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On function spaces

by
S. Mréwka (Warszawa)

In the prosent paper we are concerned with the study of the prop-
erties of topologies in function spaces; in particular, we shall congider
the so-called k-topology (1). The following problems will be treated:

1° conditions regarding the spaces X and ¥ under which the space
v¥ with a k-topology is of the character <m (?) in particular, condi-
tions under which the space ¥¥ ig m-almost-metrizable (*);

9° conditions regarding X and ¥ under which there exists a topo-
logy for 7¥ which induces the continuous convergence of nets of func-
tions (see [3], p. 241);

3° let § be a function defined on the product X x T of topological
spaces X and T with values from a ‘topological space ¥ and let f be the
funetion defined on 7T whose value at a point ¢ is the function f;, de-
fined Dby the equality fi(»)= flz,t,). Clearly, the continuity of f de-
pends only on topologies in X,Y, T, and the continuity of f depends
on topologies in 7' and 7%, Is there a topology for Y% guch that the
continuity of § with respect to this topology is equivalent to the con-
tinuity of f? ‘

Known results relating to these problems may be listed as follows:

() A basis of k-topology for & function space ¥ ¥ (= space of all continuous
functions on X to ¥) consists of all sets of the form W (0ys ves Cs Ty voes U,), where
0, are compact subsets of X, U, are open subsets of ¥, and

WGy, woer G s ooes Upd = {f « T5: f(G) € Ugg 4= 1, s B

Clearly, sefs of the form W(0; T7) form a subbasis for T - topology.

%) The character of a point w (in gymbols: x(x)) is the least cardinal m for which
there is a hasis of @ of the power m. The character of a space X (in symbols: 2 (X)) is,
by definition, the number su];)x(m).

xeX

(®) A space X is said to be m-almost-metrizable if there is a family P= (o)sez

(& = m) of preudometrics on X such that A = {z «X: ge(w, Ay =0 for each £ in E}

for each 4 ¢ X. It may always be assumed that max{ge. 0z} ¢ P for each ¢y, 0p in P.
An mi-almost-metrizable space is of the character <m {(see [4]).
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la. If ¥ is a metric space and X is hemicompact (i.e., X has
a countable family & of compact subsets such that for every compact
subset C of X there is a ¢, in § with € C €,), then ¥~ with a k-topo-
logy is metrizable (Arens [1]).

1b. It ¥¥ with a k-topology is first countable then X iz hemicom-
pact and Y is first countable (Arens [1]).

%2a. If X is a completely regular locally bicompact space, then the
k-topology in ¥¥ induces the continuous convergence of nets of sets
(Arens [1]).

2h. If X is completely regular and ¥ is the unib interval <0, 1> then
there exists a smallest (!) jointly continuous (3) topology for ¥¥ if and
only if X is loecally compaet (Arens [1]).

3a. If X iy a completely regular locally compact space, ¥ and T
are arbitrary completely regular spaces, then the continuity of f is equiv-
alent to the continuity of j with respect to the k-topology in ¥ for
every f which maps X X T into ¥ (Fox [2]).

3b. If X and T are first countable, and Y is an arbitrary completely
regular space, then the continuity of f is equivalent to the continuity
of f with respect to the k-topology in ¥~ for every f which maps X X T
into Y (Fox [2]).

3e. If X is separable metric, ¥ is the set of all reals, then there is
a topelogy for ¥¥ such that the continuity of f is equivalent to the con-
tinuity of f with respect to that topology for every f which maps X x T
into Y if and only if X is locally compact (Fox [2]).

1. Definitions and neotations. All topological spaces under con-
sideration are supposed to be completely regular. '

A space X is sald to be wti-compact if each open covering of X of
the power <{m contains a finite subcovering. A space is said to be com-
pact (= bicompact) if it is m-compact for each m. A space is m-semi-
compact if 1t is the union of m compact subsets. A space is locally m - com-
pact it each point of the space has a neighbourhood whose closure is
- compact.

The class of all cofinal subsets of a directed set D will be denoted
by of(D).

Dy, denotes the directed set consisting of all finite subset of a set =
of the power <m. The partial ordering in D, is the set-theoretical in-
clusion (3. 6., # <m for n,m e D, if and only if » Cm).

() By a topology we understand the family of all open sets. A topology O’ is
smaller than @ if 9’ c 3.

. ) A togology 3 for ¥ is said to be jointly continuous provided that the map-
ping F of ¥- x X which carries <, «) into f(x) is continuous.
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A net defined on a directed set D will be named D-nef. A Dy-neb
will be called simply m-net. A D-net which assigns to an element neD
an element », will be denoted by {#,, m e D}. A net {z,, n D} is said
to be compaci if there is an n, ¢ D such that the set {r,}us,, has a com-
pact closure. ]

Let (Wp) be the following property of topological spaces:

(Wp) Each convergent D-net of elements of ihe space is compact.

The property (Wp, ) will be denoted simply by (Wy). A space X
has the property (W) if it has the property (Wp) for every directed set D.

A class & of compact subsets of a space X will be called a basis for
compact sets if for each compact set ¢ C X there is a €, ¢ & with ¢ C Cq.
(Clearly, hemicompact spaces can be defined as spaces having an enu-
merable basis for compact sets.)

An open basis B of a space X is said to be an m-basis if it is the
union of m locally finite systems (see [5]). (A system of subsets of a space
is said to be locally findte if each point of the space has a neighbourhood
which intersects a finite number of members of the system.)

If f is a funetion defined on a set 7' whose values are functions, then
[f(#)](x) denotes the value of the function f(f) at the point z.

If X, T, Y are topological spaces and J is a topology for Y%, then
we write [X, ¥, T, 3] if, for each function f whieh maps XX T into ¥,
the continuity of f is equivalent to the continuity of the function f e (X5,
where f is defined by the equality -[f(#)](z) = f(x,1).

The %-topology for ¥¥ will be denoted by k(¥™¥).

I denotes the unit interval <0, 1.

II. Lemmas and auxiliary theorems. _

Tmva 1. I ¢ (z) << m then there exists a decreasing vu-net {Un, n € Du}
(3. €., U,D Un for m<<n') of neighbourhoods of x such that the family
{Unlnep,, i8 a basis of @ (such a basis will be called a special basis of x).

Proof. Let {UE}EGE be a basis of z of the power <m. Let us set
Up=Ug . nUg for n=1{&,..., & eD,.

Lemma 2. A space X is m-compact if and only if every m-net of
elements of X has a cluster point.

Proof. If X is m-compact and {z,, n e Dy} is an m-net of elements
of X, then there is & point z which belongs to the closures of all sets
X, = {@mlmen. Since each neighbourhood of z intersects X, for every
n e Dy, @ is cluster point of the net {s,, ne Dy}. Suppose X is such
that each mi-net has a cluster point and let {d:kes (E=wm) be a
centred family of closed subsets of X. Let us set An= A5 ... ~4;, for
n={&, ..., &) and let =, be an arbitrary point of A;. The net {@,, n <D}


Artur


276 8. Mréwka

has a closter point and it can easily be shown that this point is a com-
mon point of all A,.

Levma 3. If g{z)<m and x e A, then there ewists an m-net of ele-
ments of A which converges to .

Proof. Let {U,, ne.Dy} be a special basis of » and let 2, be an
arbitrary point of 4~U,. Clearly, the m-net {,, neD,} is conver-
gent to z.

Thus, if x(X) < m, then the topology of X can be described in terms
of convergence of m-nets.

LenmaA 4. If X ds m-compact and vi-semicompact, then X is compact.

Proof. Since X is m-semicompact, each open covering of X con-
tains a subcovering of the power <mi, thus, by m-compactness, it con-
tains a finite subcovering.

TerorEM 1L 1. If x(X) < m and X has the property (W), then X
s locally m-compact.

Proof. Suppose that no meighbourhood of a point z, ¢ X has the
m-compact closure and let {U,, n «D,} be a special basis of @,. For
every ne D, there exists an m-net {mﬁ,’{), meDy} of elements of T,
which hags no cluster point. Consider the net {#imy, (1, m> ¢ Dy X Dy},
where ¢ = aty. This net is an m-net; indeed, the set Dy, XD, i

similar to Dy. On the other hand, this net is convergent to x,, but it
is not compact.

CoroLLARY 1. If X has the property (W) for each m, then X is locally
COMPact,

Clearly, a locally compact space has the property (W). Thus we
obtain:

CoROLLARY 2. 4 space X has the properly (W) if and only ©f X has
the property (Wy) for each m. :

CoROLLARY 3. A space X is locally compact if and only if X has the
property (W).

By lemma 4 and theorem I. 1., we obtain:

TrnoreM II. 2. If 7(X) <m, X has the property (W) and s m-semi-
compact, then X is locally compact.

LiEMMA, .5. If X is compact and »(X)<m and {tn, me I} is an
m-net of points of X, then for each n e D, there is o ky = n such that the
w-net (ay, % eDn} converges to some point of X.

Proof. By lemma 2, the net {m,, n €D} has a cluster point =,.
E[Jet {Up, n epm} be a gpecial basis of @,. Then for each n ¢ D, there
is & k3> m with @, e U,. Clearly, the net {®r,y n e Dy} converges to .
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LeMmA 6. If x(X)<m and f is a function on X to X, then f is con-
tinuwous if and only if for each m-net {wn, n e Dy} which converges to some
point xy € X, the net {f(wn), ne Dy} converges to f(z,).

Proof. Suppose that f is not continuons. Then there is an A C X
such that f(A) ¢ f(4); 4. e, there is a point m,e A with f{=z,) ¢ 7(4).
By lemma 3, there is an m-net {z,, » ¢ Dy} of elements of 4 which con-
verges to z,; on the other hangd, there is a neighbourhood V of f(z,) such
that Vi~ f(4) = 0. Since f(,) ¢ U for each » in Dy, {f(z,), n € D\,} does
not converge to f(x,). Conversely, if {x,, » e Dy} converges to =z, and
{f(xy), ® € Dy} does not converge to f(w,), then there is a neighbourhood
V of f(w,) such that {weDy: f(a,) ¢ V}ect(Dy). Clearly, f(U) gV for
each neighbourhood U of x, whence f is not continuous.

III. Character and almost-metrizability ot ¥, (In this section
YX is supposed to carry a k-topology.)

TuporeM IIT. 1. If ¥ has an m-basis and X has o basis & for com-
pact sets of the power <, then Y* is of the character <m. N

Proof. Let B be an m-basis of ¥ and let B = BT =m),

EeE
where B, are locally finite systems. Let fje Y¥*, For every (¢ & we de-
note by Bse the family of all U « B, for which fo(C) AU+ 0. Since fy(C)

is compact and B, is locally finite, By is finite, Let B* =e L,Z R‘Bm and
€&, Ce

" let B’ he the family of all finite unions of members of B*. Clearly B < m.

Let & = {}:i(ﬂU) ~ Cluew,gess- Clearly each member of & is compact
and & < m. We shall show that the family of all f,e W(C, U), where
Oe® and U e B is a subbasis of f,. Let foe W(C,y, U,), where C, is
an arbitrary compact subset of X and U, is an arbitrary open subset
of Y. There exists ¢’ ¢ & such that ¢, C ¢'. For each 2 ¢ C, there is a
&,eE and U,e By, such that foz)e U,C U, Clearly 7(C) U0,
whence UgeB'. Since wxefi (Uz), €, kagé foN(U,), thus there is a
0

finite system Uy, ..., Uy, such that O C i (Ug) v u:ff)"l(U,;j). Let
U= Uy v ..U, Wehave Ue®B and f(Co) C U. Repeating the above
reagoning, we infer that there is an U’e B’ such that f((C)CU' CU' CU.
Let (= f;'(U") ~ C'. Clearly € ¢ &' Since 0,C fi"(U")n(", ¢,CC. On
the other hand, fo(0)= folfi (U}~ C) Cfolfe(U')~0) C U’ C U, whence
foe W(C, U). But ¢, C ¢ and UC U, and thus W{C, U)C W(C,, Uy).

TueoreM III. 2. If X has a basis for compact sets of the power <m
ond Y is m-almost-metrizable, then Y¥ is m- almost-metrizable.

Proof. Let P = {0¢}se= (8 =m) be a family of pseudometrics of ¥
and let & be a basis for compact sets in X of the power <<m. Let us set
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P* = {ofc}ses,cen Where

dlolf, g) = sup os{f (@), 9(#)) -

We shall show that P* is a family of pseudometries for ¥*. Let
V = {f; oeclfo, f) < ). Since € is compact, there is a finite system
0y, ..., Oy of compact sets such that € = Chu.w Oy and ge(fo(2), fol@)) < Le
for #,2" in C;. Let @; be an arbitrary point of ¢; and let U;= {y e‘Y:
E’E;(fo(‘”i)a .1/) < e} T mely, then QE(fu(x't)y fo(x)) <}e and /0(“’/) e U,y
whenee  fo(C) C U;, and  thus  foe W(Cy, s Cr; Upy ey Ug). On
the other hand, if je W(Cy, ..., Cks Uyy ey Ur) and ®eC;, then
flx) e U; and Q;‘(fo(m)y f(w)) < Qs(fo(wn)y fo(mo)) + Qs(fn(wo); f(’”)) << §e, whence
sup os(fo(@),f () < ¢ and feV. Finally, foe W (Cry ey Oy Ugy ey U CV.
xel

Conversely, let W(Cy, ..., Ci; Uy, ..., Ux) be an arbitrary neighbourhood
of f,. Since fo(0;) C U; and fo(C;) is compact, there iy a pseudometric
0 in P such that Q;i(fo(a,;), Y\\Ui) =g > 0. Let g;= max {051, vers QE}c}
and &= min{e, ..., ). Moreover, there is a ¢ in & such that
Cun w0 CC Let V={f: oclfo,f)<e} If feV and zeC;, then
0570, 1(®)) < efo( 01 (@) < oelfo(®); (@) < &, whence f(z) ¢ U; and
f(O,) C U’L, thus f GW(OI, ey Ok; Uy ooey Uk) and flnally vC W(Ol, ey Ok;
Uy, oy Ug).

TororEM III. 3. If IX is of the character <m, then X has o basis
for compact sets of the power <m.

Proof. Let f, be a function which is identically equal to 0 and let
Uy={y eI: 0<y <1} Since y{(fo) <m, there is a family K&, of the
power < consisting of compact subsets of X with the following prop-
erty: for each compact set ¢ C X there arve Ci, ..., (p in K&, and open
sets Uy, .., U CI such that f,e W(Cy, ..., Cx5 Uy, ..., Up) C W(C; Uy).
But fo e W(Cy, ) Oy Upy ooy Up) CW(C; Up) implies € C G v G
In fact, if there iz a point e O\(C;u ... ), then there is a
fonetion f with f(z,) =1 and f(@)=0 for zeCyu..w (. Clearly
feW {0y, .y O3 Uyy ooy Up) and  f ¢ W(C; Uy), and this contradies
W(Cyy vy Ci Upy ey Up) CW(C; Uy). It follows that the family of all
finite unions of members of K, is & basis for compact sets.

IV. Continuous convergence of nets of funetions. We re-
call that a net {fu, % € D} (f, ¢ ¥¥) is said to be continnously convergent
to f e ¥¥ provided that for each net {s,, n ¢ D} (, ¢ X) which converges
to a point x e X, the net {fu(®,), n ¢ D} converges to f(z). It may easily
be shown that a topology I for ¥¥ is jointly eontinuous if and only if
each net in ¥* which converges to some f ¢ Y= with respect to the to-
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pology I converges to f continuously. Arens [1] has shown that there
is & smallest jointly continuous topology for I* if and only if X is locally
compact,

We shall say that a topology I for ¥ is a topology of continuous
convergence if each net in ¥~ converges to fe ¥~ with respect to the
topology 3 if and only if it converges to f continuously. Then from Arens’
resulti it follows that there exists a topology of continuous convergence
for I* if and only if X is locally compact. On the other hand, Arens
also has shown that if X is locally compact, then the k-topology for ¥*
ig a topology of continuous convergence for arbitrary Y; hence, in this
case, the k-topology induces the continuous convergence of all nets in Y%,
The following theorems explain when k-topology induces the continuous
convergence of nets of some special sort.

Turorem IV. 1. If X hes the property (Wy) and z(X) <m, then
the k-topology imduces the comlinuous comvergence of m-nets in Y= for
arbitrary Y.

Proof. Suppose that an m-net {f,, ne.D,} converges to f, con-
tinuously and does not converge to f, with respect to k-topology. Then
ther¢ is a neighbourhood W(C, U) of f, with the following property:
for each n e Dy there is a k,e Dy such that &,z n and f, ¢ W(C,U),
1. €., there iy a point x, ¢ ¢ such that f; (#,) ¢ U. But x(0) <m and ¢
is compact, whence by lemma 5 there is a net {I,, n e Dy} such that
Iy = n for each m in Dy, and the net {w,, n < Dy} converges to some point
z, € 0. Clearly, the net {f,%, n e Dy} converges to f, continuously, whenee
{f’fzn(mlu)’ n e Dy} converges to fo(a,), but fk,“(mln);f U for each ne Dy,
which it leads to a contradiction.

Jonversely, suppose that {f,, n ¢ Dy} does not converge to f, con-
tinuously. Then there is an m-net {,, n ¢ D} which converges to some

’point 2o ¢ X such that {fu(zn), % € Dy} does not converge to fo(w,). It fol-

lows that there is a neighbourhood U of f,(#,) such that for each m ¢ Dy,
there is an # = m with f,(z,) ¢ U. But X has the property (W,,), whence
there is an m, e Dy, such that the set ¢ = {(By}nmm, i3 compact. We see
that for each m e D, there is an n > m such that x, e 0 and fu(z,) ¢ U,
i. 6., [o{0) ¢ U; thus {fu, neDn} does not converge to f, with respect
to k-topology.

TumoreM IV. 2. If X has a basis for compact sets of the power <m
and the k-topology for I* induces the comtinuwous convergence of mi-nets,
then X has the property (Wp).

Proof. Let & == {Os}sez(Z=m) be a basis for compact sets. Let
us set O = Cp, v .. w O, for ne Dy, = {&, .., &} I X does not have
the property (W), then there is an m-net {®,, n e Dy} which converges
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to some point z, ¢ X such that for each n e D, there is a k,=n with
a, ¢ Cn. Then there is a continuous function f, on X to 1‘ suc?hAthat
Falttr,) = 1 and fy(z) = 0 for & in C,. Let f, be a function which is iden-
tically equal to 0 on X. Since {z , % ¢ Dy} converges to z, and jn.(mk”) =1
for each n in Dy, {f, 7 ¢ Dy} does not converge to f, continuously.
On the other hand, if W(C, U) is a neighbourhood of f,, then there is
an ng in Dy such that € C C,,. Since €, C 0, for n=mn,, foe W(C, U)
for 2 3 Moy thus {fn, 7 € Dy} converges to f, with respect to k-topology.

CorROLLARY L. I} y(X)<m, IY with a k-topology is of the char-
acter <m and the k-topology for I induces the continuous convergence
of m-nets, then X is locally compact.

CoROLLARY 2. Under the assumptions of the previous collorary, the
k-topology for IT is a topology of continuous convergence.

V. Continuity of functions with values from a function
space.

THEOREM V. 1.‘If 7(X) <m, ¢(T) <m and X has the property (W),
then [X, Y, T, E(XY5)] for an arbitrary completely regular space Y.

Proof. Suppose that f maps X X T into ¥ and let f be defined by
the equality [f({)](z) = f{», ). We shall show that the continuity of f is
equivalent to that of f. Suppose that f is continuous. Clearly, the values
of { are continuous functions of the variable »; thus f maps T into ¥
Let {t,, 7 € Dy} be an m-net of elements of 7' which converges to some

" point tye T. Let go= f(t), go= F(to). If {#n, n e Dy} is an m-net of ele-

ments of X which converges to some point z,¢ X, then, by the con-
tinuity of f, {gu{%.), neD,} converges to f(x,, %)= g4(z,), whence
{gn, m € Dy} converges to g, continuously; thus, by Theorem IV. 1,
{gn, m €Dy} converges to gy, with respect to k-topology, i. e., {f(in), 7 € Dp}
converges to f(t,). If follows, by lemma 6, that { is continuous.

Conversely, suppose that f is continuous, and let {{z,, £,>, n e Dy}
be an arbitrary m-net of elements of X xT which converges to some
point (m,, {> ¢ X XT. Sinee {i,, n ¢ D,,} converges to #,, and f is con-
tinuous, {f(fn), # e Dy} converges to f(f,), 4. e, the net {g,, ne Dy},
where g,=f(,), converges to g,=f({,) with respect to %-topology.
By Theorem IV. 1, {g., #» eDy} converges to g, continuously. Since
{@ns % € Dy}, converges to zy, {gu(#.), n € Dy} converges t0 go(x,) = f(2,, to)-
But gu(wn) = f(2n, 1), and thus {f(x,, t,), neD,} converges to F(m,, t,).
Since y(X X T) < m, f is continuous by lemma 6.

TaEOREM V. 2. If X has a basis for compact sels of the power <m,

2X)<m and [X, I, T, k(Y5)] for each T with y(T)<m, then X has
the property (Wh.).
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Proof. Let I' be the space consisting of all elements of D,, and of
an ‘“ideal” element a. Points of D, are isolated in 7T, neighbourhoods
of a are of the form {a}u {n e Dy: % = m} for some m in D,. Clearly,
2(T) < m. o

Let & = {Ci}iesy = m, be a basis for compact sets in X, and let
Co=COgu..ulg for neDy, n=1{&,...,& I X does not have the
property (W), then there is an m-net {®,, #eD,} which converges
to some point @, ¢ X and is such that for each n e D, there is a k,> n
with @ ¢ C,. Let g, be a continuous function on X to I such that
(@) =1 and gu(z) =0 for x¢C,. Let f be a function defined on
X XT by the equalities f(z,n)=ga(z), f(x,a)=0 and let { be the
funetion on 7T to I¥ defined by the equality [f()1(x) = f(x, ). Since
{{@n,y 1), N e Dy} converges to (), a, flan, #) =1, f(2,,1,) =0, f is not
continuous. : ‘

~On the other band, let {t,, n e Dy} be an m-net in 7 which con-
verges to « nad leb W(C, U) be a neighbourhood of f(a). There is
an mqg e Dy, with C,,, D € and there is an nye Dy, such that %, > m, for
N = Ny. It can be assumed that i, a. Sinece Oy, D 0 for n = g, g () =0
for ¢ 0, whence f(t,)=g; e W(C; U) for # = n, and it means that
{f(tn), n e Dy} converges to f(u); thus f is continuous.

COROLLARY. If [X, I, T, k(IX)] for an arbitrary topological space T,
then X s locally compact.

A stronger result iy given by the following

THEOREM V. 3. If there is a topology % for X such that [X, 1, T, 3]
for an arbitrary topological space T, then X is locally compact.

Proof. It follows from the proof of the preceding theorem that if
2(X)<m and [X,I,T,3] for an arbitrary topological space T with
2(I) < m, then I induces the continuous convergence of m-nets in IX,
whence, if [X, I, T,3] for an arbitrary topological space T, then J is
a topology of continuous convergence (°). But (see remarks in IV), the

space IC has a topology of uniform convergence if and only if X is locally
compact.

() Tf a topology 9 for ¥~ induces the continuous convergence of all m-gets (for
arbitrary eardinal m), then 9§ is a topology of continnous convergence. Indeed, in this
cage, the mapping F(f, z) = f(z) is continuous, i. e., § is jointly continuous. If §° is
another jointly continuous topology smaller than &, then each m-net in ¥X convergent
with respect to 3’ is convergent continuously, 4. e., it is convergent with respect to I.
On the other hand, sinee I’ is smaller than g, each m.net which is convergent with
respect to 3 is also convergent with respect to . Thus J and §° agree on m-unets,
whence, by lemma 3, § = J’. We see that J is the smallest; jointly continuous topology,
i. e, it is a topology of continuous eonvergence,
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On free groups of motions and decompositions of the
Euclidean space

by

Jan Mycielski and S. Swierczkowski (Wroclaw)

The purpose. of this paper is to prove two theorems given in
section 1 (}). These theorems are solutions of some problems proposed
to the authors by T. Dekker.

1. A group @ of 1-1 transformations of a set E onto itself is called
without fized points if for every pe B and every pc®\(e) we have
e(P)F#D.

The rank of a free group is the potency of a set of free generators
of this group. ‘

The sense-preserving isometries of the Euclidean space &2, 4. e., the
superpositions of rotations and translations are called motions.

TaEOREM 1. There ewists a free group of the rank 2% of motions of &
without fized points. )

The proof of this theorem follows in sections 3-9 (it is an effective
construction, which does not use the axiom of choice). The relations of
Theorem 1 with known results are given in section 2.

An application of this theorem (the construction of a set HC &
which is congruent to (E.A)u B for any at most denumerable sets
A,BC& is given in [7]. Another application, of a well known char-
acter (compare [2], [8], [4], [8]), is the theorem 2 of this paper. It states
that, for any system of congruence relations, &% cah be divided into
disjoint sets satisfying that system. For an exact description of this
theorem we take the following notations:

M and N are non-empty sets.

{Pper a0d {Q,},ear aTe arbitrary systems of subsets of N, all dif-
ferent from @ and N. (We do not suppose that u, 7 u, implies P, # P,
or Qlll # Ql'i‘)

~ denotes congruence of point sets realizable by a motion.

(1) They were announced in [6] by the first author, but the original proof was
faulty, and the proof presented here was worked out by both authors.
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