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On free groups of motions and decompositions of the
Euclidean space

by

Jan Mycielski and S. Swierczkowski (Wroclaw)

The purpose. of this paper is to prove two theorems given in
section 1 (}). These theorems are solutions of some problems proposed
to the authors by T. Dekker.

1. A group @ of 1-1 transformations of a set E onto itself is called
without fiwed points if for every peE and every ¢ e®d(¢) we have
o(p) #p-

The rank of a free group is the potency of a set of free generators
of this group. ‘

The sense-preserving isometries of the Euclidean space &2, 4. e., the
superpositions of rotations and translations are called motions.

TaEOREM 1. There ewists a free group of the rank 2% of motions of &
without fized points. )

The proof of this theorem follows in sections 3-9 (it is an effective
construction, which does not use the axiom of choice). The relations of
Theorem 1 with known results are given in section 2.

An application of this theorem (the construction of a set HC &
which is congruent to (E.A)u B for any at most denumerable sets
A,BC& is given in [7]. Another application, of a well known char-
acter (compare [2], [8], [4], [8]), is the theorem 2 of this paper. It states
that, for any system of congruence relations, &% cah be divided into
disjoint sets satisfying that system. For an exact description of this
theorem we take the following notations:

M and N are non-empty sets.

{Pper a0d {Q,},ear aTe arbitrary systems of subsets of N, all dif-
ferent from @ and N. (We do not suppose that u, 7 u, implies P, # P,
or Quy # Qua-)

~ denotes congruence of point sets realizable by a motion.

(1) They were announced in [6] by the first author, but the original proof was
faulty, and the proof presented here was worked out by both authors.
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TaroREM 2. If H < 2% and N < 2% then the space & can be de-
eomposed into N disjoint sets A, (v € N) satisfying the system of congruences
(1) U4, UA (peM).

veP, #
Moreover all the pieces A, can be non-empty. :

The proof of this theorem follows in section 10. The relations of
Theorem 2 with known results are given in section 2. Note here the fol-
lowing applications:

(A) &° is the sum of a sequence A;, A4,, ... of disjoint sets such thab

Jdp ) 4n

neNy neNs )
for any sets N,, N,C {1, 2, ..} different from & and {1,2,...}.

(B) For any order type « of potency £ 2% without the upper end,
&% is the sum of a family of distinet sets, ordered by the relation C iso-
morphically to o and congruent by motions each to the other.

Indeed let ¥ be ordered in the type a by the relation < and », e N
and M = N. Take for (1) the system
U A4, (pel).

veN, v <
(C) There exists such a set EC & that for any cardinal m, such

that 2 < m < 2%, & is a sum of m disjoint sets each congruent by a mo-
tion with E.

Indeed let ¥ =2%, N;CN, Ny=1 for any ¥<2% and »¢N.
Take for (1) the system

A, =4, (velN),
Ay~ U 4, (ET<2N).

£ N\Ng
Then we put F= 4, and (C) is obvious.
At last note that the generalization of Theorems 1 and 2 to any
space &' with n >3 follows immediately.

2. Concerning Theorem 1 note that the existence of a free group
of the rank 2% of rotations of &* around a fixed point is well known
(Sierpiﬁski [12], p. 238 Lemme 1). Sierpirski’s proof was simplified and
related results were obtained by J. de Groot [5]. This theorem easily
follows from our Theorem 1 (by the method given in section 5). These
proofs are effective, 4. e, they do not use the axiom of choice. Non-
effective theorems on the existence of free subgroups in topological groups,
generalizing Sierpinski’s theorem are given in [1].
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As for Theorem 2, it is analogous to theorems known for spheres
and non-Euclidean spaces of dimension 22 ([2], [3]). It permits us
t0 complete the two tables given in [3], p. 107 in all points concerning
the Buclidean spaees. Theorem 2 follows from our Theorem 1 and a theo-
rem of T. Dekker ([2], 2.2.2), but we give a direct proof in section 10
because in our case it is simpler. The applications (A)~(C) are analogous
to the statements about the sphere &, (instead of &) proved in [4]
and [8]. Of course Theorem 2 for the space &2 without one point follows
from the analogous result concerning the sphere 8., but then motions
are not sufficient to realize all the congruences — in general reflections
are needed.

Theorem 1 does not hold for &' and &2 because the group of mo-
tions of the plane is solvable ([9], p. 10) and thus cannot contain any
free group of rank>>1. Neither Theorem 2 holds for the line and the
plane, as has been proved by T. Dekker ([2], p. 584).

3. We put

‘cosp —sing 0 10 0
A,=|sinp cosp 0], B,= (0 cosg —sinzp),

0 0 1 0 sing  cose
Ry, = A,B, A",
o= S g s,
fn=1
(2) @ () = 2arctgf(z)

Let T, be a translation of & obtained by adding to every point of &2
the point-vector 4,(1, 0, 0) = the point (1,0, 0) transformed by 4,.

The following theorem clearly implies Theorem 1:

TEEOREM 1'. The motions Tow Bowpqy with 0-<& < 1 are free genemtors
of a free group without fized points.

Occasionally it is easy to derive the following corollary to tlns
theorem.

COROLLARY. The rolations Rymen) with 0 < @ <1 are free generators
of a free group.

(This was proved by J. de Groot [5], Theorem IL.)

4. For proving Theorem 1 we need some lemmas.

LeMMA 1. The values of the function f(x) for x>0 are algebraically in-
dependent numbers, i. e., if we put different values of this function (which is
strictly increasing) in the places of the arguments of a non-constant rational
function with integral coeficients, then we obtain a transcendental number.
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This is a theorem of J. von Neumann [10].
Levma 2. Any product of the form

Al BhaBE | AbBh,

where n =1 and k; and 1; are integers different from 0, ewcept Ky and 1,
‘one of which can be equal to 0, is a non-constant function of ¢.

This Lemma is proved in [5], p. 257-8.

We put for brevity

{3) g =g¢@ (E=1,.,n
and suppose that
4) TiF®; and 0 <mp<l.

LeMma 3. Any product of the form
B4, By,

where n =1 and k; are inlegers different from 0 is a non-constant func-
tion of .

Proof. We write the product more explicitly
Py= A, BRA A, BRA A BiAT.

Of course
P,=1().

Then for proving the lemma it is enough to verify that
P, la) = I if
By (2) we have

z#Ew for 1=1,..,n.

1 TR B /1))
sin p{u) = 1+ (f(u))z y - Ccosgp(u)= E——W)‘)—E .

Therefore the elements of the matrix P, are rational functions of the
arguments f{w), ..., f(#), f(#). By Leroma 1 it i3 enough to verify that:
one of them is a non-constant function, because then it gives a trans-

cendental value. Thiz is equivalent to the assertion that the product
Ey 4 24— -
P = A%B,,,IA:’.:A%B\'Z"-A;J.: Ac,v”B'uf"Aq:

where j,= j; if and only if =, is a non-constant function of the
variables v, {;, &y, ...

* (%) I denotes the unity-matrix.
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E

We have
Pypspspn.= APBEATTABEATR | Aln"a B A
where by (4) jr—jr1 7 0. Then by Lemma 2 Py g5, 18 & non-constant
function of @; which concludes the proof.
5. We introduce.the notations
0=1(0,0,0), 8p="TeRy, DPx=A4LL,0,0).
For any p ¢ & we denote by [p] the translation defined by

i) =q+p ().
Then T,=[p,] and

(5) . Sy = [ By -
(6) p, is an eigenvector of R,

(because (1,0, 0) lies on the axis of the rotation B,).
For any motion M of & we consider the canonical decomposition

M=[pR
where p = M (o) and R is a rotation around o.
(¥) M is. without fixed points if and only if p #£ 0 and p is not perpen-
dicular to the axis of R (if R=%¢e).

We have the following rules for the mulfiplication of canonical
decompositions:

(8) 1If pis an eigenvector of R, then ([p]_R)": [kp]Rk for k=0, 1, £2, ...
(9) [P 1By [pa) By = 1 +Ry(pu)1 E.R: .

LeMMA 4. For any integers ky, ..., kn we have the canonical decom-
Position
(10) ' Sk . Sk, =1,1Q,
where

"
N 13 LTRY __ ph fon
Qo = _Z kqu}uv .. Rr/‘:-lw(pq‘,;) b QV’ - RS"JJP RV’nV’ "
i=1

Proof. Of course () is a canonical decomposition of §,,. Then

applying (6), (8) and (9) we obtain the lemma.

6. Let v, denote the angular velocity vector of the rotation @, at the
moment y (y is the time variable).

(*) + denotes the vector addition.
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LEMMA 5. ¢, = v, and this vedlor either is a nomn-consiant function
of v or is a constant # 0.

Proof. v, is the only vector which satisfies the equation

%}%(P)=%><Qw(z>) (9) for each peér.

Now
& Lk P2 o D ks g
@Rf:;w(m = @Aqu’;*A,;i‘(p) = Ay, B4 ()
= A, ((ks, 0, 0) X BYpA () = lupy, X Ryt (p)
and then
2

2 3
55 &) =5, (B3, ... Rin(p)

ki

= DRl Rl (S Bl R . Bin)
=1
n

= D Rl B3 (b, X B, . Bin)

=1
n
= D kB, . Rip,) X Q(p)
i=1
=Yy XQw(p) .

Then the equality of Lemma 5 follows. By Lemma 3 it cannot be v, =0,
which concludes the proof.

7. Of course the elements of the matrix Q, are analytic functions

of the variable v and @,= I. Then by Lemma 3 there exists such an
open non-empty interval (0, «) that

; Qy#I for ye(0,a).

Let us denote by I, any eigenvector =0 of the rotation Q, (for p € (0, a)).
LEMMA 6. There exists such a y ¢ (0, o) that v, 7 0 and X (v,,1,) #£§w.
Proof. Since the coordinates of v, are alia,lytie functions of vy, by

Lemma 5 there exists such an o ¢ (0, a), that

%70 for pe(0,qa).

Suppose that
(11) Lo, ) =4n for each ye(0, ).

(*) x denotes the vector product.
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Then, since I, = Q,(1,),
(12) <X (('vw Qv'(lw)) =}m.
Now both derivatives dv,/u, 2Q,(l,)/u exist at the point u = 0 (by ana-

lyticity of the functions). Then for every positive ¢ there exists such
a 8e(0,a') that if
{13) O<y<p<i
then
L (v, v,) <e and

< (Q\L‘(lw), Qx(lw)) <e.

Consequently, by (12), for every positive ¢ there exists such a 6¢(0,a)
that if (13) holds then

e XQul) F o, 0, XQ(L)F#0,

<X ((7711' X Qully), v, X QZ(IV')) <e.
That is
? d
2] _#0, |[Zew) =+,

u=yx

)

This shows that for some ¢ < m and 0 < y <y < d(¢) the projection of
[9Qu(1,)/8u)u=y o0 [@Qu(l,)/d%)y, is positive. This implies that

Qoll,) Q)  d.e  L,FEL.
Then (11) is inconsistent, which proves the Lemma.
8. Of course @, can be represented by an orthogonal matrix
@, = (@pdij=13 -

Let (Bi) = (es;)—1I and let y; denote the algebraic complement of Bi;
in the matrix (fi).
It is clear that

(14) the veetors l,ff’z (Yits Vioy ¥is)y ¢=1, 2,3, are eigenvectors of ¢,
and that if @, I, at least one of them is different from o.

Levmma 7. The sum
) 1]
(15) 2= (o, 1 ()
i=1
either is a non-constant function of y or is a constant % 0.

(°) - denotes the scalar product.
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Proof. Taking a number v satisfying Lemma 6 we obviously have
2,#0.
¥

9, Proof of Theorem 1'. It is enough to show that every pro-
duct of the form (10), with %, 0, # > 1, and 9 = @(1) is a motion

without fixed points. By Lemma 7 the expression X,, which is a ra-

tional funetion of the arguments f(x), ..., f(®.) and tgiy (see (2), (3}
and Lemma 5) is a non-constant function of y or a constant £ 0. Then
in the first case by Lemma 1 and in the other case also,

(16) L #0
(because 2,41 for i =1, .., n). In the same way, by Lemmas 3 and 4,

Qey7= 1 and  gmF#0.
By Lemms 5, (14) and (16) the vector g,q) is not orthogonal to the axis
of the rotation @,u), which proves (see (7)) that the motion [g,a)]Qeu
is without fixed points; q. e. d.
10. Now we shall prove theorem 2.
We adopt the notations introduced in section 1. Moreover:

Let {puluerr (@ Pu i wyFps) be a set of free generators of
a free group @.

Then every ae¢® has a unique factorization
o gl
where k;= 41, and t;a,,‘ F Qs Fira,

LemuaA. There exists a decomposition of @ into b disjoint sets {S,}ev,
one of which — say A,, — is non-empty and satisfying the system of equalities

(17) ‘Pu( U Sv) - U S,, He M.
veP# v€Q,
Proof. We take the notations

P ;lt =P, Qu Qu s
Then we must have

(18) p(US8)=U8, for
:vePk uer

We begm by pu‘rtmg e into §,,. Now if o has been put into a set S,

and = gha where ¢f does not ea.ncel with the first factor of a, then we

put g into a set §,, such that (» e P&y, ¢ QY or (meXN P,,&vr, e N.Q%).

Consequently (18) holds. Then the whole group & is decomposed (%),
8,,# 9 and (17) is satisfied; q. e. d.

P;l_—.Q#, ,:1=-Py-

E= 41.

{*) The axiom of choice is used here.
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Proof of Theorem 2 (°). Take the free group @ without fixed
points, with free generators {g,}.x given by Theorem 1, and the factor
space &3, For any FE e 5O we take a point ppe E (6).

Now using the Lemma we put

4,=U8ps) = p: p=a(ps), acS,, Be D).
Then, since @ is without fixed points the pieces 4, are disjoint and

pul U 4,) = U (o U Sulpe)) = U U 8ipe) = U 4,.
veP, B veP, EreQ, v€Q,

This proves the first part of the theorem.

Tt is easy to see that we can suppose that &%/@ = 2% (removing
from @ some of the generators). Then for different  « &%/® we can take
different », in such a way that, if N< 2%, 2]l the pieces A, are non-empty;
which completes the proof of Theorem 2
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