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On a stochastic model of a cascade
by

K. URBANIK (Wroctaw)

1. The homogeneous regular Markov process with a denumerable
multitude of states is defined as a stochastic process (2, g, Pr>
satisfying the following conditions:

1° the space 2 of the process consists of integral-valued step func-
tions e (4. e., functions having only a finite set of points of discontinuity
in every finite interval) taking on non-negative valpes, defined for ¢ > 0,
continuous on the right and assuming the sgame value at ¢ = 0: w(0) = ny;

2° Bp is the smallest o-field spanned upon the sets of form
(1) Atyn) = o 0@t) = oz}; .

3° there exists a family of functions PE(¢) (m, k = 0,1,...;¢> 0)
called the transition probabilities from the state n to the state k in the time
interval t satisfying the conditions:

() 2B =1, Py >0,
k=0
(3) Piti+10) = ' Pi(1)Pa(t.),
§=0
(4) lim P(1) = P}(0) = &,
[SVIEE

” T

(5) it & <1y <... <, then Pr(() {w:o(t) = n,)) =]‘]1>:g_l(tf—z,_l),

=1 Feel
where 1, = 0 (see, for instance, [3], p. 236).
It follows from theorems of Doob and Kolmogorov ([2], p. 468, [7],
p. 53) that for the transition probabilities in the homogeneous regular
Markov processes there exist limits

Pl
(6) af = lim “1( )» for & #mn,
1504 :
L 1Pt
(7) @ = lim 2= E00

[ t
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called the intensities of the process. The intensities of the process satisty
the following conditions:

(8) k=0 (B=0,1,..),
9) ap = Yak.
Festn

‘When the intengities of the ‘process are known, the trangition proba-
bilities of the process may be determined from the Kolmogorov equations
(compare [4], p. 64)

& pre) = —ab P+ ) abPi(t)

ao 7 B 2

with the initial values

(11) PJ{0) = &;.

Thus it follows from condition (5) that the intensities determine the
probability Pr in the process satisfying conditions 1° and 2°. It follows
that if the intensities of two homogeneouns regular Markov processes are
the same and the realizations of both the processes assume the same value
at zero, then the processes are identical.

The function P(4/B) (4, BeBy) is called the conditional probability
if it satisfies the equation

(12) Pr(An~B) = P(A[B)Pr(B),

and if, for fixed B, it is a normed o-measure.

2. Let us consider a physical cascade composed of particles of the
same kind in a homogeneous medium (e. g., the cascade of nucleons in
cosmic radiation) in which the decomposition of the particles is a random
event. For physical reasons we agsume that

(i) the future of a particle does not depend on its past and depends
only on its actual state,
(i) the destiny of a particle and its progeny does not depend on the
future of the actually existing particles.
It is customary to treat mathematically a cascade arising from a single
particle as a homogeneous regular Markov process with a denumerable
multitude of states. In this process the value of the function w for the

argument ¢ is equal to the number of the particles in the cascade at the
moment ?; hence for all the realizations we have

(13) Tw(0) =1.
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One assumes as an intuitive consequence of (i) and (i) that the
transition probabilities PX(¢) satisfy the supplementary condition
Pty = 68 (k=0,1,...),
(14) n
Pioy= D [[Ph) (=0,1,..5n=1,2,..),
t=1
the summation being extended over all the systems of non-negative

integers k,+k,+...+k, =k (see, for instance, [1], p. 7; [5], p.409).
In terms of intensities condition (14) becomes

(15) af = naf"tt (ke =0,1,...).
Then the Kolmogorov equations (10) change into
a Ll
(16) = Pi(t) = —kaP()+ Y saf=** Ph0)+(k-+1)a P+ ().
8=1

In this model of the cascade we cannot, of course, deal with indi-
vidual particles and their future, whence conditions (i) and (ii) have no
direct interpretation. Thus in the precise treatment of the caseade pro-
cesses conditions (14) or (15) are considered as axioms.

Professor Bi. Marczewski has proposed a construction of a mathematical
model of a cascade in which it would be possible to deal with the indi-
vidual particles and their future, and which would be based npon the con-
ditions (i) and (ii). We shall now be concerned with the investigation of
such a model.

3. Let & be the set of all the systems
& =K@y, Bgy vy By (n=1,2,..) .

where #, =1, o, = (4, 5> (k=2,3,..35i=1,2,...,4;§ =2,8,...).

Let ¥ be the space of all the functions v defined on Z, whose values
are intervals of the form [a,b) lying on the positive semi-axes (i. e.,
0<a<<b < o) and satisfying the conditions
(@ () =1[0,a) (0<a< oo);
(®) it oK@y, ..., Bp)) = [a, D), then v({@y, ..., @, Zyy ) = [b, ¢);
() it v({@y, ..y @y <2, 550) # 01), then v(wy, ...y @y, <k, §5D) # 0

for t =1,2,...,7;

V({Bry ouey Bpy S, MPD) =0 Tor ¢ =1,2,...,m;m 5 J;
(@) i o(@yy ..y ) = 0, then v (<@, ..., @, Py 1) = 05
(e) if v(<{wy,..., @) =0 for m =1,2,..., then
L,{Q)(<m19"'1 Tpp) = [0, co).

1) 0 denotes here the empty interval [a, a).
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The intuitive sense of the elements & and the function » is the fol-
lowing one:

The element & = (1) represents the particle generating the cascade;
the element & = (1, {i,j>) represents the i-th particle arising by the
decomposition into j parts of the particle generating the cascade; gen-
erally, the element & = (@, ..., @y, {¢,j>> represents the i-th particle
generated by the decomposition of the particle represented by the ele-
ment (@, ..., @,y into j new particles; v(£) = [a, b) where a < b means
that the particle represented by the system ¢ aroge at the moment a and
finighed its life, 4. ¢., was decompoged by the medium, at the moment b;
v(&) = [a, a) = 0 means that a particle represented by & does not exigt
in the cascade. Hence the function v describes the history of all the par-
ticles in a given cascade. Condition (a) states that the cascade ariges
from a single particle at the moment ¢ = 0, (d) staties that the non-existing
particle cannot generate new particles, finally, (e) states that in every
finite time interval only a finite number of decompositions can happen.

The following lemmas will show that condition (e) in the definition
of the gpace V may be replaced by

(¢') for every T' < co the set {&:w(£) ~ [0, T) 5 0} is finite.
Lemma 1. Condition (e') is satisfied for every veV.

Proof. Arguing indirectly, suppose that there is a »,eV such that
(e') is not satisfied. Then there exists a number 7', such that the set

By = (&1 09(€) ~ [0, Ty) # 0}
is infinite. Conditions (b) and (d) lead to the following implication:

(A7) it lay, iy @y Bprr) €5y, then (o, ..., @, € 5.

From (¢) it follows that there is only a finite multitude of elements
%, appearing on the r-th place in the systems (@, ..., %,_1) Bpy Bppg,y .o, By
of the set 5,. The infinitude of the set &, and condition (17) imply, for
every n, the existence of a system <, ..., ®,> belonging to &,. Lt follows
that there exists a sequence ®}, ), ... such that <(a?,ul,..., sl 5, for

every n ([8], p. 118). Let us write in accordance with condition (b)
(18)

”0(<m2: .’Bg, ceey w’?’:>> = [ay, a/wr-rl)' ‘ (n=1,2,...).

From the definition of the get 5, and of the sequence af, 2}, ... we
deduce the inequality a, < T, (2 =1, 2,...), whence from (18) it fol-
lows that

o

U ”0((-’”[1)7 ey ) C [0, 1),

=l
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which, in virtue of the finiteness of 7T,, contradiets condition (e). Thus
the lemma is proved.

LemMmA 2. Let the function v satisfy conditions (a), (') and (b); then
condition (e) is also satisfied.

Proof. Let
(19) O({yy veny @) F# 0

Conditions (a) and (b) imply

for =2=1,2,...

gv«w,, ey 8) = [0, T).

It follows by (19) that the set {&: v(£) ~ [0, 1) # 0} is infinite. Hence
from (e’) we deduce T = oo, which proves the lemma.

4. Let 93(Y,T) denote the smallest o-field spanned upon the sets
of the form

(20) CB(£, 1) = {v:veV, tev(8)},

where £6¢Y and # > T. The set {v: veV, ®(v)} will be denoted shortly by
{®(v)]; thus the set (20) will be denoted by {tev()).

We shall now define a family 7', of transformations of sets belonging
to the o-field 3(X¥, T). For the sets of the form (20) we define

T {tew (&)} = {t—vev(8)] (< 1T,

and then we extend this definition to all the sets of 93(Y,T) by the for-
mulae
T U4, =UTA4, T4 =(T.A4).
i i

By the definition of T, (x < T)
T, 4¢9(Y, T—1).

Let & = <aqy -y and 7 = By, ooy By Y15 05 Y (M =0,1,..);
then we shall write ne K (&) and n—¢& = {1, Yy, ...y YD 2.

K (&) is a cascade arising from the particle é&.

We have, in particular, K({1)) = & and y—1) = 5. If neK(§),
we put Lyftev(n)} = {tev(n—&)}, and by the formulae

LU A =U LA, LA = (LAY
i i
we extend the definition of the transformation I, to all the sets belong-.
ing to the o-field B(K(&),T). Let us observe that AeB(K(£),T)
implies L.Ae3(F, t).

it follows for Ae“3(Y,T) that

3 We set {my, ..

Studie Mathemation XVI. 16

Bma Yy ees YD = (Bys iy, oo gy fOr mo== 0.
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The o-field 9B(5,0) will be denoted by “¥3p. Let P be a probab-
ility (= normed c-measure) on the o-field ¥y, inducing the conditional
probability (in the sense of section 1) and satisfying for Ae93(K (£),1)
and BeB(5—K(£),0} the following conditions:

) . P(Aften(£)) = P(LgAlten({1))),
(1) P(A|{ten(&)) ~B) = P(Alten(?)),
(TIT) P(A[ten(§)) = P (T, Alt—vev(£)),

where ¢ = 7.

The system (V, ‘M-, Py will be called a cascade process. Conditions
(I) and (II) ave trangeriptions of conditions (i) and (ii), and condition
(III) describes the homogeneity in time of the process.

5. Let %(@(5)7 t) be the characterigtic function (in the sense of the
theory of sets) of the interval »(£). Let us write for veV and ¢ > 0

(21) wlv, 1) = D xv(&), 1.

b

)

g
ES

Condition (e’) implies that w(v,?) is a step-function of the variable
i, taking on non-negative integer values. It is easily verified that the num-
ber of particles in the cascade described by the function » is equal at the
instant ¢ to w(v, ?).

Formula (21) defines a mapping of the space V onto the space of all
the step-functions o defined for i >z 0, taking on non-negative integer
values and equal to 1 at t = 0. Let us denote this mapping by . Ilence

RE)(E) = w(v, 1),

07w o) = nf={ D 2(0(8),1) = nf = U NleentE)~ ) feeotn),
a8 = *
the union: () being extended to all non-ordered systems &, &y,..., &,
(6685 & # & for 4 = §) and the intersection (M) being taken over all
*®
the elements ne & different from &, &,,..., &,. We got
QHao: o) =n)eBy,

whence, denoting by DWBayy the smallest o-field spanned upon the sets of
the form (1), we see that A ¢WBoy, implies 27"4e99,. Thus the mapping
Q defines in “Bopy a normed c-measure which will be denoted by QP:
QP(A)=P(Q7'4) for Ae WBawy. Thus the mapping transforms the cas-
cade process <V, 9y, Py intio the stochastic process (Q(V), Bawyy 2P .,

icm

On a stochastic- model of a cascade 243

TeEEOREM 1. For every cascade process <V, Wy, P) the corresponding
stochastic process {Q(V), Baw), P> is a homogeneous reqular Markov
process with a denumerable multitude of states, satisfying conditions (13)
and (14).

THEOREM 2. For every homogeneous regular Markov process with a de-
numerable multitude of states {Q, Vg, Pry, satisfying conditions (13) and
(14) there exists a cascade process {V , By, Py such that (Q(V), B awyy 8P
is identical with {2, Bg, Pr). .

Theorems 1 and 2 join the models of stochastic cascades deseribed
in sections 2-4. The proofs of both theorems will be given in the sections
to follow (they were announced without proof in the note [9]).

6. We need follawing lemmas.

“LEMMA 3. Let
(22) K(&)~K (&) =0 (i+#7§;1,§=1,2,...,n);
then for
(23) A;eB(E(E),Y) (E=1,2,...,n),
(24) BePB(5— OK(Ei),O)
we have -
(25) P(ﬁAm{zeu,(si)},,-B) = [[[P(4iten(£)] -P(N {tev(&)} ~ B).
tod=1 =1 =1

~ Proof. We shall prove this by induction with respect to #. For
% = 1, formula (25) follows from condition (II). Suppose that (25) is valid
for n = &k, and let us write

k
By= (N 4; ~ {tev(&)} ~ B.
=1
Then we have
: : By e B(E—K (£x,1), 0)
and

k41

P(QAM {tev(&)} ~B) = P(djys - {tev(&p))} ~ By).
Hence by (II) we obtain A
k41
(26) - P(QAin {tev(£)} A B) = P(dpya|tev (&) P({tev(Epn)) ~By).

Now,, setting
(27) ‘ B; = {tev{&1)} ~ B,

.
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we get .
P({tev(£1)) nBo) = P(Q A~ (tev (&)} ~ By,

and in virtue of (22), (23), and (24)
3

B B(E—

If(f:’)70J'

1

By the hypothesis of induction we deduce hence
i T
P({tev () ~ Bo) = [ [P(Ailten(&))| -I’(ﬂ [ten (&) ~By).
[2%%)

Putting this expression into formula (26) and taking into account
formula (27) we obtain formula (26) for » = k-1, which proves the lemma,
LEMMA 4. Let
(28) K (&)~ (&) = 0

(29) < T

(’ # 7)7

then for every k there ewists a set
Ben(5— U K (&), )
Pt

satisfying the equality

é{l’m&:)l ~ o, 1) = k) =ﬂ, (Tev(£)} ~B.

Proof. By hypothesis (29) and property (b) of the function » it
follows that Tev(£), neK (&), n # & implies t¢n(n). This leads to

"

(30) n{TG'v(&)}n{w(v,t) :—I(}

—

koow oy W
=U N (TeoE)nl 3 2l t) = b—sfn{ 3 zpo(g, 1) = ).
‘ Tanl

8§ dml "
AT
Let £ = {of, ..., @}, >; then by hypothesis (28)
"
(31) {at, ...,wﬁ>e5—JUK(5.,.) (r < mg; 61,2, .0, n0).
Jml

N tFrom inequality (29) and property (b) of the function o it follows
tha;

(32)  {Tew(s)) A{te@(si)} = {Te?)(&i)}mmﬁl'wv((wf, oy i)}

icm
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Setting
/)l—i—

i R
-+ (33) By = () fteo(<ad, ..., o)), By =V-5
r=1

we get, in virtue of formula (32),

(34) {jx(”(fi),t) =3}f\ﬁ{1’€7~’(5i)}
=1 i=

it

= AfTerEal U N B
J=1 r-

b ry=k-$ =1

Formulae (31) and (33) lead directly to

(35) U NEieBE-U K(&),0).
Py by =k—8 1=1 f=1

Let us now write

K

k _.
B = N g, ) = k—sln E.
}3)0{ An" l( W)’ ) } Irl-l-..ukL‘i-‘,J,,akv-s (=3} z]
7JFEU1K(5111

w
By formula (35) Be®B(8— U K (&), 0).
=1

Equalities (30) and (34) imply that the set B satisfies our lemma.

LEMMA 5. If T>t>t;,> ... > &, then for every kyny, ..., %n and

w=1,m =0 we have
1

Plw(®, T) =k}~ {o@, ) = () o, 1) = ny)

F=1
= I V'
! e
ks bk =k i=1

e

Plo(w, T—1) = ki)].P({w('u, t) = n} r\.(? (@, t;) = ny})
J=

n

(we set () {w(v,l) = ny} = Q(V), as m = 0).
je=1 i
Proof. Using the definition of the funetion w and properties (a)
and (b) we may easily verify the following equality:

(36)  lw(e, D)=k~ {o(v,1) = n]ﬂﬁ w(o, t) = ny)
J=

= : A s T) = kg it i
U kﬁ.Hkﬂ;k Ql{"%,mi)x('v(n) ) } {tev(£;))

~ m {tﬁ@(ﬂ)}hé{w(’ﬂ, tj) ﬂ’i’bj},

"
ne U E(&)
Gl
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the union { ) being extended over all non-ordered systems &, &,..., &,
*

such that

(37) : E(&)~K(E) =0 as
By Lemma 4 there exist sets B (61,

B(E— iLnJ]K(Ei), 0) such that

1.
&,) belonging to the o-field
(38) iﬂl ftev(é)} o, 1) = n,} =vrﬂl {tev(é',g)} ABy(&yy ey &)

Let us set

(39) B(&1y..y &)

= qBj(fly ey Ep)0 m
?H

"
nd U K(&)
Fe=l

{w'v(n)}

We see from (36) and (38) that

n

@0 Y ) ol nBles oy &) Vo0, 1) =)

and
(41) B(&y, ...,

Setting
(42) Al s) =

={w(v,1) = n)
EH)GC)EB(EwiLiJI‘K‘(Ei); 0).

{3 2fotn, 7) = o,

na K (8)

and taking into account the fact that the summands on the right side
of equality (36) are disjoint, we easﬂy deduce from (36), (38), and (39)
that

#3)  Pllo(v, T) =kl ~]olv, ) = hjé o, ) = ny))

=D Y P(N A, k) aften(E)) aB(E, ...y &)
LR T e T 28

By definition (42) we get A (&, k;

e WK ( E,
(37) and (41) and Lemma 3 lead to

7). Hence formulae

(44) P(OA(fia kt)r\{t“’(ﬁ- FAaB (& veny &)

[HP (&35 by

g==1

ten( Ei))J ((q,‘]l{tw(f,t)}ﬁﬂ(g“ ey &)

From conditions (I) and (IIT) (

45) P(A(&, k) |m (&) =

(p. 242) we infer
P (T, L, A (&, ;)| 0en( ({13)).
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2) and thé definition of the transformations T; and L, we have

(&0, Ra) = { D o), T— ) =k} =
n6E

and, by property (a) of the function », {0ev({1))}

(45) may be written in the form

P(A(Si: k)ltev (&)

Thus from formulae (43) and (4

P({w(v, T) = k} ~{w@®,1) = ‘Yb}r\ﬁ {o(v, ;) = ny})

= 2 Hmwv T—t) =

Kyt ot Ry =k T=1
this, together with equality (40), implies our lemma.
LeMMA 6. If T > t, then for every by My, ooy My try ooy
we have

By (4
TlLEiA {w(’v, 1’—“” = ki}

= V. Hence formula

= P(o(v, T—t) = k).

4) we get

:]P(U m {te’l) &) hB(§11 511.));

ty and m >0

m

P({w(v, Ty = k}r\{w(’l’ = } N {

j=1

v, ;) = ny})

= EP(lo, 1) =0}~ {olv, ) = n;}).

Proof. It follows from the definition of the function o and from
the properties (a), (b), and (d) of the function » for T > ¢ that

{o(,1) =0} Clw, T) = 0}.
Thus
{w(v, t) = 0} a8

0 a8

E=0,

{0)(’0 1)“‘/{2}r\{ k20,

v,1) =0} = {
whence the lemma follows directly.
LemMA 7. For every m we have
hm{ (v,) =0} = o, T) =n}.

T
By definition (21) of the

'Proof. Suppose that wye{w(v,T) > n}.
, & (£;€5) such that

function o we see that there exists a system &, ...
(46) g i
and Tevy(&;) (1=1,2,...,0).

Let 'L’o(si) = [ai) bi) ('L = 11 2y
the inequality

=y

n). Then for every t satisfying

11<t<mi]1bf

1<ign
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we have the relation tevy(&;) (¢ = 1,2,...,n) which, in virtue of (46),
leads to w(vy, t) = . Thus we have proved that

{o (@, T) =na}C hmmf{co v, 1) = n}.

Suppose now that

417(,elimeup{a)(v, 1) = n}.
T}

Then there exists a sequence of numbers
(47) > '
and a sequence of systems of elements of the set &

"Ew,.r (7'-‘—‘]-,2,...)

by >ty > ol

£ E
S1ry Sa e

such that

(48) §ip 5 &1 for i, r=1,2,..,
and

(49) tey(£; ) SRyt = 1,2,

G=1,2,...
By formulae (47) and (49)
0o (Eep) N[0, 2) £ 0

whence from property (e') it follows that among the systems &, ,, &y ..., &y
only a finite number is different. Thus there exists a subsequence 7y, ry, ...
such that &, = »; (1 =1,2,...,n;5% ==y, ry,...) where, because of (48),

YR
Hence by (49) we infer that t,evy(n;) (1 =1,2,..., n;7 = 1y, 7,,, )y
which, in view of (47), implies Tevy(n;) (¢ =1, 2, ,n)

Thus by formula (50) we deduce that (v, T) ,> n. Hence we have
proved that

(C=1,2,..,n;r==1,2,...),

(80) My FE gy a8

hmsup{w (0,0 2 n) Clo(,T) =},

which, tegether with the inclusion proved before, leads to our lemma.
JOROLLARY. By lemma T we infer that
tl_if}({w(v, ) =1} = {0, 0) =1} =
which implies the equality

Hm P (o (v, 1) == k) = 6.
304
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Proof of Theorem 1. The space 2(V) consists of step-functions
defined on the positive semi-axis, taking on non-negative integral values
and equal to 1 for ¢ = 0. Hence, “Bp(p being the smallest o-field spanned
on the sets of the form (1), in order to prove Theorem 1 it is sufficient to
show that, for this process, there exist transition probabilities PZ(z)
satisfying conditions (2), (3), (4), () and (14).

Let us write

(1) . P¥e) = QPlw: o(t) =k} = Plo(v,t) = k)
(62) Pi(t) =

h=0,1,..),

[[ 25, Piw)y =& (n=1,2
Eyt oy =k =1
Let f, (2, t) be the generating function of the sequence Py(t), Py (1), ...:

= fl’f(t) fl»"'.‘.

k=0

3 k=0,1,...).

(53) fu(@, 1)

By definition (52)
(54)
whence

a2, 1) = [fi(x, t)]ny

DB = full, 1) = [£2(1, O] ZP(wwi——k)]~1,
k=0
which gives formula (2), the functions PE(t) being non-negative.
Using definitions (51) and (52) we may write the conclusion of lem-
mas 5 and 6 in the following form:

i

~N {w(""s t;) = “’j})
j=1

(T—)P({w(v, 1) = n}oﬁl o, ;) = n})

65  Pllo@,T) =kl {o@,1) =}

= Pr

where T >t >4 > ... > t,. Applying repeatedly lemmas 5 and 6 to
the second factor on the right side of formula (55), we obtain (5).
By (51) and (55) we get

= M P({o®, T+t) = ko, ) =s}) = Y PHT)Pi().

8em O =0
Multiplying this equality by #* and summing up from % = 0 to oo we
get in virtue of (53)

PY(T+1)

00

D @, T)PI),

8=0

filw, T41) =
whence by (54) it follows that

= D [h(w, DI*P{®) = filf(@, 1), 9).

fulw, ¢4-T)
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Thus we get
f,n($, i—}‘T) = [h(w, '{"}"T)]n = Ul(fl("% 17)7 t)]‘" = fw (fl(m7 T)a ,’)7

®

i 6., m
%:P,’:(tw)m’“ =Zo [a (@, )P = 2 fu(@, TYPL(t)
=

o0
= Y[ Y Phm) PLw)a",

k=20 8ael0

o

whence formula (3) follows. .
The corollary of Lemma 7, and definitions (1) and (52) imply
n
lim PRt = ) 8t = & = Pp(0);
10 eyt oon Flop=l 41
condition (4) is thug fulfilled. Finally, definition (52) directly implies
condition (14), which concludes the proof.

7. Suppose we are given a homogeneous regular Markov process

(R, Vg, Pry with a denumerable multitude of states, satisfying conditions

(13) and (14). Let the numbers
(66) ”L“i:“?:---

be the intensities of this process (the remaining ones are already defined
by formula (15)). In order to prove Theorem 2 it is sufficient to show that
there exists a process (¥, Wy, P) inducing the process (2(V), Vo), 2P
with the intensities (56) (compare section 1).

Suppose that =} = 0; then for almost every weQ we have w(f) =1,
for w(0) = 1 (compare [2], p. 457). Defining the measure of the process
KV, By, Py by the formula

1 as  wed,

P(4) = !
0 as  wed,

where deBp and v((1)) = [0, co), t&) == 0 for & = <1>, we infei that

for almost any v eV the equality w(v,t) = 1 is satisfied, whence the pro-

cesses {RQ(V), Bow), 2Py and (2, Bg, Pr) are identical, which proves

Theorem 2 in the case in question. Thus it is sufficient to deal in the

sequel with the case

(67) ) @y > 0.

Let W be the space of all pairs w = {w,, w,> of functions defined
on 5, taking on non-negative real values including oc. Every element

icm
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veV may be considered as belonging to W; to do this we define the pair
Cwy, we) 28

() = %)
hen  o(&) = [a, by).
w (&) = be] when  v(€) = [a, b,)
Thus we have '
(58) vCw.

Let By be the smallest o-field spanned upon the setﬂ’ of form
(59) O(£,t, ) = {w:we W, w,(&) < t,w (&) <1T}.

Hence by the definition of the o-field 3, and inélusion (58) we obtain
(60) @y =By

(compare [6], p.25).

In the case (57) the proof congists of several parts. First, by aid of
intensities (56) we define a normed c-measure P, on the o-field By ; then
we prove that the set V is measurable and Py (V) = 1. Hence making
use of the well-known relativization of the s-measure P, to the set V we
obtain, in view of (60), & o-measure P defined on the o-field 93,. We prove
that P satisfies conditions (I), (IX), and (III), whence we obtain a cascade
process {V, By, P). Finally, weprove that the process (2(V), Bar), 2P
generated by this process has intensities (56), and this concludes the proof
of Theorem 2.

8. The space W may be considered as the product

(61) W= (9% Yy,

where the factors X, and %, (£e5) are sets composed of non-negative
real numbers including ooc.

Let B(Y) (¥ C &) denote the smallest o-field spanned on the sets
of form (59) where £eY. Thus B(Y) is the o-field of cylinders of the
product (61), whose bases are Borel sets contained in the product

(62) P (XX Y.

Let the set Y consist of the elements &, &,,..., &. The function
F(leyy beyy ovny b5 Loy Teyy -ovy Ls,) of 2n real variables will be denoted
simply as Fy(t;, T¢).
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4
nN

We now detine the operators Af)(k) and A4£)(h) by the following for-
mulae:

?) plles Te) = F(te)y ooon by e L TR TIPS T Loy ooy Ly )
"‘F(tel,..- tsn;Tfl "",I'En)’
d§ (B) Fy(ts, Te) = Fleyyonns be,3 Ty, - vy Ly Tyt h, T, pur ey L) —

—~l’(teu v tén, Teyy v 15,”).

v (hey ie) = [ ] AP (he) AP (Re).
EoT

1f the set ¥ C & is finite, then the distribution fumction in the pro-
duet (62) (which is a closed Euclidearn space with the number of dimen-
sions equal to the doubled multitude of the set ¥) is the term given to
every function Fy(t, T;) satisfying the following conditions:

1. the function Fy(t, T:) is continuous on the left with respect to
every argument f;, Ts;

2, for every argument %, . and non-negative he, k: the inequality
Ap (he, ke) Py (ts, T:) > 02) holds,

3. lﬂlr(ts, Te) =1 a8 t; = .Tg = oo for fGY, ,Fy(tg, Te) =0 ag (7 0
or T: < 0 for a certain £eX.

The clags of all distribution functions in the product (62) will be de-
noted by D(¥). We quote here the well-known properties of the distri-
bution functions:

() If ¥YynY, =0, P, eD(Y,) and FyeD(Y,), then B, FyeD(Y,w Xo).

(dg) If Fyp(te, Te)eD(Y), then Fyp(t;—t, Te—t)eD(Y) for every t = 0.

(dg) If FreD(Y) for ¢ > 0 and if f(¢) is a distribution funetion on the
semi-axis ¢ > 0, then

Let us write

jmd,f(;)ero(m.
0

This implies in particular that

(d4) Every convex corabination of distribution functions is a distri-
bution function: if F,,..., F,eD(Y), 4, 20,...,2, >0 and
Mt 44, =1, then 4L, P+ ... +4,F,eD(Y).

I &= <{2,...,m,), then the integer n iz called the length of the
element & The length of a finite set is defined as the maximal length of
its elements.

%) Axlhe, ke) Fylts, L)

denotes the volume of the cube % ([t 4 + he)%
X [Te, Te+kg)). ¥

icm°
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9. For every finite set ¥ C 5 we shall define, by aid of mbenﬂutles
(56), a distribution function vy (t;, T:)eD(¥). This will be done by indue-
tion with respect to the length of the set Y.

(«) Let the length of the get ¥ be equal to 1, 4. e., let ¥ = ({1D).
Then we set

1—exp(—mTly,,) as tqy > 0 and Ty, > 0,

63)  vp(t, T,) = {
0 elsewhere.
It is easily verified that conditions 1, 2, and 3 (p. 252) are verified,
whence vy (i, T:) e D((<1))). ‘

(B) Suppose now that the length of the set ¥ is greater than 1 and
that the distribution function »y(t:, T¢) is already defined for all sets
with smaller lengths.

Let us consider first the case

(64) A>eY.

Then the set ¥ may be represented as the union of digjoint summands
Y= L;) U Y;;
7
where
(65) Yy =Y~E(Q, 4, 55)).

It follows from (65) that £¢¥, , implies £ —<1, <%, j>> ¢ 5. For non-void
Y;; let us put
(66) Y ={6—Q, G, > Ee¥, -

We see from.this formula that the length of the set ¥ 7 18 less than
that of ¥. :

Let o4(t, I';) be the unit distribution, i. e., let

ll as

>0 and T,>0 for ¢eZ
Qz(tsyTe = lo 1

. elsewhere.

In the cagse (64) the distribution function l’]r(te, T) will be defined
by the formula

(67)  wp(ts, To)

= _)_ln,fexp

y Pe—1) []vm —1 1‘5 t)dt +
jeM 0

+(n}~ Zni)fexp(
0

feM

)EY_U Y (

—mt) oy (te—1t, T ~1)dt,
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where M = {j : UY,,;# 0]. In this formula we congider only non-void
i

summands Y, ;, whence in view of (66) only non-void sets Y;‘ ;. From the
hypothesis of induction it follows that the distribution functions » r; (e T)
are already defined for ¥, 5 0, since the length of Y7, is less that t].lab
of Y. It follows from formula (66) that changing suitably the nur}abenng
of the variables we may consider vyy,(t, T,y a8 an element of D(Y; ).
The sets ¥y, ..., ¥4, ¥—J ¥y, being disjoint, we infer by (d,) and (d)
that for ¢ 3> 0 L
(68)  Fy(¥) = QY—Pn,,(tr“t: Ty—1) ”"1/[#%"% Le—t)eD(Y), jeM.
- ,t ‘
From inequality (57) we deduce that the function f(f) = 1—exp( — 1t
is a distribution function on the semi-axis ¢ > 0, whence by (d) and (68)
we get

(69)  Glte, To) = nifwexp(~n}t)Ff(t)di = [F,()df () e D(X) (je M),
0 (]
(10)  O%(t, T,) = ) [ exp(—mit) oy (t—1, Te—t)dte D(X).

Setting A, = af/n} for je M, and
ho=1— Yaln}
feM
we have 4; =0 (je M), 4 >0, and
Wt D=1
jeM

(we take into account the inequality j > 2 valid for j¢ M and formulae
(8) and (9)). By aid of (d,) and formulae (67), (68), (69), and (70) we

get
vpltey Te) = WG+ D' 4G eD(X),

jeM

whence formula (67) defines a distribution function in the case (64).
From (67) we deduce

Ay(hey ks) "I'(te—Ti TE”T)
= Zﬂif exp(—n}t)Ay_%,yw(he, ke)@r—-b)n,,(te—(T'{‘t)y Ty— (1 1)) %
7 ° '
x[] Ay ey k) vpy (b~ (T+1), T~ (T-+1)) di+
i

+ (= X ) [ exp(—lt) 45 (e, o 0p lbe—(T+1), Ty (T-+1)db.

7 g
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Replacing in the integrals on the right side of the last formula 7'-¢
by a new variable we get, after simple computations,
(71) Ay (hg, k) vy (8, —T, T,—T) < exp (Tl%T)‘Ay(hsa Ieg) v (8, T)

for the sets satisfying condition (64).
Suppose now that

(72) Y=20(@) where {1>¢Z.
In this case we set
(T3)  wpltyy Ty) = w5ty Te)—exp(—ml T ) vz (t:—T 0y, Ti—Ta)

if 4, >0 and T, > 0; ih the remaining cases we set vy (8, Ts) = 0.,
The distribution funetion »gz(t, t;) is already defined, for the set Z satis-
fies condition (64). Henee follows also the continuity on the left in each
variable of the function defined by (73). From (73) for tay>0and 7y, > 0
we deduce the equality

Ay(hey kg) vy (tey Tg) = eXP(—“}Ta))AZ(hs; 705) ”z(tg*‘Ta);Tg““T(l))—
— €xp ( "‘ni(Ta) +Ey )) Az(hey k) "’Z(ts_ (T +kay), Te— (Ta) '—k<1>)},
for ¢4, > 0, To,+k>0 aJ_ld T, < 0 the equality
AY(he; k) "’Y(tfy T;) = Az(hs7 k) vz (bsy Tg)—
— exp(—7; (T gy +ky)) Az (hey ) vz (ts— (T gy +105), Te—(T oy + 1)),
and in the remaining cases Ay(h,, g vy(te, Te) = 0.
Inequality (71) being true for the set Z, we obtain for arbitrary t,, T,
and non-negative h,, k. :
Ay (e, k) vy (L, To) = 0.

We see from (78) that vy (i, ;) = vz(tey T) for 4, =T, = co, 6.
Hence yp(te, Ty) = 1if t, = T, = oo for £e¥. If 1, < 0 or T, < 0 for a cer-
tain £eZ, then vg(t,, T,) = 0 and vz(te—T, T;—T) = 0 for T > 0, which
together with (73) leads to vy(ley Lp) = 0 if ¢, < 0 or T, < 0 for a certain
&eY. Thus we have shown that formula (73) defines a distribution function,
which completes the inductive definition of .y (2, T,) for all ¥. By defi-
nitions (63), (67), and (73) it is easily seen that for ¥ ~Z = 0 the fol-
lowing compatibility condition is satisfied:

(74) veozlly, Tp) = vy(le, T,)  if
The distribution funetion vy(i,, T',) determines in the product (62)
& normed o-measure uy defined on all Borel sets, 4. ¢., on the sets of the
o-field B(Y). By the compatibility condition (74). AeB(Y)~B(Z) implies

t: =T, == oo for £eZ.
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pp(A) = uz(A). Setting u(4) = pr(4) When AeB(Y), we define a funection
1 on the field of eylinders whose bases are finite dimensional Borel sets,
% €., On

UB(),

where Y are finite subsets of 5. The function x is, by definition, a o-mea-
sure on every B(Y) (Y is a finite set), and u(W) = 1.

By a theorem of Kolmogorov (see, for instance, [6], p. 212) it follows
that there exists a unique extension of the function x to a normed o-mea-
sure, which will be denoted by P,; this measure is defined on the smallest
o-field containing the field

UB(X)
X

of the finite dimensional cylinders, whenee on the o-field By, (compare
section 7).

By the definition of P, and by formulae (63), (67), and (73) we get
(75)

1—exp(—mT) 1f T>0 and a =0,
Polin((15) = @, wy (1) < ) = {

0 elsewhere,
(76) Po(ef; {w2(8) < 1, w(8) < Tef ~ [wa(C1)) < T1)
= Py () fwa(&) <ty w0a§) < Til)—

tel .
——exp(——n}T)Po(!}{wl(éi) < =T, wy§) < Tp—T))

for 7 > 0 and the sets ¥ satisfying condition (64),
@0 Ba () {wile) <ty w.(6) <T)
€

= 'al [exp(—alt)o( N
7 0

{02(8) < t,—1, wyl &) < Ty— 1)) »
EEY~L’£Y¢'7-

xHPo(sQ {oa(§—<1, <y §30) < te—ty walE—<L, <G, D)) < Ty—t))dt |
i e

+ (m = D) [ exp(—nlt) 6({; (w4 ) < ty—t, wy( ) < Ty—1)) s
7 8 | a

for the sets Y satisfying (64). The sets Y, are defined by formula (65)
and the g-measure § by

1 as wbed,

0 as

icm
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where w° = (w}, wy> is a pair of two functions identically equal to 0.
The following formulae define the transformations T; and £, of the
space W:

(78)  Tyw = ugyuyp Where  uy(€) = wy(&)—t, ua(€) = wy(é)—1;
(79)  Lew = (uy, upy  Where  uy(n—§&) = wy(n), usln—E&) = wn)
for neK (&).

Lemuma 8. If AeB(5—(K1Y)), then

(80) Po(A~{wy(<1)) < T}) = Py(A)—exp (—mlT) P(Tr A)
for T'> 0.

Proof. Let & be the class of all the sets 4 belonging to the o-field
B(F—~(<1))) and satisfying owr Lemma. By formula (76) we see that
Y Cc &—({1)) implies

(81) NP <wi(€) <1, TP < wy(8) < TP} eR.
eV

It follows that the finite disjoint unions of the sets of form (81) be-
long to the class &, whence ® contains the smallest field spanned upon
the sets (59) for & = (1). From (80) we directly deduce that the limit
of a monotone sequence of sets of the class & also belongs to the class K.
Thus the class & is monotone (compare, for instance, [6], p. 26). Hence
it follows by the definition of the o-field B (§—((1))) that R = B(F—((1D))
(compare [6], p.27), which implies the lemma.

Lemma 9. If A;eB(E (1, <, 5>D), then
(82)  Bo() N 4y) = DA exp(—it) 8( () ) Crd) X

jeM [

X [[PTiLa,imdndi+ (m— D) al) [ oxp(—1t) 8 (T () Ay)dt.
3 jeM ] s

The proof of this lemma is similar to the proof of the foregoing one.

Formula (77) implies equality (82) for the sets A4;; of form (81). Thus (82)

is valid for finite disjoint unions of the sets of form (81). Then we verify

that the class of the sets 4, (depending, of course, -on 4 and §) satisfying

the lemma is monotone, whence it is equal to B(K ({1, <3, j>})), which
concludes the proof.

10. We shall now prove some lemmas which imply the meagurabil-
ity of the set V together with the equality Py (V) = 1.
It follows directly from (75) that the set

(83) Vi = {wy({1)) = 0, wy(<1)) > 0}

Studie. Mathematioa XVI. 17
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ig of full measure:
(84) PV, =1

For £eF, n,m=2,3,...,¢, 8 =1,2,..., r#s, n#Em, k=1,
2,...,0, let us mtroduce the following notation:

(85} A rsuilf)

= [wa(&) < wi(&)} o [wy(£) = w0y (&) <w, (<&, 7, md>  {w(€) 7wy (&7, mD)] )
o {w2(<£, ¥, my) > 701((5, rymy), Wy (&, 8, md) == wy({&, &, m>)} w
) {w2(<£, v, my) > wy(CE, r,my), wy({&, kynd) > wy(&5 b, %))],

where (&,7, m) denotes the element wy,...,®,,{7,m >y for §=
== @y, ...,,> The definitions of the transtormations T, and £, imply

(86) ?tAm,r,s,n,h = A-m,r,s,n,,k(f)i
(87) ”QﬂAm,r,a,n,k = Am,r,s,'n-,k(‘f""n) fov EGK('U)

LemmMA 10. For every £65 we have Po(Ay, sy 1(8) = 0.
Proof. We ghall prove this by induction with respect to the length
of .the element &.

(«) Let the length of the element & be equal to 1, ¢ e, &= {1>.
From (83) and (84) we infer that

(88) Py (wy({1)) < wy(<L))) == 0,
(89) Po(10,(C1) = wy({1D) << wy(<1, {ry m)))) =
© Inserting A = {wy (<1, {rym)d) > t} in formula (80) we obtain
Py(wa((1)) < &< wy(<1, <ry 1))
= Pyfwy(<L, <rymy») > t)— exp(—mit) Py(wy(<1, <y mdd) > 0).
1t follows from formula (82) with A, = |uy ({1, <r, mdd) > T
(T>0), M = {m}, i =r, and from (75) that

Py (w0, ({1, <y m>d) > T) == :r{’“f exXP (— mi1). P 1y (1)) = L t)dt

b m
= " [ exp(—alt)dt = - 1 exp(—m 1),
o
whence
u il

Po(1C13) < ¢ < n(CL, <y m)) = 2 exp(—mbt) — r-exp(—amt) = 0.
1 451
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This immediately implies
(90) Pyfwoa((1)) # wy(C1, <ry md3)) = 0.
We obtain from (77) by aid of formulae (86) and (87)

Pofwy(<1, <ry mdd) > wa((L, <ry mdY), wo( (L, <8, mHD) = wy(<L, <5, mD)))
= o [ 2y @) > O] Bar (D) = (D) oxp(~ 4012 = O,
(wz(<1 <y m)) > (L, <y ), s (K1, <, mpY) > i<, (By 1))

= o f Py(wa((1)) > wy(C1))) (w1, <Ky mD)
> w1(21, (ky my»))exp (—mit)di+

+n:“fPo (a(<1D) > w3(C1D)) 8 (wo( <L, <y mD))
> w1(<1°, ¢ry myd))exp(—mit)dt = 0,

whence in view of formulae (88), (89), and (90) we obtain our Lemma.
(B) Suppose now that

(91) §=, 0,0, F D)

and that our Lemma is valid for elements of length less than that of &.
It follows from (91) that

Amﬂ‘,ﬂ,ﬂ,k(é) 6%(K(<17 (e, 7>>))7
whence in virtue of formulae (82), (86), and (87)

(92)  Po(dnr g0 i(£)) =7 [ Poldu,r,anx(§—CL, Gy §5D) exp(—mit)dt-+

(=) [ 6(Am,p,on(6))exD(—m1t)dt.
. o
By the hypothesis of induction

(93) Po(Am,r,a,n,k(5_<17 iy 7>>)) =

gince the length of element &é—d1, <i, j>)> is less than the length of &.
By the definition of the set A, s, %(£) and the measure § we algo have
8(Am,r5m x(£) = 0, which, in view of (92) and (93), implies the validity
of the lemma for the element & This concludes the proof.

COROLLARY. Let us write

n m o om

4=U U U Uy UAmrmké)

EqE M= n=2 k=1 r=l
NRM 8+r
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We may easily verify from (85) that the set- A consists of functions w
which do not satisfy conditions (b), (¢), or (d) (compcwe section 3). It follows
by lemma 10 that

(95) \ Py(4) = 0.

Let us now recollect the well-known properties of homogeneous re-
gular Markov processes with a denumerable multitude of states, satis-
fying conditions (13) and (14), 7. e., of the processes describing a stochastic
cascade. Suppose that the intensities are determined by formula (56).

Let Qi(n, T') be the probability that the function w(t) (the realiza~
tion of the process) hag # jumps in an interval of length 7', under the
hypothesis that at the origin of the interval the function w () is oqual
to k. Then we have .-

Q(0, 1) = exp(—aiT),
.

(96) Qk(l,,’l’)mZn’,:,J' exyp (—mit exp(—m 1)) dt,
3 . i#k 0
o ‘
Quin+1,T) = ¥'a, [ exp(—akt)@yn, T—1)dt
ik 0

(compare [2], p. 458; for more general processes compare [3], p. 268).
For the processes satisfying condition (14) we have

(97) o gmm= N [[edn,y

By ook Ty = G
(this equality follows for # = 0 from (15); the general proof proceeds
by induction). Inserting ¥ = 1 in formulae (96) and taking into account
that @y(n,?) = 0 for n 52 0 we obtain in view of (97)

98)  Qu0, 1) = exp(—aiT),

r
99) @1, 1) = >'al [ exp(—alt)exp(—jal(T—1)dt,
j#El 0

(100) Ql('n—{—l T

~Zz’1fexp nlt‘[ V n() nl,.‘wl] for w2 1.

Wyt +7nl_nr
The regular processes satisfy the equality

(o 2, 1) =1 (1 20),

n=0

for the space of the process consists of step functions.
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_-For every positive J‘nteger #n and- T > 0 write

(102) B, (T) =5 LEJ _ {wl(fr < wy(§) < T}
i L U et = wam)} g > 1Y),

) ' 71*51:--»571
(103) h zzzm UB,,,lc
=1 N=0

We see that, it the function w satisfies conditions (a), (b), (e), and
(@) (p- 239) and belongs to the set ¥, then it also satisfies condition (e).

Lemma 11. We have Py(V,) = 1.

Proof. In order to prove this it suffices to show, in view of (103), that
for every T = 0

Po(Uan(T)) =1.
M=

i. e., the sets B,(T) being disjoint for different indices n, that

(104) D' Py(B,(T)) =
. n=0

The function w satisfying conditions (a), (b), (¢), and (d), 4 e., be-
longing to the set ¥; ~ [W—A4], is in the set Bo(T) if and only if w,({1)) =
= T. Thus we deduce from formulae (83) and (95) that the sets By(7)
and {w2(<1> ) = T} are almost equal, whence in virtue of (75)

(105) Py(Bo(T)) = exp(—aiT).
Similarly, we may verify that the sets B,(T) and

(106) u m [wa(<L, <y 15%) = T, wy(<13) < Tho
Ve m{wl«l G 155) = 0(CL, <6y 1530, (<13 < )

F=2 i=1
are almost equal. Taking into account, in view of condition (b), the fact
that the summands in (106) are almost disjoint we obtain according to
formula (77)

5]

(107) Py(By(T)) = )P, (ﬁ{w»((l K6y 00) = T, wy(<1)) < T} +

1

@

<.

+2() Q{w1<<1, Gy ivy) =
= wy(<1L, <&, J>)), wa(<LD) < T})
.

= yn’fexp —amy )exp(——ynl(T 1)) dt.

jFl 0 N

-,

.
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Suppose now that # = 1. If weV,~n[W—A4] and weBy,,(T), then
wy({1>) < T, whence the sets By, .(T) and
(108) U ﬂ{”h(fr) < wy(r) < T}U ‘
Eppnp# (D T=1
- N le(’?) 7 W1 l {wa(’? T}I
78 ek CI
are almost identical. Setting
(109) BEINT) = n fwi(&,) < walér) < T}

Elreent e K(CL (G, T5)) =1

=1}

a M [{wl(’?) == Wy '1)}\1{“’2(77
neK((1,{4,750)
4% E bl

we may represent the set (108) as the union

(BT

J=2 Byt = =]

o0

in which the summands are almost disjoint, conditions (a), (
(d) being satistied almost everywhere. Thus we have
Py(Byn(D) = D)

T2 eyt

b), (¢), and

\

i
(110) By ﬂBﬁf’(T)}.

By defiﬁition (109)
Bi‘.i")(-T) € %(K(<la <1, 7>>))1

,(;’u’(,;,,»»B}fJ)(T)

On the other hand, it follows from (102) that TBT) = By(l —1), By(t) = 0
for ¢ < 0. Taking into account these formulae we obtam from (82) the
probability

Po(ﬂB‘”) (1) = f exp(—mit) np., ad 1 —1) dt.

i ax)

Inserting the expression obtained into formula (110) we get fov
nz=1

7 .
= By(T), o (ﬂBg,;_J)(t)) =0,

(111)  Py(Bpya(T)) = ¥ f exp(—aig)| Y ] Po(Ba L' —1)] .
J=2 Wy 41»1-m1t1:u1
We see from (98), (99), (105), and (107) that Py(By(T)) = @,(0, I,
Py(By(T)) = @41, T), whence in view of the recurrence formulae (100)

and (111) PyBy(T) = @Q«(n, T) (n = 0,1, ...). Hence by (101) we obtain
(104), which proves the lemma.
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We see from (83), (94), and (103) that the funection w belongs to the
set Vin Vo~ [W—A] if and only if it satisfies conditions (a), (b), (¢),
(d), and (e) (section 3) and w,(&) < wy(&) for all £e5; thus the pair
{wy(€), wy(£)y may be considered as the interval [wl(f),wg(é)). Hence
we have V =V, A V,~[W—A]. By formulae (83), (94), and (103)
we deduce hence the measurability of the set V: VeBy.

It follows from (84), Lemma 11, and the corollary to Lemma 10
that Py(V) = 1. The relativization of the s-measure P, to the set V gives
a normed o-measure P defined on the o-field "3 (compare section 7).

11. We shall now prove that the o-measure P generates a condi-
tional probability (in the sense of section 1) satisfying conditions (I),
(II), and (III) (compare section 4).

Let us set for Ae93(k(£),1) and Be3(F—K(£),0)

(112) P(A|{tev(£)]~B) = P(T;.2.4).

We observe that, ¢, &, B being fixed, the function P(4||tev(&)} ~B)
is a normed o-measure on 93 (K (&), #). The transformations T, and .2, coin-
cide on the g-field 9B(K (&), t) with the transformations T, and L, respec-
tively. Hence it follows directly from definition (112) that -the function
P(Al{tev(£)) ~ B) satisties conditions (I), (IT), and (IIT). In order to prove
that it is equal to the conditional probahility induced by the probability
P, it is sufficient to prove that for AeB(K (£),1) and BeWB(5—K(£), 0)
the equality

(113) P(Anftev(& )~ B) = P(Ti.2:4)P( {tev (&)} ~B)

is valid.
Suppose that equality (113) is proved for the sets 4 e (E(&)
the form

,1) of

"

(114) ﬂl[m(ﬂ) < g, 0o &) < by,
where v,(n) and v,(%n) denote the left and the right bound of the interval
o(n) respectively. Then equality (113) is valid for the sets 4 of the form

n

(fap
i=1

and for finite disjoint unions of sets of this form. It is easily seen that
equality (113) is valid for the limit of the monotone sequence 4,, 4.,

of sets if it is valid for each of the sets 4;. The finite disjoint unions of
the sets (115) give the smallest field containing the sets of form (20).
Thus we see that the class of the sets 493 (K (£),1) satisfying (113) is
monotone and containg the smallest field spanned upon the sets of

(115) < 0(&) < o, b < v (&) < b))
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form (20) contained in 93 (K (), #), whence it is identical with the o-field
DB (£), 1) (compare the proof of Lemma 8). It follows that it is sufficient
to prove that equality (113) is valid for the sets 4 of form (114). Anal-
ogously, we may state that it is sufticient to prove equality (113) for the
sets B of form (114). The proof for these sets will be carried out by indue-
tion with respect to the length of the element é&.

(@) Suppose first that the length of the element & is equal to 1, ¢. ¢.,
that &= ¢1>. Then the o-field 9B (E—K(£),0) = B(F—F, 0) consists
of the empty set and the entire set V. If B is equal to the empty set,
then (113) is trivially satisfied, for both gidey of the formula are equal
to zero. Suppose now that B = V; then the equality to be proved may
be written as.

(116) P(Anften (D)) = P(TA)P(ien(<1D)).

Every set 4¢3y of form (114) may be represented as the intersection
A = Ay~ {v(<1)) < T} where dyeB(E—(<1),0).

It T <1, then {0y(<1)) < T} ftev(<1))} =0 and Tfos( (L)) < 1)
C {s(<1)) <0} = 0, whence (116) is satisfied, for both sides of the

equality are equal to zero. Suppose now that T > ¢ Then
1 A~fter (D)) = don o)) < T)—Aon{o(1D) < 1},
Td = T4 on{% Ap) < T—t}.

By formula (80) we get hence
(An{te'v (1)) = Pdon{p(1D) < T})—P{don {v:(<1)) < B})
= P(Tidy)exp(—mt)—P(TpA,) exp(—m 1),
P(TA) = P(Tudon o)) < T—1))
= P(T;do)—P(Tpd)exp(—ni(T—1).

It follows that P(Anftev(1))) = P(T,A)exp(—mnit), which gives
(116) in virtue of (75). Thus equality (113) is proved in the case & == {1).

(8) Suppose now that
(118) & = (L, GGy 1y . # (L)

and that (113) is valid for elements of & length less than that of & It
follows from notation (118) that de93(K(£),1) implies

Ae‘?ﬁ(K((L <iy j>>)1 0)7

(119) - A .
B T 554 € BIE (E—CL, <3, D), 1—7).
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Every set BeB(5—K (&),
the intersection
B = Q ’QBr,m"‘['szl» < T} B, mGCE(K((l, {rymdd), 0)'

I T3>t then [wy(<1)) < T}~ [tew(£)} = {ten(d)] ~{oal<1d) < ).
Thus we may suppose in the proof that
(120) T<t.

We get by (80) and (82)

(121) P(A~{tev(£)}~B) =P{d~[tev($)

0) of form (114) may be represented as

where

e

Do) (1B

—~P(Tpd ~[i—Tev(6)} ~ N () T2 B, m)exp(—iT)

m r=l1
2
= 75’{feXP(—niT)P(fCt-Qa,(i,i))A "‘{t"“'r'e'v<£“'<1; <, ?>>)} ~
ATl Big) n P(T, Lo,y Bag) T+

851

+ 2”1 fexP(“T"lT) ”P rCtBa ¢, my>Br,m)dT—
m] 0
-7

T)W f eXP(’_ﬂl’f)P(rCT-H-e(l <G, 1>>A)f\

~ft— T—T“J &4, <’b,?>>)]f‘rCTHBa,(i,y'»Bi,y)dff
t-T m

—exp(—mT) Yal [ exp(

MEF 0

= P(ften (&)}

—exp(—

—7‘%7) HP((CT+1£(1,(T_m)>Br,?n) dr,
=1

ﬁm rr’%Br,m)*

JP({t—Tev(£)} A

(122) P({ten(£)}~B)

“'exp(_nl ﬂ ’CTBT m)

t
= 7} [ exp(—mir)P({i—7ev(§—<1, <3, )))] f\'Cz—Qa,d,i»BiJ) *
0 .
) HP(T L, ¢,iyy B} T -

‘f#i

+ 2751 feXP( “1T)HP((Ct—Q<1 &r,myy B, m)ir—

M| 0
-1

—exp(—ml) f exp(~azer({t — I —7 e (E—(L,<Ey ) A

n’Cm,,,Qa(m)B” HP(¢T+r-@<1<M>> 5,1} dT—
g#t

h -7 m
—exp(—aiT) Xl [ exp(—ai1) [ [ P(TrarLa,cr,myBr,m) d.
mzAF o =1
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By the hypothesis of induction
(123)  P(T,Lo i A ~{t—Te0(E—C1, <y DI AToLa i Bii)
= P((Ct_‘,’C,A)P({t—-rE’U(E—G., ¢ j)))}’“"Cer(l,(i,i))Bi,ii

for the length of the element &—d(1, {4, 4>> is less than the length of ¢&
and (119) is satisfied. For v < ¢ the equality T, T, 4 = T, 4 iy satisfied.
Making use of this equ'ality in formula (123), ingerting the expression
obtained into (121), and extracting the common factor P(T,4), we obtain
as the second factor the expression on the right side of formula (122).
This proves equality (113), which concludes the proof of the Lemma,

It follows from (113) that the function defined by (112) is equal to
the conditional probability induced by the probability P and satisfying
conditions (I), (IT), and (III). Thus the system <V, By, P> is a cascade
Process.

12. We shall now prove that the intensities of the process
{(V), Vo, 2P (which by Theorem 1 is a homogeneous regular Markov
process with a denumerable multitude of states, satisfying conditions
(18) and (14)) are equal to «?, =}, &3, ... :

By definition (21) of the function w(v,?) it follows that

(126) By = ) (5L, <6, 15 = 0ld, <, 15D), 0 13) < T)e
o, T) = 0},

(125) B, = {v,(<1)) > T{ C {0 (v, T) = 1},
" :
(126) B = ({oulC1, <G, kDY) > T, 0a(<1, GGy kDY) S T) C

d=1
C {w(v,T) =k} for k=2,3,..
From formulae (75), (80), and (82) we get the probabilities
P(E,) = ﬂ?/”i(lmexP(“W}T))’ P(H,) = exp(—mT),

r
P(E;) = nf [ exp(—n}t)exp(—kal(T—t)dt (kb > 2),
0

whence, in view of inclusions (124), (125), and (126),

. Plo@, 1) =k
Foe lim 10 T 0 i ;
P T Zaf  for kel
(127)

1
<\:W1.

@ = lim 1=Plo@, T)=1)
—

Tes04
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Thus we have the inequality

d= N> Vet =,
73] k1
which, together with (127), implies a7 = b, It follows from this equality
and the foregoing inequalities that af = =¥ (k =0,1,...).
Thus we have proved that intensities of the process (2(V), Bo,),2P)
are equal to nl, n}, n3, ... The remark in section 7 implies Theorem 2.
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