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Continuous associative multiplications in locally
triangulable spaces

by
S. T. Hu (Detroit)

A main problem on topological semi-groups is to answer the fol-
lowing question formulated by A. D. Wallace ([9], p. 96) (1): What com-
pact connected Hausdorff spaces admit a continuous associative multi-
plication with two-sided unit? Since there have already been -numerous
results on the structure of topological groups, we may restrict our interest
only to those continuous associative multiplications with two-sided unit
which fail to be topological group operations. These multiplications will
be conveniently called essential multiplications. Then we reformulate the
problem as follows. .

Warrace’s PROBLEM. Determine if a given compact connected Haus-
dorff space admits an essential multiplication.

This problem is far from being solved. However, Wallace has settled
a few interesting special cases stated in the following theorem, [9] and [10].

WALLACE's THEOREM. A compact connected Hausdorff space § ad-
mits no essential multiplication if one of the following conditions is satisfied:

(1) 8§ is indecomposable.

(2) 8 48 a manifold.

(3) 8 is homogeneous and 1-dimensional.

The objective of the present paper is to investigate Wallace’s prob-
lem for the class of locally triangulable spaces defined as follows.

Let § be a given topological space. A point z e § is called a conic
point of 8 if there exists an open neighborhood U of 2 in § such that
the closure CI(U) is the join of the frontier ¥ (U) to the point «; in other
words, Cl(U) is topologically the cone over F(U) with z as vertex.
Besides, it F(U) is a triangulable space, then § is said to be locally
triangulable at the point . We say that S is a locally triangulable space if
it is locally triangulable at every point. In particular, every triangunlable

(!) Numbers in brackets refer to the bibliography at the end of the paper.
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space is locally triangulable. On the other hand, a:l% m.ani'fold‘s are locally
triangulable (since they are locally Fuclidean), while it is still unknown

if they are ftriangulable. ‘ .
1 IZ a given compact connected locally triangulable space, the existence

of an essential multiplication implies the existence of unstable points

fined as follows. ) _
e Z point z of a topological space § is said to be wunstable if, for every

open neighborhood U of z in 8, there exists a homotopy
d: §—8 (0<i<l),

satisfying the following conditions:
(D1) d, is the identity map.
(D2) d(TU)C U for every tel.

(D3) dyw) == for each #eS\U and tel.

(D4) a(S)C8\=.

Unstable points are called labile péints by Hopf and Pannwitz [4].. See
also Alexandroff and Hopf [1], p. 523, and Borsuk and J aworowski [2].
A point = e 8 is said to be stable if it is not unstable. The set of all un-
stable points of § will be called the boundary of S, del.loted by a8.

Now let  be a conic point of § and U an open neighborhood of »
in & such that Cl(U) is the join of F(U) to the point 2. Then the fol-
lowing lemma is obvious.

Levma. The point © of § is unstable if, and only if, the frontier F(U)
of U is contractible.

Because of this lemma, it is very easy to determine the boundary

i iangulable or locally triangulable space.
* aTgﬁze;azaasigtion of the pa};)er is stated in the form of the following

THEOREM. If a compact connected Hausdorff space S admits an
essential multiplication with a conic point u as the two-sided unit, then w is
an unstable point of 8. ’

In other words, if there is given in a compact connecteq Hausd‘orff
space S a continuous associative multiplication with a two-s@ed unit %
which is a stable conic point of S, then § becomes a topological group
under this multiplication. ‘

In particular, if the point # has a Euclidean neighborhogd in 8,
this theorem reduces to a known result due to Mostert and Shields [5].

A proof of the theorem will be given at the end of the paper. Now
let us deduce its immediate consequences.
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CorOLLARY 1. If 8 is a compact connected locally triangulable space
withowt unstable points, then 8 admits no essential multiplication.

This follows from the fact that every point of a locally triangulable

space is a conic point. A few special cases of this corollary will be listed
as follows.

(1.1) Every compact connected mantfold admits no essential multipli-
cation. Henee, if the underlying space of a clan (*) is & manifold, then
it must be a Lie group.

-

(1.2) Bwery compact connected limear graph without end-points admits
no essential multiplication. Hence, if the underlying space of a eclan is
a linear graph without end-points, then it must be the circle group.

(1.3) The one-point union of o finite number of compact commected
mamnifolds admits no essential multiplication. Tn fact, let M,,..., M, be
compact connected manifolds. In each M;, pick a point #;. Then the
one-point union &= M,v..vM, is defined to be the quotient space
obtained from the disjoint union Myv...uM, by identifying the points
@15 .oy By t0 @ single point. This space § can be imbedded in the product
space My X ..X M, in an obvious way. Our assertion follows from the
fact that § has no unstable point. Tf # > 1, then § is not homogeneous
and hence cannot be the underlying space of a topological group. There-
fore, the one-point union of two or more manifolds cannot be the under-
lying space of a clan.

(1.4) The quolient.space 8 obtained from & compact connected mani-
fold M by identifying a finite number of finite sets into single points admits
no essential multiplication. This follows from the fact that & has no
unstable point. Except the trivial case §= M, § is not homogeneous
and hence it cannot be the underlying space of a clan.

The assertion (1.1) is a restatement of the case (2) of Wallace’s
theorem, and (1.2) gives partial generalization of the case (3) of Wallace’s
theorem. Some of these special cases may also be proved by a general
theorem of Wallace, namely, if a eclan § is a floor for some cohomology
class of 8, then § is a topological group, [8} and [9] (p. 106).

COROLLARY 2. For a given essential multiplication in a compact con-
nected locally triangulable space S, every point of S which has a two-sided
inverse is an unstable point. ‘

This follows from the fact that, if he S has a two-sided inverse,
then the assignment 22—k defines a homeomorphism of § which carries

(%) A clan is a compact connected Hausdorff space furnished with a continuous
agsociative multiplication with two-sided unit. See [91.
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the two-sided unit % into k. Let I(S) denote the set of all points of S
with two-sided inverse. According to Wallace ([7], p. 333), I(8) is a com-
pact topological group. Then Corollary 2 states that I(S) is contained

_in the boundary 9(8) of 8. A few special cases of this corollary will be

listed as follows.

(2.1) For a given essential multiplication in a compact connected linear
graph 8, I(8) is a finite group which consists of some end-points of 8.

(2.2) For o given essential multiplication in a compact connected
manifold 8 with a regular boundary B, the group I(8) is coniained in B.
TFurthermore, if B is connected and BBC B, then it follows from (1.1)
that I(8) = B. This is a known result due to Mostert and Shields [5].

COROLLARY 3. For amy. given essential multiplication in a- compact
connected subspace S of a locally triangulable space X with no unsiable
point, the group I(8) is contained in the frontier F(8) = 8:Jnt(S) in X.

This corollary can be deduced from the theorem as follows. Since
every interior point of S is a stable conic point of 8, it follows by the
theorem that the two-sided unit » must be in F(S). Now let h be any
point in I(8). Define a new multiplication in § by taking %y = oh "y,

where B! denotes the two-sided inverse of h. Then it is easily verified

that this new multiplication is an essential multiplication with h as the
two-sided unit. Henee heF(S). This proves that I(8)CF(8). A few
special cases of this corollary will be listed as follows.

(3.1) If a clan 8 is topologically contained in the Buclidean n-space R,
then I(8) is contained in F(S). In fact, if § is not a topological group,
then this follows from the corollary by taking X = R™ On the other
hand, if § is a topological group, then it is easy to see that I8)=2~8
= F(8). For » > 2, this is a known theorem of Wallace ([9], p. 97).

(3.2) If a dan § is topologically contained in a connected mamifold M,
then either 1(S) CF(S) or 8§ = M. In fact, if § is not a topological group,
then this follows from the corollary by taking X = M. On the other
hand, if § is a topological group, then we have either I(S)= 8= F(8)
or I(8)= M. This is a known result due to Mostert and Shields [5].

Proof of the theorem. Let 8 be a clan with a two-sided unit

"4 which is a stable conic point of the space S. We are going to prove

that 8 is a topological group.
Sinee u is a conic point of §, there exists an open neighborhood w
of w in § such that the closure CL(W) is the join of the frontier

B=Cl{W)\W to the point w. Every point we W\u can be uniquel
represented as -
w=(b,1), beB, O0<t<l.
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Let N denote the closed neighborhood of # which consists of the points
{b,t) e W for all beB and 0 <t<} together with the point » itself.
Let 0 C NV denote the set of the points (b, ) for all b ¢ B. Then both N

apd O are compact. By continuity of the multiplication, there exists
a neighborhood .V of % such that

VNCW, VCCW\u.

We may assume that V is pathwise connected.
ASSERTION 1. Every element v eV has a right inverse in 8.
Proof. Assume that v ¢ V has no right inverse in 8. Then vXC X u

and hence
o NCW\u.

Since ¥V is pathwise connected, we may pick a path o: IV such that
O o(0)=u, o(l)=v. B
Let p: W-u~B and gq: B—+ C denote the maps defined by
pb, ) =b, q)=(,3) (beB, 0<i<l).
Define a homotopy ky: B~B (0 <t <1)' by setting

hb) =p[a(t)-q(b)] (beB, 0KIL]).
Then h, is the identity map on B.
Since N is contractible to the point w, there exists a homotopy g;:
B—N (0 <t<1) such that ¢,=g¢ and ¢(B)=u. o
Define a homotopy k: B—B (0 <t<1) by setting

k(b)=plv-a(d)] (beB, 0<i<1).

Then ko= h, and k(B) = p(v). Hence B iz contractible. Aceording to
the lemma, this implies that % should be an wnstable point of §. This
contradiction proves the assertion. -

AssprrION IL. The set R(S) of all elements of S which have right
inwerses s open.

Proof. Let a ¢ B(8). Then there exists an element b ¢ § with ab = .
By continuity of the multiplication, there exists a neighborhood M of a
such that Mb C V. Then it suffices to.prove that every » e M has & right
inverse. For this purpose, let v = «b. Since v eV, it follows from Asger-
tion I that there is an element ¢ e § such that ve= 4. Then we have

m(bd) = (mb)é =0C=Uu.

Hence z has a right inverse. This proves the assertion.
Fundamenta Mathematicae, T, XLVI.
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Asserrion III. The set R(S) is closed.

Proof. It suffices to prove that S\R(S) is open. Let a ¢ S\R(S).
Then a8 is contained in §\u. By continuity of the multiplication, for
each z ¢ 8, there exists a neighborhood P, of ¢ and a neighborhood @,
of x such that P,Q,C X\u. Since S is compact, there exists a finite num-
ber of points @y, ..., #, of § such that

8=0Q Qe vy,
Let :

P:leumgn...r\P%.
Then P is a neighborhood of & and PS is contained in S\u. This proves
the assertion.

Since S is connected, the agsertions IT and IIT imply that R(S)= §.
Therefore, § is algebraically a group under the given multiplication of
the clan. Then, by a classical result (Gelbaum-Kalisch-Olmsted, Iwasawa,
Peck), it follows that S is a topological group. For the sake of comple-
teness, however, we shall establish this by the following

AssprTION IV. The function f: S—8 defined by f(z) =z~ is con-
tinuous.

Proof. Let 4 be any closed set in 8. It suffices to prove that the
inverse image B=f"(4) is closed in 8 or, equivalently, that S\B is
open. Let x ¢ 4\ B. Then x4 is contained in S\u. Since A is compact,
there exists a neighborhood U of # such that UA is also contained in S\u.
This implies that U C8\B and hence S\B is open. This proves the
agsertion.

This completes the proof of the theorem.
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