On free groups of motions and decompositions of the Euclidean space

by

Jan Mycielski and S. Świerczkowski (Wrocław)

The purpose of this paper is to prove two theorems given in section 1 (1). These theorems are solutions of some problems proposed to the authors by T. Dekker.

1. A group Φ of 1-1 transformations of a set E onto itself is called without fixed points if for every $p \in E$ and every $\varphi \in \Phi \setminus (e)$ we have $\varphi(p) \neq p$.

The rank of a free group is the potency of a set of free generators

of this group.

The sense-preserving isometries of the Euclidean space \mathcal{E}^3 , i. e., the superpositions of rotations and translations are called *motions*.

Theorem 1. There exists a free group of the rank 2^{\aleph_0} of motions of \mathcal{G}^3 without fixed points.

The proof of this theorem follows in sections 3-9 (it is an effective construction, which does not use the axiom of choice). The relations of Theorem 1 with known results are given in section 2.

An application of this theorem (the construction of a set $E \subset \mathcal{E}^3$ which is congruent to $(E \setminus A) \cup B$ for any at most denumerable sets $A, B \subset \mathcal{E}^3$) is given in [7]. Another application, of a well known character (compare [2], [3], [4], [8]), is the theorem 2 of this paper. It states that, for any system of congruence relations, \mathcal{E}^3 can be divided into disjoint sets satisfying that system. For an exact description of this theorem we take the following notations:

M and N are non-empty sets.

 $\{P_{\mu}\}_{\mu\in M}$ and $\{Q_{\mu}\}_{\mu\in M}$ are arbitrary systems of subsets of N, all different from \emptyset and N. (We do not suppose that $\mu_1\neq\mu_2$ implies $P_{\mu_1}\neq P_{\mu_2}$ or $Q_{\mu_1}\neq Q_{\mu_2}$.)

≈ denotes congruence of point sets realizable by a motion.

⁽¹⁾ They were announced in [6] by the first author, but the original proof was faulty, and the proof presented here was worked out by both authors.

Theorem 2. If $\overline{M} \leqslant 2^{\aleph_0}$ and $\overline{N} \leqslant 2^{\aleph_0}$ then the space \mathcal{E}^3 can be decomposed into $\overline{\overline{N}}$ disjoint sets A_{ν} ($\nu \in N$) satisfying the system of congruences

(1)
$$\bigcup_{r \in P_{\mu}} A_{r} \simeq \bigcup_{r \in Q_{\mu}} A_{r} \quad (\mu \in M).$$

Moreover all the pieces A, can be non-empty.

The proof of this theorem follows in section 10. The relations of Theorem 2 with known results are given in section 2. Note here the following applications:

(A) \mathcal{E}^3 is the sum of a sequence $A_1, A_2, ...$ of disjoint sets such that

$$\bigcup_{n \in N_1} A_n \simeq \bigcup_{n \in N_2} A_n$$

for any sets $N_1, N_2 \subset \{1, 2, ...\}$ different from \emptyset and $\{1, 2, ...\}$.

(B) For any order type a of potency $\leq 2^{\aleph_0}$ without the upper end, \mathcal{E}^3 is the sum of a family of distinct sets, ordered by the relation \subset isomorphically to a and congruent by motions each to the other.

Indeed let N be ordered in the type α by the relation \prec and $\nu_0 \in N$ and M = N. Take for (1) the system

$$\bigcup_{\nu \in N, \nu \prec \mu} A_{\nu} \simeq A_{\nu_0} \quad (\mu \in N).$$

(C) There exists such a set $E \subset \mathcal{E}^3$ that for any cardinal m, such that $2 \leq m \leq 2^{\aleph_0}$, \mathcal{E}^3 is a sum of m disjoint sets each congruent by a motion with E.

Indeed let $\overline{N}=2^{\aleph_0},\ N_t\subset N,\ \widetilde{N_t}=\mathfrak{k}$ for any $\mathfrak{k}<2^{\aleph_0}$ and $\nu_0\in N.$ Take for (1) the system

$$A_{\nu_0} \simeq A_{\nu} \quad (\nu \in N)$$
,

$$A_{r_0} \simeq igcup_{r \in N \setminus N_{ar{t}}} A_r \quad ({ar{t}} < 2^{oldsymbol{N}_0}) \; .$$

Then we put $E = A_{r_0}$ and (C) is obvious.

At last note that the generalization of Theorems 1 and 2 to any space \mathcal{E}^n with $n \ge 3$ follows immediately.

2. Concerning Theorem 1 note that the existence of a free group of the rank 2^{\aleph_0} of rotations of \mathcal{E}^3 around a fixed point is well known (Sierpiński [12], p. 238 Lemme 1). Sierpiński's proof was simplified and related results were obtained by J. de Groot [5]. This theorem easily follows from our Theorem 1 (by the method given in section 5). These proofs are effective, i. e., they do not use the axiom of choice. Non-effective theorems on the existence of free subgroups in topological groups, generalizing Sierpiński's theorem are given in [1].

As for Theorem 2, it is analogous to theorems known for spheres and non-Euclidean spaces of dimension $\geqslant 2$ ([2], [3]). It permits us to complete the two tables given in [3], p. 107 in all points concerning the Euclidean spaces. Theorem 2 follows from our Theorem 1 and a theorem of T. Dekker ([2], 2.2.2), but we give a direct proof in section 10 because in our case it is simpler. The applications (A)-(C) are analogous to the statements about the sphere \mathcal{S}_2 (instead of \mathcal{E}^3) proved in [4] and [8]. Of course Theorem 2 for the space \mathcal{E}^3 without one point follows from the analogous result concerning the sphere \mathcal{S}_2 , but then motions are not sufficient to realize all the congruences — in general reflections are needed.

Theorem 1 does not hold for \mathcal{E}^1 and \mathcal{E}^2 because the group of motions of the plane is solvable ([9], p. 10) and thus cannot contain any free group of rank>1. Neither Theorem 2 holds for the line and the plane, as has been proved by T. Dekker ([2], p. 584).

3. We put

$$A_{arphi} = egin{pmatrix} \cos arphi & -\sin arphi & 0 \ \sin arphi & \cos arphi & 0 \ 0 & 0 & 1 \end{pmatrix}, \quad B_{arphi} = egin{pmatrix} 1 & 0 & 0 \ 0 & \cos arphi & -\sin arphi \ 0 & \sin arphi & \cos arphi \end{pmatrix}, \ R_{arphi \psi} = A_{arphi} B_{\psi} A_{arphi}^{-1}, \ f(x) = \sum_{n=1}^{\infty} 2^{2^{\ln z} - 2^{n^2}} \quad ext{for} \quad x > 0 \; , \end{cases}$$

(2)
$$\varphi(x) = 2 \operatorname{arctg} f(x).$$

Let T_{φ} be a translation of \mathcal{E}^3 obtained by adding to every point of \mathcal{E}^3 the point-vector $A_{\varphi}(1,0,0)$ = the point (1,0,0) transformed by A_{φ} . The following theorem clearly implies Theorem 1:

THEOREM 1'. The motions $T_{\varphi(x)}R_{\varphi(x)\varphi(1)}$ with 0 < x < 1 are free generators of a free group without fixed points.

Occasionally it is easy to derive the following corollary to this theorem.

COROLLARY. The rotations $R_{\varphi(x)\varphi(1)}$ with 0 < x < 1 are free generators of a free group.

(This was proved by J. de Groot [5], Theorem II.)

4. For proving Theorem 1' we need some lemmas.

LEMMA 1. The values of the function f(x) for x>0 are algebraically independent numbers, i. e., if we put different values of this function (which is strictly increasing) in the places of the arguments of a non-constant rational function with integral coefficients, then we obtain a transcendental number.

On free groups of motions and decompositions

287

This is a theorem of J. von Neumann [10].

LEMMA 2. Any product of the form

$$A_{\varphi}^{k_1}B_{\varphi}^{l_1}A_{\varphi}^{k_2}B_{\varphi}^{l_2}...A_{\varphi}^{k_n}B_{\varphi}^{l_n}$$
,

where $n \ge 1$ and k_i and l_i are integers different from 0, except k_1 and l_n one of which can be equal to 0, is a non-constant function of φ .

This Lemma is proved in [5], p. 257-8.

We put for brevity

(3)
$$\varphi = \varphi(x_i) \quad (i = 1, ..., n)$$

and suppose that

$$(4) x_i \neq x_{i+1} \quad \text{ and } \quad 0 < x_i < 1.$$

LEMMA 3. Any product of the form

$$R_{q_1 v}^{k_1} R_{q_2 v}^{k_2} \dots R_{q_n v}^{k_n}$$
,

where $n \geqslant 1$ and k_i are integers different from 0 is a non-constant function of ψ .

Proof. We write the product more explicitly

$$P_{\psi} = A_{q_1} B_{\psi}^{k_1} A_{q_1}^{-1} A_{q_2} B_{\psi}^{k_2} A_{q_2}^{-1} \dots A_{q_n} B_{\psi}^{k_n} A_{q_n}^{-1}$$
.

Of course

$$P_0 = I^{(2)}$$
.

Then for proving the lemma it is enough to verify that

$$P_{x(x)} \neq I$$
 if $x \neq x_i$ for $i = 1, ..., n$.

By (2) we have

$$\sin \varphi(u) = \frac{2f(u)}{1 + (f(u))^2}, \quad \cos \varphi(u) = \frac{1 - (f(u))^2}{1 + (f(u))^2}.$$

Therefore the elements of the matrix $P_{\varphi(x)}$ are rational functions of the arguments $f(x_1), \ldots, f(x_n), f(x)$. By Lemma 1 it is enough to verify that one of them is a non-constant function, because then it gives a transcendental value. This is equivalent to the assertion that the product

$$P_{\psi,\xi_1,\xi_2,\dots} = A_{\xi_{j_1}} B_{\psi}^{k_1} A_{\xi_{j_1}}^{-1} A_{\xi_{j_2}} B_{\psi}^{k_2} A_{\xi_{j_2}}^{-1} \dots A_{\xi_{j_n}} B_{\psi}^{k_n} A_{\xi_{j_n}}^{-1}$$

where $j_r = j_s$ if and only if $x_r = x_s$, is a non-constant function of the variables $\psi, \zeta_1, \zeta_2, ...$

$$P_{q,q,2q,3q,...} = A_{\varphi}^{j_1} B_q^{k_1} A_q^{j_2-j_1} B_q^{k_2} A_{\varphi}^{j_3-j_2} \dots A_q^{j_n-j_{n-1}} B_q^{k_n} A_{\varphi}^{j_n}$$

where by (4) $j_r - j_{r-1} \neq 0$. Then by Lemma 2 $P_{q,\varphi,2\varphi,3\varphi,...}$ is a non-constant function of φ ; which concludes the proof.

5. We introduce the notations

$$o = (0, 0, 0), \quad S_{\varphi \varphi} = T_{\varphi} R_{\varphi \varphi}, \quad p_{\varphi} = A_{\varphi}(1, 0, 0).$$

For any $p \in \mathcal{E}^3$ we denote by [p] the translation defined by

$$[p](q) = q + p (3).$$

Then $T_{\varphi} = [p_{\varphi}]$ and

)
$$S_{qq} = [p_q] R_{qq}$$
 .

(6) p_{φ} is an eigenvector of $R_{\varphi \psi}$

(because (1,0,0) lies on the axis of the rotation B_{ψ}).

For any motion M of E3 we consider the canonical decomposition

$$M = \lceil p \rceil R$$

where p = M(o) and R is a rotation around o.

(7) M is without fixed points if and only if $p \neq 0$ and p is not perpendicular to the axis of R (if $R \neq e$).

We have the following rules for the multiplication of canonical decompositions:

(8) If p is an eigenvector of R, then $([p]R)^k = [kp]R^k$ for $k = 0, \pm 1, \pm 2, ...$

(9)
$$[p_1]R_1[p_2]R_2 = [p_1 + R_1(p_2)]R_1R_2.$$

LEMMA 4. For any integers $k_1, ..., k_n$ we have the canonical decomposition

$$S_{q_1 y}^{k_1} \dots S_{q_n y}^{k_n} = [q_y] Q_y ,$$

where

$$q_{arphi} = \sum_{i=1}^n k_i R_{q_1 arphi}^{k_1} ... R_{q_{i-1} arphi}^{k_{i-1}}(p_{arphi_i}) \,, \hspace{0.5cm} Q_{arphi} = R_{arphi_1 arphi}^{k_1} ... R_{arphi_n arphi}^{k_n} \,.$$

Proof. Of course (5) is a canonical decomposition of $S_{\varphi\varphi}$. Then applying (6), (8) and (9) we obtain the lemma.

6. Let v_r denote the angular velocity vector of the rotation Q_r at the moment ψ (ψ is the time variable).

^{&#}x27; (2) I denotes the unity-matrix.

^{(3) +} denotes the vector addition.

On free groups of motions and decompositions

289

Lemma 5. $q_v = v_v$ and this vector either is a non-constant function of ψ or is a constant $\neq 0$.

Proof. v_{ψ} is the only vector which satisfies the equation

$$rac{\partial}{\partial \psi} Q_{v}(p) = v_{v} imes Q_{v}(p) \, (^{4}) \quad ext{ for each } \quad p \; \epsilon \; \mathcal{E}^{3} \, .$$

Now

$$\begin{split} \frac{\partial}{\partial \psi} R_{\tau_i \nu}^{k_i}(p) &= \frac{\partial}{\partial \psi} A_{\tau_i} B_{\nu}^{k_i} A_{\tau_i}^{-1}(p) = A_{\tau_i} \frac{\partial}{\partial \psi} B_{\nu}^{k_i} \left(A_{\tau_i}^{-1}(p) \right) \\ &= A_{\tau_i} \left((k_i, 0, 0) \times B_{\nu}^{k_i} A_{\tau_i}^{-1}(p) \right) = k_i p_{\tau_i} \times R_{\tau_i \nu}^{k_i}(p) \end{split}$$

and then

$$\begin{split} \frac{\partial}{\partial \psi} \, Q_{\psi}(p) &= \frac{\partial}{\partial \psi} \big(R^{k_1}_{q_1 \psi} \dots R^{k_n}_{q_n \psi}(p) \big) \\ &= \sum_{i=1}^n R^{k_1}_{\varphi_1 \psi} \dots R^{k_{i-1}}_{q_{i-1} \psi} \Big(\frac{\partial}{\partial \psi} \, R^{k_i}_{\varphi_i \psi} \Big) \, R^{k_{i+1}}_{\varphi_{i+1} \psi} \dots R^{k_n}_{\varphi_n \psi}(p) \\ &= \sum_{i=1}^n R^{k_1}_{\varphi_1 \psi} \dots R^{k_{i-1}}_{\varphi_{i-1} \psi} \big(k_i \, p_{\varphi_i} \times R^{k_i}_{\varphi_i \psi} \dots R^{k_n}_{\varphi_n \psi}(p) \big) \\ &= \sum_{i=1}^n k_i \, R^{k_1}_{\varphi_1 \psi} \dots R^{k_{i-1}}_{\varphi_{i-1}}(p_{\varphi_i}) \times Q_{\psi}(p) \\ &= q_{\psi} \times Q_{\psi}(p) \, . \end{split}$$

Then the equality of Lemma 5 follows. By Lemma 3 it cannot be $v_{\psi} \equiv 0$, which concludes the proof.

7. Of course the elements of the matrix Q_{ψ} are analytic functions of the variable ψ and $Q_0=I$. Then by Lemma 3 there exists such an open non-empty interval (0,a) that

$$Q_{\psi} \neq I$$
 for $\psi \in (0, \alpha)$.

Let us denote by l_{φ} any eigenvector $\neq o$ of the rotation Q_{φ} (for $\psi \in (0, \alpha)$).

LEMMA 6. There exists such a $\psi \in (0, a)$ that $v_{\psi} \neq 0$ and $\langle (v_{\psi}, l_{\psi}) \neq \frac{1}{2}\pi$.

Proof. Since the coordinates of v_{ψ} are analytic functions of ψ , by Lemma 5 there exists such an $\alpha' \in (0, \alpha)$, that

$$v_{\psi} \neq 0$$
 for $\psi \in (0, a')$.

Suppose that

(11)
$$\langle (v_{\psi}, l_{\psi}) = \frac{1}{2}\pi$$
 for each $\psi \in (0, \alpha')$.

Then, since $l_{\psi} = Q_{\psi}(l_{\psi})$,

$$\langle (v_{\psi}, Q_{\psi}(l_{\psi})) = \frac{1}{2}\pi.$$

Now both derivatives $\partial v_u/\partial u$, $\partial Q_u(l_v)/\partial u$ exist at the point u=0 (by analyticity of the functions). Then for every positive ε there exists such a $\delta \in (0, \alpha')$ that if

$$(13) 0 < \chi < \psi < \delta$$

then

$$\sphericalangle(v_{\scriptscriptstyle \Psi},\,v_{\scriptscriptstyle \chi})$$

Consequently, by (12), for every positive ε there exists such a $\delta \in (0, \alpha)$ that if (13) holds then

$$\begin{split} &v_{\boldsymbol{\psi}} \times Q_{\boldsymbol{\psi}}(l_{\boldsymbol{\psi}}) \neq o \;, \qquad v_{\mathbf{Z}} \times Q_{\mathbf{Z}}(l_{\boldsymbol{\psi}}) \neq 0 \;, \\ & \qquad \qquad \\ & \qquad \\ & \qquad \qquad \\ & \qquad \\ &$$

That is

$$\begin{split} & \left[\frac{\partial}{\partial u} \ Q_u(l_v) \right]_{u=v} \neq 0 \ , \quad \left[\frac{\partial}{\partial u} \ Q_u(l_v) \right]_{u=\chi} \neq 0 \ , \\ & \ll \left(\left[\frac{\partial}{\partial u} \ Q_u(l_v) \right]_{u=v} , \left[\frac{\partial}{\partial u} \ Q_u(l_v) \right]_{u=\chi} \right) < \varepsilon \ . \end{split}$$

This shows that for some $\varepsilon < \frac{1}{2}\pi$ and $0 < \chi < \psi < \delta(\varepsilon)$ the projection of $[\partial Q_u(l_{\psi})/\partial u]_{u=\chi}$ on $[\partial Q_u(l_{\psi})/\partial u]_{u=\psi}$ is positive. This implies that

$$Q_0(l_y) \neq Q_y(l_y)$$
 i. e. $l_y \neq l_y$.

Then (11) is inconsistent, which proves the Lemma.

8. Of course Q_w can be represented by an orthogonal matrix

$$Q_w = (a_{ij})_{i,i=1,2,3}$$
.

Let $(\beta_{ij}) = (\alpha_{ij}) - I$ and let γ_{ij} denote the algebraic complement of β_{ij} in the matrix (β_{ij}) .

It is clear that

(14) the vectors $l_{\nu}^{(i)} = (\gamma_{i1}, \gamma_{i2}, \gamma_{i3}), i = 1, 2, 3$, are eigenvectors of Q_{ν} and that if $Q_{\nu} \neq I$, at least one of them is different from o.

LEMMA 7. The sum

(15)
$$\Sigma_{\psi} = \sum_{i=1}^{3} (v_{\psi} \cdot l_{\psi}^{(i)})^{2} \, (5)$$

either is a non-constant function of ψ or is a constant $\neq 0$.

^{(4) ×} denotes the vector product.

^{(5) ·} denotes the scalar product.

Proof. Taking a number ψ satisfying Lemma 6 we obviously have $\varSigma_{\nu} \neq 0$.

9. Proof of Theorem 1'. It is enough to show that every product of the form (10), with $k_i \neq 0$, $n \geqslant 1$, and $\psi = \varphi(1)$ is a motion without fixed points. By Lemma 7 the expression Σ_{ψ} , which is a rational function of the arguments $f(x_1), \ldots, f(x_n)$ and $\operatorname{tg} \frac{1}{2} \psi$ (see (2), (3) and Lemma 5) is a non-constant function of ψ or a constant $\neq 0$. Then in the first case by Lemma 1 and in the other case also,

$$\Sigma_{g(1)} \neq 0$$

(because $x_i \neq 1$ for i = 1, ..., n). In the same way, by Lemmas 3 and 4, $Q_{\sigma(1)} \neq I$ and $q_{\sigma(1)} \neq o$.

By Lemma 5, (14) and (16) the vector $q_{\varphi(1)}$ is not orthogonal to the axis of the rotation $Q_{\varphi(1)}$, which proves (see (7)) that the motion $[q_{\varphi(1)}]Q_{\varphi(1)}$ is without fixed points; q. e. d.

10. Now we shall prove theorem 2.

We adopt the notations introduced in section 1. Moreover:

Let $\{\varphi_{\mu}\}_{\mu \in M}$ $(\varphi_{\mu_1} \neq \varphi_{\mu_2})$ if $\mu_1 \neq \mu_2$ be a set of free generators of a free group Φ .

Then every $a \in \Phi$ has a unique factorization

$$a = \varphi_{\mu_1}^{k_1} \dots \varphi_{\mu_n}^{k_n}$$

where $k_i = \pm 1$, and $\varphi_{\mu_i}^{k_i} \neq \varphi_{\mu_{i+1}}^{-k_{i+1}}$.

Lemma. There exists a decomposition of Φ into $\overline{\overline{N}}$ disjoint sets $\{S_r\}_{r\in N}$, one of which — say A_{r_0} — is non-empty and satisfying the system of equalities

(17)
$$\varphi_{\mu}(\bigcup_{\tau \in P_{\mu}} S_{\tau}) = \bigcup_{\tau \in Q_{\mu}} S_{\tau}, \quad \mu \in M.$$

Proof. We take the notations

$$P_{\mu}^{1} = P_{\mu}, \quad Q_{\mu}^{1} = Q_{\mu}, \quad P_{\mu}^{-1} = Q_{\mu}, \quad Q_{\mu}^{-1} = P_{\mu}.$$

Then we must have

(18)
$$\varphi^k_{\mu}(\bigcup_{s \in P^k_u} S_s) = \bigcup_{s \in Q^k_u} S_s \quad \text{for} \quad k = \pm 1.$$

We begin by putting e into S_{r_0} . Now if α has been put into a set S_{r_2} and $\beta = \varphi_{\mu}^k \alpha$ where φ_{μ}^k does not cancel with the first factor of α , then we put β into a set S_{r_2} such that $(\nu_1 \in P_{\mu}^k \& \nu_2 \in Q_{\mu}^k)$ or $(\nu_1 \in N, P_{\mu}^k \& \nu_2 \in N, Q_{\mu}^k)$.

Consequently (18) holds. Then the whole group Φ is decomposed (6), $S_{r_0} \neq \emptyset$ and (17) is satisfied; q. e. d.

Proof of Theorem 2 (7). Take the free group Φ without fixed points, with free generators $\{\varphi_{\mu}\}_{\mu\in M}$ given by Theorem 1, and the factor space \mathcal{E}^{3}/Φ . For any $E\in\mathcal{E}^{3}/\Phi$ we take a point $p_{E}\in\mathcal{E}$ (6).

Now using the Lemma we put

$$A_r = \bigcup_E S_r(p_E) = \{p: \ p = \alpha(p_E), \ \alpha \in S_r, \ E \in \mathcal{E}^3/\Phi\}.$$

Then, since Φ is without fixed points the pieces A_r are disjoint and

$$\varphi_{\mu}(\bigcup_{\mathbf{z}\in P_{\mu}}A_{\mathbf{z}})=\bigcup_{E}\left(\varphi_{\mu}\bigcup_{\mathbf{z}\in P_{\mu}}S_{\mathbf{z}}(p_{E})\right)=\bigcup_{E}\bigcup_{\mathbf{z}\in Q_{\mu}}S_{\mathbf{z}}(p_{E})=\bigcup_{\mathbf{z}\in Q_{\mu}}A_{\mathbf{z}}.$$

This proves the first part of the theorem.

It is easy to see that we can suppose that $\overline{G^3/\Phi}=2^{\aleph_0}$ (removing from Φ some of the generators). Then for different $E\in \mathcal{G}^3/\Phi$ we can take different ν_0 in such a way that, if $\overline{N}\leqslant 2^{\aleph_0}$, all the pieces A_{ν} are non-empty; which completes the proof of Theorem 2.

References

[1] S. Balcerzyk and Jan Mycielski, On the existence of free subgroups in topological groups, Fund. Math. 44 (1957), p. 303-308.

[2] Th. J. Dekker, Decompositions of sets and spaces I, II, Indagationes Math. 18 (1956), p. 581-595.

[3] — Decompositions of sets and spaces III, Indagationes Math. 19 (1957), p. 104-107,

[4] — and J. de Groot, Decompositions of a sphere, Fund. Math. 43 (1955),
p. 185-194.

[5] J. de Groot, Orthogonal isomorphic representations of free groups, Canadian J. Math. 8 (1956), p. 256-262.

[6] Jan Mycielski, On the decompositions of Euclidean spaces, Bull. Acad. Polon. Sci., Cl. III, 4 (1956), p. 417-418.

[7] — About sets invariant with respect to denumerable changes, Fund. Math. this volume, p. 296-305.

[8] — On the paradox of the sphere, Fund. Math. 42 (1955), p. 348-355.

[9] — About sets with strange isometrical properties (I), Fund. Math. 42 (1955), p. 1-10.

[10] J. von Neumann, Ein System algebraisch unabhängiger Zahlen, Math. Ann. 99 (1928), p. 134-141.

[11] R. M. Robinson, On the decomposition of the spheres, Fund. Math. 42 (1947), p. 246-260.

[12] W. Sierpiński. Sur le paradoxe de la sphère, Fund. Math. 33 (1945), p. 235-244.

Recu par la Rédaction le 18.7.1957

⁽⁶⁾ The axiom of choice is used here.

^{(&#}x27;) Compare [11] and [4].