Functionals on uniformly closed rings
of continuous functions

by
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In this paper we are concerned with the following problem: Suppose
X is a completely regular space and let B be a linear ring of continunous
real-valued functions defined on X which satisfies the following con-
ditions:

1° ANl constant functions belong to R. :

2° R is closed with respect to the wwiform convergence (i.e. if {fa}
unijormly converges to 1 and fneR (n=1,2,..), then feR).

Under what conditions imposed on X and R each non-trivial linear
multiplicative functional ¢ (1) defined on R is of the form

(%) o(f) =1(pJ)

where p, is a fixed point of X?

We note some results related to this problem:

If R is the ring of all bounded continuous functions on X, then the
" amswer to our problem is positive if and only if X is a compact space
(Stone [4]).

If R is the ring of all continuous functions on X then the answer to
the problem is positive if and only if X is a @ -space (Hewitt [1], [2]).

The main role in owr considerations is played by the evaluation
mapping of X into the Tihonov cube build up by means of all members f
of R which satisty the inequality 0 <f(p) <1 (i e. denote by R* the
set of all members f of R which satisfy the above inequality and agree
that the coordinates of points of the Tihonov eube I™ (m = E) are enu-
merated by means of members of R*. Then the evaluation mapping
can be described as & mapping which carries a point p e X into the point
a e I™ whose fth coordinate is equal to f(p)). We denote this evaluation

mapping by Fg.
(1) A functional ¢ is said to be non-trivial provided that ¢ does not vanish jden-
tically. .
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1 each member of a ring R is bounded, then the answer to our prob-
lem is rather uninteresting; it is quite similar to that of the above-
mentioned Stone result; namely, it is positive if and only if Fp(X) ig
compact. The more interesting case is the case where E contains possibly
many unbounded functions, i. e. where E contains the inverse of each
member of B whose each value is ditferent from 0. The answer to our
problem in this case is given in Theorem 2.

I. Some properties of the mapping Fgr. In this section X de-
notes a fixed completely regular space; B denotes a fixed linear ring
of real-valued continuous functions defined on X which satisfies the
conditions 1° and 2% Fx(X) denotes the closure of Fxr(X) with respect
to the Tihonov cube I™.

() If f is o bounded function in E, then there is a continuous real-
valued junction h defined on Fg(X), such that flp)= h(FR(p)) for each p in X.

Let f*(p)= af(p)+p, where a0 and f§ are real numbers.chosen
in such a way that 0 <7*(p) <1 for each p in X. Then f*e B*. Let

ha) = (pr(@)—f)

for a in Fz(X), where pss(a) denotes the f*th coordinate of a. Then % is
the required function.

(i) If b is a continuous real-valued fumction defined on Fgr(X), then
the function f defined on X by the equality f(p)= h(FR(p)) belongs to R.

Let € = {py}ser+ be the family of all coordinate functions of points
in Fp(X). Since Fx(X) is compact and ¢ distinguishes points of Fy(X),
by the Stone-Weierstrass approximation theorem for each positive & there
exists & polymomial W(ty, ..., ) of real variables #;, ..., % and members
fiy «ry fr 0f R* such thab

h(@) =W (ps(a); ..., pr(@))| <e
for each g in Frp(X).
By the definition of Fp and f, we obtain
() =W (fup), -, Tul(D))]| <&
for each p in X. Since W(f;, ..., fr) ¢ B and R is closed with respect to
the uniform convergence, f e RE.

IL. TenoREM 1. If R is a linear ring of bounded real-valued contin-
uous funclions on a completely regular space X satisfying the conditions
1° and 2° then each mon-trivial limear multiplicative functional ¢ defined
on R is of the form (x) if and only if Fgr(X) is compact.

Proof. Suppose that Fz(X) is compact and let ¢ be any non-trivial
linear multiplicative functional defined on R. Denote by R, the ring
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of all continuous real-valued functions defined on Fg(X). Let % be any
member of R, and let us set ¢,(h) = @(f), where f is a function in B sat-
isfying the equality f(p)= h(FR(p)) (by (i), f € R). Then ¢, is a non-
trivial linear multiplicative functional on R,, whence, by the Stone theo-
rem, there is a point a, e Fx(X) such that ¢,(h) = h(a,) for each h in R,.
Let p, be any point of X with Fg(p,) =a,. If f is any member of R,
then there is an h ¢ R, such that f(p) = h(FR(p)) for each p in X. We have

#(f) = @u(h) = h(ay) = h(Fr(po)) = f(Po) s

whence ¢ is of the form ().

Conversely, suppose that Fp(X) is not compact. Then Fp(X) 7= Fr(X);
let a, be any point of Fr(X)\Fgr(X). Let us set ¢(f) = h(a,) for any f
in R, where % is a continuous function on Fg(X) such that f(p) = h(FR(p))
for each p in X. Then ¢ is a non-trivial linear multiplicative functional
on B. If p, ig any point of X, then there is a continuous function i on
Fr(X) with h{a;) =0 and h(e,) =1, where a, = Fg(p,;). By (ii), there

_is & member f in B such that f(p) = k(Fg(p)) for each p in X. We have

@(f) =0 and f(p;)=1 and it follows that ¢ is not of the form (x).

III. In the sequel the following definition is meeded: a subset P of
a topological space S is said to be @-closed (in 8) provided that for each
point p ¢ S\ P there is a G;-set which contains p and is disjoint from P (2).

If § is a completely regular space, then we have the following:

(iii) A set PCS is Q-closed in S if and only if for each p in S\P
there is a continuous real-valued function f on S such that f(p) =0 and
@) #0 for each ¢ in P.

The simple proof of (iii). can be left to the reader.
‘We are interested in the case where a space is @-closed in a certain
compactification of itself. :

(iv) If b'S and b"'8 are compactifications of a completely reqular space S,
b8 <b”8 (i. e. there is a continuous mapping F of b"'8 onto b'S such that
F(p)=p for each p in 8) and 8 is Q-closed in b'S, then § is Q-closed
in b"8. )

Indeed, if peb”S\8, then g¢=F(p)eb'S\S(*), whence there is
a Gs-set G Cb’S which contains ¢ and is disjoint from §. Then F Y@
is a @y-set in b”’§ which contains p and is disjoint from S. ’

(%) This definition was introduced in [3].

(*) This ean be proved in the following way: suppose ¢ = F(p) e 8. Then p and ¢
are distinet points of b §, whence there exists a neighbourhood U of p with ¢ ¢ 8~ U
(the bar indicates the closure with respeet to §). Since § is dense in 5”8, peS§ AU
(the bar indicates the closure with respect to b 8). On the other hand, F'(S ~ U)=8nT,
and since F is continuous, ¢ = F(p) e F(§ ~U) = 8 AU (the bar indicates the closure
with respect to S) and this leads to a constradiction.
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The extreme case is explained by the following:
(v) A space S is Q-closed in BS if and only if 8 is a Q-space.
This statement is given in [3].

(vi) A space S is Q-closed in each of its compactifications if and only
if 8 is a Lindelof space (i. e. each open covering of S contains a countable
subcovering ).

Suppose that § is a Lindelof space. Let b8 be a compactification of
8 and let po e bS\S. For each p in S there is a neighbourhood U, of p such
that p, ¢ U,. Sinee {U,}pes is an open covering of 8, there is a count-
able covering Up, Up,.. of 8. Then G= ﬂ #8\Tp} is 8 Gy-set

in b8 which contains p, and is disjoint from S.

Conversely, suppose that § is not a Lindel6f space. Then there ig
g family U= {U,}sc4 0f open subsets of 8§ which covers S and such that
no countable subfamily of U covers 8. Let H = 8\ U {U.: @ e A} and
let bS8 be the compactification of § which is obtained from g§ by the

identification of all points of H to a single point; denote this point by p,.

Suppose that there is a G5-set G C b8 which containg p, and is disjoint

from 8. Let F=bS\@ Then SCFCJ{U. acA). But F, being an

F,-set in a compact space, can be covered by a countable infinity of

sets U,. This leads to a contradiction, whence § iz not @-closed in b8.
An immediate consequence of (vi) is the following:

(vil) 4 locally compact space is Q-closed in its minimal one-point
compactification if and only if it is a Lindeldf space.

IV. In this section we shall consider the case of rings containing
unbounded functions. We assume the following condition:

3° If feR and f(p)#0 for each p in X, then 1/f ¢ R.

We shall prove some elementary properties of such rings (in (viii)-
(xil) R is a fixed linear ring of continuous functions on a fixed space X
satisfying the conditions 1°-3°).

(viii) If feR, then |f| e R.

At first, suppose that f is a bounded function. Then one can agsume
without Iost of generality that |f(p)| < for each p in X. We have
m_]/l (L—7%), whence |f| can be written as the sum of a uniformly
convergent series of polynomials with xespect to f. Thus, by 2°, |f|¢R.

Now, suppose that 7 is an arbitrary funetion in R. Let

S
h=1y7
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Then f, is a bounded function, and, by 3° f, ¢ R. Consequently |f,]< R
and [f|=[A]-1+7*) < R.
(ix) If f,9 e R, then max{f, g} e R and mm{]‘, g+ eR.

This follows from (viii) and the formulas:
f+g+lf-4g] .
2 ?

max {f, g} = f+g— lf gl

mm{f ' g =

(x) Pach member f of R can be written as the difference of two non-
negative members of K.

In fact, f=f"—f ", where f* = max{f, 0}, f~ = —min {f, 0}

(xi) Bach member | of R can be written in the form f= 1/f,—1/fs,
where f, and f, are bounded posztwe functions in R.

Indeed, let
1, 1

m H f 2 m H
where ¥ and /= have the same meaning ag in the proof of (x).

(xil) For each f in R there is a continuous function h defined on Fg(X)
such that f(p) = h({Fg(p)) for each p in X.

In virtue of (x), one can assume that f is a non-negative function.
Then, by 3° ¢ =1/(f+1)<cR* (see the definition of the mapping Fg
given at the beginning of this paper). Let

f1=

_1-—pya)
Ma)= Dyl@)
where p,(a) denotes the gth coordinate of a point @ ¢ Fa(X). Then kb is
the required function (this function is well-defined on Fg(X), since the
gth coordinate of the point- a e Fx(X) lies in the interval 0 <i< 1).

TeEOREM 2. If B is a linear ring of continuous real-valued functions
defined on a topological space X which satisfies the conditions 1°-3° then
each non-trivial linear multiplicative functional @ defined on R is of the
form (%) if and only if Fr(X) is Q-closed in Fp(X).

Proof. Suppose that Fr(X) is @-closed in Fr(X) and let ¢ be a non-
trivial linear multiplicative functional defined on X. Denote by B, the
ring of all continuous functions defined on Fg(X). In virtue of (i) and (ii)
a one-to-one correspondence can be established between bounded mem-
bers of B and all members of Ry; corresponding functions 7, (f <R,
h e R,) satisfy the equality f(p)= h(FR(p)) for each p in X. Let us set
@(h) = @(f). Then @, is a non-trivial linear multiplicative funetional de-
fined on R,. Since Fx(X) is compact, there is a point a, e Fr(X) such
that p,(h) = h(a,) for each h in R,. We shall show that a, € Fr(X).
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" Indeed, if ag ¢ Fr(X)\Fz(X), then, by (iii), there is a continuoug
function % defined on Fx(X) such that h(a,) = 0 and h(a)s0 for each
a in Fi(X). Let f be the function in R which corresponds to h. Then
f(p) # 0 for each p in X, whence, by 3° 1/f <R, and it follows that
¢(f) #0. On the other hand, ¢(f) = @i(h) = h(a;) = 0 and this leads to
a contradiction. i

Now, let p, be any point in X with Fa(p,) = ao. Using (i) and the
definition of the functional ¢, one can easily show that ¢(f)=f(p,) for
each bounded function f in R. Using (xi) we infer that the above equality
holds true for each function f in R. Thus the first part of our theorem
ig proved.

Conversely, suppose that Fr(X) is not @-closed in Fp(X). Then,
by (iii), there is a point a, e Fp(X)\Fr(X) such that for each continuous
function h defined on Fx(X) which is strictly positive on Fx(X) we have
h{ay) > 0. Let { be any member of E. By (xii), there is a continuous
function % defined on Fg(X) such that f(p) = h(FR(p)) for each p in X,
We shall show that % admits a continuous extension over Fr(X)u {a,}.
In fact, let ‘

1 1
A A

where f,,f, are bounded pogitive functions in R. By (i), there are con-
tinuous functions hy, h, defined on whole Fx(X) such that f,(p) = h{Fz(p))
for each p in X (4=1,2). Since h; (i=1, 2) are strictly positive on
Fr(X), hfae) >0 (¢=1,2) and it follows that the function hl—%
1 2

is continuous on Fx(X)u {a,} and clearly it is an extension of .
Let us set ¢(f) = h*(a,), where h* is the-continuous extension of &
over Fg(X)w {a,}. Then ¢ is a non-trivial linear multiplicative functional
defined on R. Using (iii), it is easy to show that ¢ is not of the form ().

V. Consequences of theorem 2. TuroreM 3. If X is a Lindelof
space and B is any linear ring of continuous functions defined on X
satisfying the conditions 1°-3° then each non-trivial linear multiplicative
functional @ defined on R is of the form (x).

Comversely, if X is not a Lindelof space, then there is a linear ring B
of continuous functions on X satisfying the conditions 1°-3° and a non-

trivial linear multiplicative functional ¢ defined on R which is not of the
form (x).

. P}'o of. If X is a Lindel6f space, then each continuous image of X
isa lL.mdt?lt')f space and a Lindeldf space is @-closed in each of its com-
pactifications (clearly Fr(X) is a compactification on Fg(X)).
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Conversely, if X is not a Lindel6f space, then there is a compactifi-
cation bX of X such that X is not @-closed in b.X. et R be the least
ring satisfying the conditions 1°-3° that contains all funetions on X
which admit a continuous extension over bX. Then Fz is a homeomor-
phism and Fgp can be extended to a continuous mapping of bX onto
Fr(X). Tt follows that Fr(X) is not @-closed in Fg(X).

TeEOREM 4. If B,, R, are Uinear rings of continuous functions on X
satisfying the conditions 1°-3°, R, distinguishes points and closed sets (%)
and R, C R,, then if each non-trivial linear multiplicative functional ¢ on R,
is of the form (x), the same holds true for the ring R,.

Proof. The mappings Fg, and Fy; are homeomorphisms, whence
Fr(X) and Fg(X) can be regarded as compactifications of X. One can
easily verify that Fg (X) < Fp,(X), whence the statement of the theorem
follows directly from Theorem 2 and (iv).
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