About sets invariant with respect to denumerable
changes
by
Jan Mycielski (Wroclaw)

1. In this paper I develop the results given in [4]. The main results
were announced in [6]. Other generalizations of the theorems of [4] were
given in 5], but the point of view adopted here is different. We are
studying the algebraic aspect of the problem and the geometrical apphi-
cations appear only in the last part of the paper. An analogous task
coneerning another geometrical problem — the (paradoxal) decompositions
of the sphere — was performed by T. Dekker [2].

The main theorem of this paper is the following: There exists in the
3-dimensional Buclidean space a set which is congruent to each set oblained
by taking out of it and adding to it any at most denumerable sets. Sets with
this property exist also in the =-dimensional Euclidean space &" (for
n > 38), the m-dimensional sphere &y(as-+a5-+...+ah=1) (for n =2,
n#4), the n-dimensional elliptic space L (for n > 2, n#4), and the
n-dimensional hyperbolic space H" (for = > 2).

The problem of the existence of such sets in &, and .L£* remains
open. The problem of the existence of such sets in & was solved neg-
atively by B. G. Straus, who proved [8] that a plane set E contains
at most one point p such that

(1.1) B (p)~E

(=~ denote congruence of sets). But §, and [L* contain sets F satisfying
(1.1) for each p ¢ E (see [5] and Theorem 5 of this paper.)

The geometrical theorems of this paper are obtained by means of
the general (algebraic) results developed here and on more special
results concerning the groups of motions of &" (Jan Mycielski and
8. Swierczkowski [7]) and &, L", K" (T. Dekker [2], [3]).

2. Notation. Let G be a group of 1-1 transformations of a set §
onto itself (e. g. § = @, and the elements of @ are treated as transforma-
tions of @ in the usual sense).

1 denotes the unity of groups, which are all multiplicatively written.
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..For any HCG and PC.§ we use the notation:
2.1y HP = {h(p): heH, peP}.
(p) denotes the set consisting of a single point p; thus, for p e 8,

the set H(p) is also well defined.
[H] denotes the subgroup of G generated by H.

(2.2) We say that H is free at P if every element of HP is uniquely ex-
pressible in the form h(p) where he H, p ¢ P (*).

It js easy to verify that
(2.3) If H is free at P and U,V C H, then

(UUV)P=UPUVP, (UnV)P=UPAVP, (U.V)P=UP\VP.

(2.4) An element z ¢ & is said to be free at H if for every a,,a,e[H] and
U1y Gy «eey@y—y € [H]"(1), and every integers ky, ..., k, different from 0,
the equality

g1y ... @yy BFray, =1

implies n = 0 (this means that x is of infinite order and the group
[(z)v H] is a free product of the groups [(z)] and [H7).

An element 2 ¢ @ is said to be free at H and P if z is free at H
and [(z)w H]-[H] is free at P.

3. The main algebraic theorem. .

THEOREM 1. Let S be a s¢t and G a free group of 1-1 transformations
of 8 onto itself, with a well ordered set of free gemerators {@sleca. Two dis-
joint sets Cy, C,C8 and three sequences {Fe)swq, {Aelicay {Belica Of
subsets of 8 are given.

We supposethat for every £ < a, s is free af [{p.lce] and C;u Cou U F,
r<E

(2.5)

and @: is free al [{p:}ce] and Gy o Cou ) (4, U B;) (see (2.5)).
T4
Then there exist such sets By, B, C 8 that for every & < a

p:By=E) = F: (*), ¢ly=(E\4;)u B,
and moreover
C,CE,CH.C, for i=1,2;
Elz Nga+01+21-ﬁ5.
¥<a
(the hypothesis on {F:} is not necessary for the construction of B, and the
hypothesis on {A:} and {B¢} is not necessary for the construction of E.).

(*) This is a basic notion also in my papers [4] and [5].
() — denotes the symmetric difference of sets, i. e, X2¥ = (X v INZX n T).
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Tor the proof of this theorem we need some definitions and a lemama.

Let [ M] be a free group with a set of free generators M. Let ¢ « M.

For any 7 ¢[M]\(1) consider the canonical representation

ky ks o
7= Prgst e P

where g;e M, k;= 41 and ghi £ <pf+'fi+‘.

&" is the set of all those 7 in which @, = ¢ and k,=1;
(3.1) & is the set of all those 7 in which ¢, = ¢ and By, = —1;
@* is the set of all those v in which @, = ¢.
LeMyvia 1. We have the following equalities:

(3.2) g0 =D"\(9),

(3.3) 0~ =0~ U (1),

(3.4) pB* = ™\ (p)w (1),

(3.5) p@' =@  for 1= +,—, - and any y ¢ M \(p).

Proof. We see that g > v e®" if and only if 7 ¢ &+ and v+ . This
proves (3.2). We see that ¢ 'z @ if and only if 7P or z= 1. This
proves {3.3). (3.4) follows from (3.2) and (3.3) since ¢F = &T L P, The
equalities (3.5) are obvious; q. e. d.

Proof of Theorem 1. 1. The construction of E,. For a=0
we put B, = (; and the theorem is satiffied. Then suppose that « > 0.

We will construct a sequence of subsets of §

B_1, Byy Byy Ryy ooy Bgy ooy £<

such that if 0 <& <{ <a, then

(3.6) By Cl{pchar](Cr v L<J;Fr) )
(3.7) Be=sE+1)+0,+ YT,
<={
(3.8) 0,CR_,CR:CR,CHC,,
(3.9) FenBy=F:~Re,
(3.10) (PgR; = R; —LF; .

Then we obtain a set E, satisfying the theorem if we put

By=JR:.

E<a
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Tn fact: ¢;C 8, C 8 C, by (3.8), By=na+C,+ 3 F, by (3.7) and. for
every £ <a =
sk =g: U B (by (3.8))
=U {{Bc v F) (R~ Fo}  (by (3.10))

={U@E T (B nFe  (by (3.9)
=FE,~F;, q.ed.

Now we give an inductive definition of the sequence {R:}:,.

We put B_, = C,. Suppose that for some £ < a the sequence {R:}sc:
is already defined and satisfies (3.6)-(3.10). We will construct R. satis-
fying these conditions.

We use the notation

(3.11) &, (L= +, —, +) is defined by (3.1) with M = {p:}:cs, ¢ = @53

(3.12) R=\JRs;
£<f
(3.13) A=RA~F,, B=F\R, C=R.JF,.
We put
(3.14) Ri=RuUO'ALI BUBHC.

Obviously R fulfills (3.6) and (3.7). The hypothesis of the theorem
implies that . '

(3.15) @; is free at [{p:lee:] and [{pelec(Cr v Ozug;Fs)-

Then (3.8) and (3.9) are also satisfied, e. g. 0, ~ R;— @ because &% is
free on RUF;u 0y, O R=@, and 1 ¢ P=. For proving (8.10) we use
Lemma 1. By (3.15) for £<¢ the sets RuF;, &% A, & B, $*C are dis-
joint. Tndeed as to the sets " 4, B it follows from (3.15) and from that
@ ~ @ = @. Other cases are to be treated similarly. Then (3.10) for é<¢
follows from (3.5), and the inductive hypothesis. In order to prove (3.10)
for £ = we remark that E= 4o ¢ and then by (2.3) we have

(3.16) Ri=0'4LALd Bud G 0.

By (3.15) the sets 4, B, ¢,07 4, d~ B, d=( are disjoint. Therefore, by
(3.2)-(3.4)
@By = (P \()) A v ged 0 (07 0 (1) B (@) v (1) C v 0
=0T AU(P BUB U (PECLC) (by (2.3),
— R P, (by (3.13)).
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Then the sequence {R:}:., is constructed and satisfies (3.6)-(3.10).
Consequently on account of the previous remark the set B, is constructed.

2. The construction of K,. For a= 0 we put E,= C, and the
theorem is satisfied. Then suppose that a > 0.

We will construet a sequence of subsets of 8

Ry, Ry, Ry Ry, ooy Bey ey E<a,

such that if 0 < E< < a, then the conditions (3.6), (3.8) are satisfied and

(3.17) peRe = (R\A¢) v Bs.

Then we obtain a set F, satisfying the theorem by putting
E2 == U R5 .

This can be verified in the same way as for E,.

Now we give an inductive definition of the sequence {R:}ic, .

We put R_, = (. Suppose that for some ¢ < « the sequence {R:}:-;
is already defined and satisfies (3.6), (3.8) and (3.17).

We use the notation of (3.11), (3.12) and

AzRﬂA;, .B'—-’“B;, C=R\A§.

We define R; by the formula (3.14). We can verify that B, satis-
fies (3.6) and (3.8) (in the same way as in the consfruction of ;). For ob-
taining (3.17) it is enough to use Lemma 1 and the identity (3.16), which
holds here also.

Consequently on account of these remarks the set E, is constructed,
which completes the proof of Theorem 1.

Let us note the following corollary to Theorem 1:

CorOLLARY 1. Let [M] be a free group of 1-1 transformations of a set 8
onto itself, with a set M of free generators. Let R C S be a set on which [M]
is free and F any family of subsels of B such that F<< M. Then there
exists such a set B that RC EC 8 and for each T € F there exists a ¢ ¢ M
such that pFE = E-F and moreover E=— \0+R+F

Proof. We put in the Theorem 1

C,=R, =0, {p3}=M, (F}=F.

Then F = E, satisfies the corollary.
(Another proof of this corollary, similar to the proof of Theorem 1
in [4], will be given in section 6. This Corollary and Lemma 2 of [4] im-

plies Theorem 1 of [4]. Other applications, especially for analytic systems
(see [5]) are also possible.)

icm
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4. Some applications.

(4.1) A group @ of 1-1 transformations of a set § onto itself is called
locally commutative if any two transformations  hy, hy, ¢ G which
have a common fixed point are commutative, i. ¢. the existence
of such a p e 8 that hy(p) = ha(p) = p implies hh, = hoh, (%)

We introduce the following condition on a family of sets F and

a cardinal number m:

(4.2) m is infinite, F <m and for every F ¢ F there is F<m.
We need the following

Lemma 2. If F and m satisfy (4.2) then F can be well ordered inlo
a sequence {F:} such that for every F. there is

g<m  and S F.<m().
ot

Proof. Of course it is enough to consider the case when for each
cardinal number n < m there exist m sets F ¢ F of potency n. Therefore
we can suppose that

F= {Fx,‘};,gﬁn
We take the well ordering of F given by the conditions

Fo=Foqg,

F.=PF,. where F,:é{F,}.c;,x+& is minimal and y is minimal.

It is clear that then {F:} satisfies Lemma 2, q. e. d.

THEOREM 2. Let S be a set, G a free group of 1-1 transformations of §
onto itself with a set of free generators M, and F a family of subsets of S.
To any F e F correspond two sets Ay, By and Ap o Bp=TF.

We suppose that F and M satisfy (4.2) and that & is locally commu-
tative on 8.

Then there exist such sets By, B, C 8 that for every F ¢ F there exists
such a @ e M that

¢B, = E, =~ F,

and F,=7 for each 7, E<m.

@B, = (By\Ar) v By
and moreover B, =, F.
Fek
Proof. We take the well ordering F= {F;};<, given by Lemma 2.
By Theorem 1 it is enough to construct a sequence {gs}:., C M, such
that for any £ < a, ¢ is free at [{p.}.<:] and {JF.. We give an in-

ductive definition of such a sequence.

(*) Terminology of T. Dekker [2].
) T own this lemma to 8. Swiercekowski.
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Suppose that for some [ < « the sequence {pcec;= 7 is already
defined (ZC M).
Let f, be any function on G which is of the form

& K,
fo= QgL 0y .. Gy T "y,

where ay, a, €[Z], @, ..., @py €[Z]\(1), kl, .y Ky, are integers different
from 0 and »n > 1.
We shall prove that for any such funcmon f and any p,,p,e8
the sef
“Smmfm ={p:ge *M Z, fq(pl) = Pa}

consists of two elements at most. Suppose a contrario that
a0 = P2y D) = Pas Jo(1) = P2
where ¢, gy, v e M Z and ¢, # @, @+ ¢. Then

f;1f¢1(p1)=p1, f;lfng(lh):l’,u f;lfwl;él;éf';l%' '

But then the transformations f,%f,,, f; '/, have a common fixed point
and they are commutative. This contradicts the hy-pothesm that M is
a set of free generators.
‘We put
K=[21(|JF).

By (4.2) £ < AT and K < JI. Then there exists an element
pre M\(Z o U Spﬂ’zfx) .

DPLp2€ K
Of course ¢; is free on [Z] and K. Then the Theorem 2 is proved.
CoROLLARY 2. Let U be o group, [M] a free subgroup of U with a set
of free gemerators M and let F be a family of subsets of U. We suppose
that F and M satisfy (4.2).
Then there exists such a set BC U that E=ux, 5 F and for every

. FeF
F e F there exists a ¢ ¢ M such that ’

B =E~-F.
Proof. By Theorem 2, gince M is locally commutative (without
fixed points) on T.
(This Corollary implicitly contains Lemma 4 of [4], Lemma 4 of [5]
and Theorem 2 of {8]. Recall that every connected compact non-abelian
and every commected loeally compact non-solvable topological group

contains a free subgroup of the rank 2%, (see [11), which gives some
applications of Corollary 2 to such groups.)
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COROLLARY 3. A free group U of any rank >1 contains such a sei B
that for any finite sets A, BC U there exists such a pel that

oE =(E A)UuB.
Proof. By Corollary 2. (This Corollary implies Lemma 4 of [3].)

5. The geometrical theorem. : *

THEOREM 3. Fach of the spaces

& for wz3,

S for w22, n4,

LY o n=?2, nkd,

H  for wz=2,
contains such a set B that fm any at most denumerable subsets A, B of
this space we have

E~(E A)UuB.

Proof. It was proved [7] that there exist free gi'oups of motions
of &" (n > 3) of the rank 2%, without fixed points. Of course these groups
are locally commutative (see (4.1)). The existence of such groups of iso-
metries for the other spaces enumerated in the theorem is proved in [2], [3].

Since the families of at most denumerable subsets of these spaces
and the cardinal 2% satisfy the condition (4.2), our theorem follows
from Theorem 2.

{(The Theorem 3 for o, is a refinement of the main Theorem 2 of [41.)

6. Remarks and problems. 1. The existence of sets invariant
with respect to denumerable changes in the spaces. &, and .£* remains
an open problem, because it is an open problem if there exist free locally
commutative groups of the rank 2% (also of the rank 2) of isometries
of these spaces (see [3]).

2. In this paper the axiom of choice was used in the following cases:

(a) The proof of Corollary 1 (the well-ordering of M and F).

(b) The proof of Lemma 2,

(e) The proof of Theorem 2 (the construction of {tp5}5<a).

(d) The proof of Theorem 3. ’

Concerning (a) we give here an independent effective proof of Cor-
ollary 1:

By hypothesis there exists a 1-1 mapping ¢ (F e F) of F into M.
For every PCF we put

Dp == [{prlrer]\ U @~
where ¢~ runs over all sets defined by (3.1) with ¢ = ¢p and F e P.
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Then by (3.3) and (3.5) we have

(6.1) 1e®p;
(6.2) ex®p=Pp (1) i FeP;
(6.3) : o5 Dp = Pp it FeF\P.

(compare [4] Lemma 1).
Now we put for every pe R

P(p)={F: peFeF7},

B =) ®puy(p) -
peR

and

It is clear that B — x,+ % F, and that RC E. Sinee [M] is free on R
and by (6.1), (6.2) and (6.3) we have

il = ) or@ea(p) v U 0rPeun(p)
peFR peR\F

= (¢P(w)\\(])) (P)v U Peg(p)
pel peR F
=EF, q.e d.

Concerning (b),-(¢) and (d) it seems that the use of the axiom of
choice is essential. To sum up, in the proof of Theorem 3 the axiom of
choice is used twice: 1° the well-ordering of the family of at most de-
numerable subsets of the continuum, 2° the well-ordering of a set of free
generators of a free locally eommutative group of potency 2%

3. Note that the following theorem may be proved without using
the axiom of choice: -

THEOREM 4. Bach of the spaces Sy, L2 and FH? contains such a de-
numerable set E and such a set H of potency 2% that

EFe~E and H\D~H

for each finite set F CE and each at most denumerable set. D C H.

Such an effective proof of this theorem can be obtained by a fuller
exploitation of the material given in [8] and [2], [3].
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