 1 there is such an isotopy h (0 €£t<1) mapping
homeomorphically § on itself that every ‘component of hy(Ly,) is a subset
of a different solid sphere, any two of them being disjoint;
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(vi) =(8—L,) is a free product of all groups a(S—J7) where J7

denotes a component of L.. This follows by theorem 1 of [9];
(vil) by (iii) and (8) all groups z(8—J7) are trivial.
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On the convergence of nets of sets
by
S. Mréwka (Warszawa)

“The topological convergence of mnet (*) of subsets of a topological
space X may be defined in the same manuer as the topological con-
vergence of a sequence of sets: if {4,,n e D} is a net of subsets of X,
then Lid, (Lisd,) is defined as the set of all » ¢ X such that every neigh-
bourhood of w intersects 4, for almost all (arbitrarily large) & (%). A net
{4,,neD)} is said to be topologically convergent (to a set A) if
LA, = Lid, (= A) and in thiz cagse the set 4 will be denoted by
Lim A4,.

Hausdorff ([2], p. 145) has shown that if X is a compact metric
gpace, then in the space 2% consisting of all closed non-empty subsets
of X a metric may be defined such that the convergence of sequences
of sets induced by this metric (%) coincides with topological convergence.
This result has been generalized by Watson [7] who has shown that
if X is a locally compact separable metric space then another metric
may be defined in 9% which induces topological convergence. Watson
has also shown that if X is not locally compact, then the space 2% con-
sidered as a L*-space (see [4], p. 89 and p. 274) topological convergence
is not a topological space. . .

The present paper is devoted to generalizations of the above results.
It will be shown that:

(1) A met is a function defined on a directed set (a partially ordered set D is called
directed it for every m,, n, « D an eloment n ¢ D may be found such that 5, < n, 1< 0,
where - is the relation which partially oxders the get D). If a net defined on D assigns
to an element 1 « 1) an element x,, then it will be denoted by {z,, n €D} (see [3], p. 65).

(%) We say that o statement 7 on elements of a directed set D is fulfiled for

almost all w ¢ D if an element n, ¢ ) may be found such that T is fulfiled for
every & ng; :

arbitrarily large n « D if the set of all n « I for which T ig fulfiled is cofinal with D.

() We say that & metrie ¢ (a topology &) for a set X induces a certain conver-
gence of nets in X of some sort if each net in X of that sort is convergent with respect
to this convergence if and, only if it is convergent with regpect to the metric ¢ (the
topology J).
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