Generalized stochastic processes

by
K. URBANIK (Wroctaw)

The process describing the velocities of particles in the Brownian
motion under the normal distribution of the trajectories of these partic-
les does not enter into the classical theory of stochastic processes. Indeed,
it is known that the trajectories of Brownian particles are non-differen-
tiable with probability 1 (see, for instance, [1], p. 394-395). In the quan-
tum field theory there are considered random events which cannot be
deseribed by means of usual functions and are characterized by distribu-
tions (generalized functions). I. M. Gelfand [4] and K. Ito [6], using the
methods of functional analysis, have developed a theory of generalized
stochastic processes (random functionals) which describe random events
of this type. A still more general theory has been suggested by A. N. Kol-
mogorov (and not yet published). In the present paper we deal with such
an extension (in some sense the narrowest one) of the concept of stochastic
processes that every generalized stochastic process is differentiable. We
apply here the method of representation of generalized processes by means
of sequences of ordinary processes, which method is in fact implicitly in-
volved in the works of physicists and is analogous to the method of J. Mi-
kusitiski of defining the distributions [9], [10]. By the use of this method
we get elementary and almost trivial proofs of theorems on generalized
stochastic processes, and such probabilistic concepts as correlation function
are defined in the same way as in the ordinary stochastic processes. The
present paper is devoted to three classes of generalized stochastic processes:
processes with independent increments, processes with independent
values, and stationary processes!). In another paper we intend to deal
with the generalized Markov processes and with the concept of the gen-
eralized value of a generalized stochastic process at a fixed moment.

L1. We shall first quote the simplest concepts of the classical theory
of stochastic processes that will be needed in the sequel.

1) The pril'scipal vesults of this paper were presented to the IV-th Congress
of Czechoslovakian Mathematicians at Prague in september 1955 and communicated
without proof in the note [12].
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Let 2 be the space of elementary events o (the space of random pa-
rameter ), and let P be the probability on a countably additive field B
of subsets of the space (the field of random events). In this paper the
triple (2, B, P) is arbitrary but fixed. Any measurable function of two
arguments f(w,?) with complex or real values (—oo <1 < o0, we Q)
is called a stochastic process. We shall consider only stochastic processes
whose almost all realizations are loeally integrable funetions, 4. e., for
almost any w,e? the function f(w,,t) is integrable with respect to ¢ in
any finite interval. Two processes are identical if they have the same real-
izations with the probability 1. A stochastic process is called continuous
if almost all its realizations are continuous functions, and it is called re-
gular if almost all its realizations are continuous on the right and have
only discontinuities of the first kind. The class of continuous processes
will be denoted by €, that of regular ones by R.

The sequence [f,,(w, t)} of processes is called convergent to the process
flow,t) as n - oo, in symbols fu(w,?) 3 f(w,t), if for almost any we€ 82
the sequence {fn(wu,t)} of realizations converges almost uniformly t'o
the realization f(w,?) with respect to the variable ¢. It is known that if
folw, 1) = f{w, t), then the distributions of the random variables jn(('», 1),
Fal®,ta)y + vy fulw, t) tend to the distribution of the random variables
flo, 1), f(@, ts), .., fo, ). This fact will be used in the sequel. .

The expected value of the stochastic process, i. e., Qf flw, t)ydP will
be denoted by Cf(w,t). ‘ .

1.2. The sequence {fu(w,?)} (fa{®,?)e€) of stochastic processes is
called fundamental if there exists a convergent seque(ilce of processes
{F%(w, t)} and a non-negative integer k such that' Fn‘)(w, 1) = fu(w, ?)
n=1,2,...). (By 6%(w,t) we denote the k-th derivative of the func-
tion @ (w, t) with respect to t). It is easy to verify that every convergent
sequence of processes is fundamental.

Two sequences of continuous processes {fu(e, 1)}, {gnl®, 1)} are called
equivalent if there exist sequences {Fn(w, t)}, {Gn(w, t)} kof procesges con-
vergent to the same limit and an integer k such that F® o, t) = fulw, 1),
G,S,k)(w,t) = galw, t) (0 = 1,2,..) . .

The relation of equivalence of fundamental sequences is reflexive,
symmetrical, and transitive, whence it splits all the funda,mellltall se-
quences into disjoint -classes. These classes will be called generalized sto-
chastic processes and will be denoted by capital .Greek letters: @(w,1t),
Y(w,1)y.... I {fulw,)}eP(w,1), we shall write P(o, t) = [Fulw, 81,
and we shall say in this case that the sequence {fuler, 1)} of continuous pro-
cesses represents the generalized stochastic process D(w, t). .

1.3. Now we define the simplest operations on generalized stochastic
processes.
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Let ®(w,?) and ¥(w,?)- be two generalized stochastic processes.
Suppose that @(w,t) = [fu(w, )], P(w,t) = [gu(w, ?)]; then the ge-
quence {f,(®,t)+gu(w,?)} of continuous processes is fundamental. The
sum of generalized stochastic processes @(w,t) and ¥(w,?) will be defi-
ned by the formula

D (0, )+¥(0, 1) = [fu(w, 1) +gnlo, 1)].

It is easily seen that this sum does not depend upon the choice of
the representations {f,(w, 1)} and {g.(w, ?)}. Similarly the conjuyate of the
process is defined by the formula

[fn(wyt)] = [fn(w)t)];
and the product by the complex scalar A is defined by

‘ Alfa(ew, )] = [Afufe, 1)].

The product of two generalized stochastic processes is not defined
in general. We shall restrict ourselves to the multiplications by certain
particular processes. The continuous process f(w, t) will be called a mul-
tiplicator if for any fundamental sequence {f,,(w, )} the sequence
{f(o, )fu(w, ¥)} is also fundamental.

It can be shown that every process whose almost all realizations
are infinitely many times differentiable is a multiplicator.

If {(o, ?) is & multiplicator, we set f(w, t)[fu(w, 1)] = [f(®, t)fu(w, 1)

We shall show, for example, that the product defined here does not
depend on the choice of the representation {f,(o), t)}.

Let [fu(w, 9)] = [galw, 9)]; leb us write hy(w, 1) = fu(w, t), hy_i(w,1t)
= gu(@, 1) (k =1, 2, ...). The sequence {h,(w,1)} is fundamental, whence
by the (\leﬁnition of the multiplicator the sequence {f(w, D, (0, 1)} s
also fundamental. Therefore there exist a convergent sequence {Hy(w, )}
of processes and a non-negative integer s such that

HO0,t) = fo, h(w,8) (0= 1,2,...).
The sequences
Fo(@,1) = Hyn(w, 1),  Gu(0,?) = Hyp_s0,1) (0 =1,2,...)
tend to the same limit and
B, 1) = f(o, Ofalw, ), 00,1 = f(0, )galw, 1) (0 =1,2,...).

Thus the sequences {f(w,?)f.(w,?)} and {H{w, t)gn(w, 1)} are equi-
valent, and we have proved that the product by a multiplicator does
not depend upon the choice of the representant.

A translation of a generalized stochastic process @ (v, t) by a real
number b will be denoted by @(w, t-+hk) and is defined by the formula
Do, t+h) = [fulw, t+h)] i G(w,t) = [f(o,)]. It is eagily seen that
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this element does not depend on the choice of the representant. It is also
easily proved that the space of all generalized stochastic processes with
addition and multiplication by complex scalars is a linear space.

A generalized stochastic process ®(w,t) is called real if D(w,t) =
= O (w,1).

Every generalized real stochastic process has a representant composed
of continuous real processes. Indeed, if $(w, t) = [f,(w,1)], then @ (v, 1)
= [ful0, )] = ®(0,?) a0d B(w,?) = [}(falo, )+ fo(w, ]| The repre-
sentation [§(fu(w, t)+fu(w, )] consists of real processes.

It is easily seen that every generalized stochastic process @(w, )
may be represented as @(w, 1) = &(w, 1)+, (v, t) where the processes
Dy(w, t) and Pyw,?) are real. It is sufficient to write

Py, 1) = }P(w, ) +P(w,1)), By(w,?) = }i{P(w, ) —B(0, 1)).

I.4. We shall now define the differentiation of generalized stochastic
processes. We first prove a lemma.

LewmA 1. Every generalized stochastic process has a representamt
composed of processes which are polynomials of t, i. e., are of the form
ag(0) +ay(w) ... +ay(w)t.

Proof. Let

) © P, t) = [fulw, )]

By the definition of the fundamental sequence there exist a conver-
gent sequence of continuous processes {Fﬂ(w, t)} and a non-negative in-
teger k such that

(2) F0,t) = fl@,t) (n=1,2,...). .

Tet F(w,1t) be the limit of {F,(w, t)}. Obviously F(w, t)e€, whence
for any fixed ¢, the function F(w, ) is measurable with respect to w.
Let  be fixed and let B, r(w,?) be a polynomial which, in the interval
—I'<t<T, is equal to the n-th Bernstein polynomial of F(w,1?). In
other words, '

n

Byz(0,1) = @2 (::)F(w, T(%——l))(l’—l—t)’“(i’——t)"‘k.

k=0

The measurability of F(w, t) for fixed ¢ directly implies the measura-
bility of B, r(w,?) with respect to w. Thus B, r(w,?)eC.
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Let us set W,(w, ) = By a(0,1) (# =1, 2,...) where k, are chosen
8o that

(3) o Wale, t) 3 F(, 1)
Obviously, the process defined by the equality
(4) Wo(@, 1) =W1({c’(wat) (n=1,2,..)

is a polynomial in ¢ (of degree not exceeding n—k). By (3) and (4) it follows
that the sequence {w,(w, ?)} is fundamental, and by (2) and the defini-
tion of the process F(w, t) the sequences {f,(«, #)} and {w,{w, 1)} are equi-
valent. Hence by (1) we infer that @(w, ) = [wy(w, 1)]. Thus the lemma
is proved.

I {hyo, 1)} is a representation of a generalized stochastic process
&(w, 1) having almost all the realizations infinitely many times differen-
tiable, then the sequence {h,(w, 1)} is fundamental. Tf {ga(®, ©)] is amother
representation of @(w,t) also having almost all the realizations infinitely
many times differentiable, then, as is easily seen, the sequences {h;,(w, t)}
and {g(e,?)} are equivalent, whence the processes [he(w, )] and
[gn(w,1)] are identical. They are called the generalized derivative of the
generalized stochastic process ®(w,?) and are denoted by dd (v, t)/dt.
From Lemma 1 it follows that every generalized process is differentiable.

‘We shall be now concerned with the question which ordinary stocha-
stic -processes may be considered as generalized stochastic processes. At
first we identify every generalized stochastic process @ (v, ?) having the
representation f(w,1t),f(w,t),... with the continuous process f(w,?).
Thus the class € is isomorphically embedded into the class of all gen-
eralized stochastic processes. This isomorphism retains the operations
introduced in section I.3. If the process F(w,?) has almost all the
realizations locally integrable, then the process

i
Folw, t) =fF(w,u)du
0

is continuous, . e., & generalized process. We make the generalized process
dF,(w, t)/dt correspond to the process F(w,t). This is a homomorphism
in the class of all the processes with locally integrable realizations. Yet,
in the clags R of regular processes it is an isomorphism retaining all the
operations introduced so far. In particular the following implication
holds: if F(w,t)e€ and F'(w,t)eR, then d¥ (v, t)/dt = F'(w, t). Thus
we see that the regular processes may be treated as generalized processes.
In the sequel, speaking about ordinary stochastic processes we shall
mean exclusively the regular processes.
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From the definition of the derivative of the generalized stochastic
process we immediately obtain the formulae: B

—d“(@(w +¥(w t))=—d~@(w t)-{——g—lP( t
dt ! ’ dt ’ at w, 1),

i W, )'—TZ{ (@,1),

a , d
d—{(f(w, H)@(w, 1)) = f'{w, ) P(w, 1)+ F(w, t) 7 Plw, 1),
where f'(w,t), and consequently f(w,?) are multiplicators.

‘We shall also prove the following property of the generalized deriv-
ative:

If AP (w,t)[/dt = 0, then D(w,i) is a random variable independent
of t, i. e, D(w,1t) = a(w).

Proof. By Lemma 1 the process &(w,t) may be represented by
the sequence [w,(w,?)} composed of polynomials of the variable t. If
dP(w,1)/di = 0, then the sequences wy(w, 1), wy(w,?),... and 0,0,...
are equivalent. Hence by the definition of the equivalence of sequences
we deduce the existence of continuous processes F(w,?), Gn(w,1),
F(w,t) (n =1,2,...) and of an integer % such that

) Folo, t)z Flo,t),
6) Gulw, t) = Flw, 1),
) Fﬂ"(w,t):w;(w,t), ngk](myt):() (n=1,2,...).

From the last formula it follows that almost all the realizations of
the processes Gp(w,?) (n =1,2,...) are polynomials of the variable ¢
of degree less than k. Hence by (6) almost all the realizations of the process
F(o,t) are also polynomials of ¢ of degree less than k. The sequence
{wn(w, 1)} being fundamental, there exist a continuous process H(w, t)
and a sequence {H,(w,?)} (n =1,2,...) of continuous processes satis-
fying, for a certain s, the conditions

(8) HM 0, 1) = waw, 1)  (2=1,2,...),
(9) Hy(o,t)= H(w, ).

Without loss of generality we may suppose that s = k—1. Then
the formulae (7) and (8) imply H® (0, ) —FP(w,1) =0 (n =1,2,...).
Hence almost all the realizations of the process Hyw, t)—Fy(w, )
(n = 1, 2,...) are polynomials of ¢ of degree less than k. By (5) and (9)

Studia Mathematioa XVI. 18
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we see that almost all the realizations of the process H(w, ) are poly-
nomials of degree less than %. Thus

(10) H® Y, 1) = a(w).

Formula (9) implies H(w,t) = [H,(w,!)]; consequently, by (8),
we have
gk—1

dtk* H{w,t) = [ch_l,(wy )] = [wa(w, )] = P, 1),

which gives the conclusion in virtue of (10).

L.5. Let ®(w,t) = [fu(o,)]; the element w,e 2 being fixed, we call
the class of sequences @ (w,,t) = [fu(wy, 1)] the realization of the general-
szed stochastic process @ (w,t). By Mikusinski’s [10] definition of distri-
bution it follows directly that almost all the realizations of the generalized
stochastic process are distributions. Moreover, it is easily seen that the
realizations of the sum of the processes are sums of the realizations of
the components, and the realizations of the derivative d®(w,t)/dt are
distributional derivatives of the realizations of the process P (w,t) (Mi-
kusiniski’s definition of distribution coincides with that of the general-
ized stochastic process in the case when the set 2 consists of one element.
It is worth while to notice that the theorems on generalized processes in
sections I.1.-1.6. are transferred, with a slight modification in the proofs,
from the theorems on distributions (see [111])).

TeEEOREM 1. Every generalized stochastic process is a generalized
derivative of fimite order of a continuous process.

Proof. Let @(w,t) be an arbitrary generalized stochastic process
and let

(11) D(w, 1) = [folw, 01,

where {f,(w, ¢)} is a representation composed of processes having almost
all the realizations differentiable infinitely many times (e. g., the repre-
sentation of Lemma 1 composed of polynomials of the variable t). By the
definition of the fundamental sequence there exist continuous processes

F(w,1), Fp(w,1) (n=1,2,...) and a non-negative integer k such that

(12) —Fn(w;t)::F(wyt)
and
(13) FP(w,1) =folo,t) (m=1,2,..).

By the last formula we infer that almost all the realizations of the
process F,(w,1) (n=1,2,...) are differentiable infinitely many times,
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and from (12) it follows that F(w,t) = [F,(w, t)]. Hence by the defini-
tion of the generalized derivative we get

’k

pra

In virtue of (11) and (13) it follows that
1

a

thus the theorem is proved.

Flo,t) = [F,(f’(w,t)].

Flo,t) = O(o,t);

I.6. We now define the convergence in the space of the generalized .
stochastic processes. The sequence {&P,(w,?)} of generalized stochastic
processes will be called convergent for n— oo to the generalized process @(w, 1),
in symbols &, (w, t) > P (w, t), if there exist continuous processes F(w, 1),
F,(w,1) (n =1,2,...) and a non-negative integer & such that

Fo(w, 1)z Flo,l),
13

d"F( = Qp(w, ) (m=1,2,...),
i
dt"F(w , 1) = P(w, ).

It is easily seen that the limit of the sequence of generalized stochastic
processes is uniquely determined. From the definition we directly infer
that:

If ¢,(w,t) > P(w,1), then

d

d I —
—d?@,,(w,t) »Et—(ﬁ(cu,t) and @n(m,t)——%@(m,t),

and, f(w,t) being a multiplicator,
" H, ) Bulw, 1) > f@, 1) B(w, B).

D, (w,1) > D(0,t) and Pu(o,t) »¥(o, 1), then O(w, 1)+ Pplo, 1)
- 45 (0, )+ ¥(w,1).
If F(w, 1), Fu(w,?) (n=1,2,...) are continuous processes and
Fu( = F (o, t), then F,(w,1) - F(w, ).
If @ (@, 1) = [fulw, t)], then fu(w,t) - P(w,?).
Let f,,(w 1) be continuous processes and let fy(w,?) — P(w,t);
then @(w,1) = [fﬂ(w; 1]
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Let F(w,t), Fulo,?) (n =1,2,...) be regular processes. We shall
prove the following implication:

For almost any w,e.2 let the sequence {Fn(wo, 1)} be convergent in the
integral of the p-th power (p == 1, with respect to the variable t) in every finite
interval to the function F(wy, t); then Fy(w,t) - F(o,1).

Proof. It is easy to verify that

i t
[ Fu(o, w)duz [ Plo, uydu,
i o

0

whence, by the definition of convergence, F,(w,?) — F(w,?), which
concludes the proof.
We shall write, by definition,

when
:@L(w, t) - @(w, 1)
Then we have = k
(14) 4 %’@k(cu,t) = %—d‘-@,ﬂ(w,t).
dt = IZ: dt

Example. Let us consider the homogeneous Poisson process #(w, t).
It is well known that in this case

(15) Flo,1) = lm ( N H{t—v(0)+m (o),
e
where
1 for (20,
H{t) =
0 for t<0,

and g, (w), v, (w) are certain random variables. Since the derivative dH (¢)/d!
is equal to the J-function of Dirae, we infer by formulae (14) and (15)
thait

d
o Flw,t) = Z 8 (t—wp(w)).

This formula may be generalized in a certain sense to every general-
ized stochastic process. Namely:

icm
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For every generalized process @(w, 1) we have
k?l:
rSj Rl @) 01— ) > B (00, 1),
=1
the real numbers vy, , and the random variables Ay 4(w) being suitably chosen.
Proof. Suppose that @(w,t) = [f,(w,t)]; then there exist con-
tinuous processes F(w,t), F,(w,?) (n =1,2,...) and a positive integer
k > 2 such that

(16) FP(w,t) = fulw, )  (n=1,2,..),
(17) Fn(wst):p(m,t),

a* -
(18) WF(m, 1) = O(w,t).

From (16) it follows that F¢D(w,t) (n =1,2,...) are continuous
processes. Hence there exists a partition of the interval —n i< m,
— = KV S S Vg = N such that
(19) IFED 0, 1) =L o, v )| < tn(0)
tor vg, <1< vy a; 8 = 0,1,..., k,—1, where the sequence |{a,(w)} con-
verges almost everywhere to zero. Let us write

ko

(20) gk 1) = 3 Dy (@) H (1= ) - An( )
N k=1
where
1 for t>=0,
Hiy={
0 tfor {<O0,

A (@) = Fgak-l)(wa ”s,n)'_'ng_l)(wy voorw) ($=1,2,. . ,ksn=1,2,..)
Infw) = F;{c—l)(w, 1’1],11-)
By (19) it follows that

n=1,2,...).

(21)  |FE Y0, t)—gulw, B)] < ay(w) for —a<t<<n, n=1,2,...
Let us set
t
1 o
(22) Gn(wy 1) = Fy(ow, 1) — W f (t_u’)k_~(F%—l)(w7 U)—gnfw, “’))du5

Q
then, for |t| < 4 and » > 4, it follows from (21) that
k-1

A
|Gn(w, 1) —Fylo, ) < (—k-—_lﬁ an(®),
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whence by the definition of the sequence |an(w)} we infer that G(w,t)—

—F(®,1)= 0. Thus, in virtue of formula (17), Gplw,t)= F(w, 1), and
this implies

a* a

7 Gu(w, t) ——>——F( t).

Taking into account formulae (18), (20), and (22) we see that

kn
D @) 8(1—10) = B0, 1),
k=1
which concludes the proof. .

The limit of a family of generalized stochastic processes depending
on a continuous parameter is defined as follows: Du(w,t) - P(w, t) as
h = hy if, for every sequence h, = hy, @ (0,1) > P(w,1).

Let @{w,t) be an arbitrary generalized stochastic process. By Theo-
rem 1 there exist a continuous process ¥ (w,?) and a non-negative inte-

ger k such that .

d
@(a),t)za—ﬁﬁ’(w,t).
Let us set ,
Gw,t) = [ F(o, u)du;
0

then we have
kt-1

(23) T

D(w,t) = G(w,t).

Almost all the realizations of the process G(w,?) have continuous
derivatives, whence as h — 0

~ (6o, 4 h—Glo, )3

Differentiating % times we deduce hence, in virtue of (23),

o, ).

1
(24) —h—(qﬁ(m,t—l—h)—Q(m,t))—-)dit @(w,t) a8 h—0.
Writing
&

490w, 1) =2(—1)8 (Z‘:) ® (0, 1+ (k—s)h),

8==0
we can prove analogously
i &

1
— APD(w, 1) > F D(w,t) as

hk h—>0.

icm°

Generalized siochastic processes 279

As a corollary we obtain, for arbitrary continuous processes F(w, t),
the equality

k

d
7 Flo, ) = 4 F (o, ).

"We shall now prove an implication which will be needed in the se-
quel.

If ®(w,1) = [fo,t)], then for a certain sequence h,— 0 we have
d 1
“‘i%‘@(wy 1) = [‘;Z (fn(w;t+ h")—f,,(w,t))]-

Prooif. From the definition of a fundamental sequence follows the
existence of continuous processes F(w,t), F(w,t) (n =1,2,...) such
that for a non-negative integer ¥ we have

(25) Fgc)(w:t) = flw,t) (n =1,2,..),
k

(26) 73 Flo,t) = &o, t)

and

(27) Folw,t)z Flo, ).

As b - 0 'we have

1 wr '
i(f P, u)duie DfF,,,(w,u)du): By, 1),

whence by (27) there exists a sequence h,—>0 such that

Ly,
- (f Fo( w,u)du——fﬁ’n(w u)du)

Differentiating this formula (k+1) times we obtain in view of (25)
and (26)

Flw,t).

1 d
Tn-(f"(w, B+ Po) —falw, t))_)_d—t_ D(w, 1),

whence

d 1
E‘ O(w, t) = I:‘,?n‘ (fn(wy i hy) ~ful@, t))]
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We may similarly prove the more general imp]ica;tién:

If ®(w,t) = [falw, V)], then for a certaim sequence h, -~ 0 we have

ar 1
0,0 = [—E Ax’:zfn(w,z)].

1.7. We shall now give the definition of the expected value for
generalized stochastic processes. Let & (w,t) be a generalized stochastic
process and let us assume for a non-negative integer %

dk
D(w,t) = ra Flw,t),
where F(w,t)e€ and the function &|F(w,?)| is locally integrable. Then
the expected value BD(w,t) of the generalized process @ (w,t) is defined
by the formula

(28) BO(0,1) = 5F(w,

d Tk
The expected value thus defined does not depend on the choice of the
integer % and the process F(w,1). Indeed, suppose that there are non-
-negative integers k,>k, and continuous processes Fyw,?), F(w,t)
such that

dn

(29) WFJ‘”;” = P(w, 1),
kg

(30) Et—kz_pz(w’ t) = &(w, 1),

and that for every a < b
b b

(31) [EiFw, H]dt < oo, [ E1Pyo, 1@ < oo
From formulae (29) and (30) it follows that
(32) 1 !
o g \ee—k1—1 1 » ;
oo, = Gy of(t ) Fylo, u)du-tW(w,t) as ks > ky,
J Fyo, )+ W(w,1) a8 Ky = ky,

where W (w, ?) is & process whose almost all realizations are polynomials
of degree less than k,. By (31) we may interchange the integration with
respect to ¢ and w, whence we deduce from (32)

¢
1 2, ;. i
EFy(w, t) (kz %, 1)'f(t—u)krk1—léﬁ’1(w, wydutv(t) as ky >k,

CFyw, t)+2(t) as  ky = ky,
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where v(£) is a polynomial of degree less than k,. Differentiating this for-
mula k, times with respect to ¢t we get:
k1

] d‘
d_tﬁfll(w,t) ZW

75 CFow, 7).
Thus we have shown that the expected value does not depend on the choice
of k& and the process F(w, t).

The expected value of a generalized stochastic process is, in general
a distribution.
Examples. (a) Let

n

2 d(t—vs(w))s

=1

Dlw, 1) =

where »;(w) are random variables with densities g5(z) (j

=1,2,...
Let us set

) 7).

Plw,1) =) max(0, i—v(w))+ D'min(0, ().
j=1 j=1

The process F(w,t) is continuous and the following equality holds:

D(w,t) = i‘F(CU,t).

) 'It is easily verified that |F(w,t)| <nlt|, which implies the loeal integ-
rability of the expected value ¢|F(w,t)|. It follows that the generalized
process @(w,t) has an expected value, defined by the formula

2

d
Bo(0, 1) =5 CF (o, 1).

Simple computations give

w i ¥
EF(o,0) =D [ [glo)dedy,
F=10 —co
whence
BO(0,t) = D g(t).

=1

(b) Let ¥(w, t) be the derivative of the homogeneous normal process
G{w,t) with the distribution funection
z
f exp (‘——

1
o¥2mli]

Pl (w,t) < a) = (““’W) i

261
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4. e., with the expected value
(33) EG(w, 1) = it.
The inequality

t
€16, 1) _f o~ < 2+ e

implies the local integrability of the function ¢|G(w,t)]. Now G(w, ?)eC,
which implies that the process ¥(w,t) has the expected value and that

(0, ) = €6 (@,1),

4. €., in virtue of (33), E¥(w,t) = A

(e) We shall now give an example of a continuous process whose ex-
pected value is the §-function of Diraec.

Let »(w) be a random variable with continuous and positive density
g(z). Then the stochastic process defined by the formula

cos v(w)t
H(w,1) = 2ng(v(w)}
is continuous. Let
1— t
Flo,1) = cosv(w)

27 (v(w)fgr(w))

The process F(w,t) is continuous, takes on non-negatlve values
and F®w,t) = H(w,?). The equality

. costm 1
EP(w, 1) = f =5

implies the local integrability of €|F(w,t)|. Hence the process H(w,?)
has the expected value and

a 1
BH(0,t) = -d—tiéﬁ’(w,t) = dtz |t

From the definition we directly deduce the followmg properties of
the expected value:

| = &(t)

d
Let B @(w, t) exist; then there exists E»‘iqﬁ(w,t) and we have

a a
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I Ed(w,t)and E¥ (w,t) exist, then there exists B(®(w, 1)+ ¥ (o, t)j
and we have . '
B(@(w, )+ P(o, 1) = E®(w, t)+E¥ (v, 1).

Let @(w, t) have the expected value. Then for every positive integer

¢ there exists a process ¥ (w, ¢) having the expected value and satisfying
the equality

W‘P(w, 1) = O(w,t).

(In the proof we must assume that

_ —(“k—l_)lf(t—-u P 1P (w, w)du  as s>k,
) =

FE=9 (4, 1) : as 8 <k,

where the process F'(w,t) and the integer k appear in the definition (28).)
If Ed(w,1) exists and if the function f(f) is differentiable infinitely
many times, then Ef(t)®(w,?) exists and

(34) Bf (1) D(, ) = f(1) BD(w, 1).

We shall prove, for example, the last implication. Suppose that
i
O(w,1) =WF(w,t), Flo,1)eC,

and that the expected value € |F(w, t)] is locally integrable. Let us write
(35) G(w,t)
1 t
— — )5 148 gy
FOF (@, ) + E (=1 ( )(8 1),f(t W' F (0, w)du.

It is easily seen that G(w,?)eC€ and
&

(36) 0,1 = 190, 1),

From (35) we deduce for || < 4
A
Ey 41 ¢
16 (@, )] < al¢|F (o, t|+2( ) - jle(w,u)[du),_
where
@ = max 119!
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This inequality implies the local integrability of the funetion C|G(w,1)].
Hence from formula (36) it follows that the process f(1)®(w,?) has an

expected value and
s

d
Bf(1) @ (0, 1) = —5 CG(0, D).

Using formula (35) we deduce (34).

The following theorem gives the interrelations between the expected
values B and C:

THEOREM 2. Let f(w,t)eR, then Bif(w,1)| exists if and only if the
function €|f{w, )} is locally integrable. In this case Bf(w,t) = Cf(o,1).

Proof. Necessity. Suppose that E|f(w,t)| exists. Let F(w,?)
be a continuous process such that the function E€|F (o, t)| is locally inte-
grable and that, for a certain & > 1, we have

& a*
(37) if(w,t)l=ﬁli'(w,t)7 Eif(w,?) =W€F(w,t)-

From (37) it follows that the difference
b &g
F(m,t)—f f...f [f(e, @)\ de, dacs . .. davy
00 0
is a polynomial of the variable ¢ of degree less than k. It follows that
for every h the stochastic process
kb wprh o zpth

A;,"’Fm,t):f f o [ o, @)l Ay .. day

t Zp, Ty
has a locally integrable expected value. The function | f(w, t)| being non-

-negative, we may interchange the order of integration with respect to
t and w:

lﬁ:]L zp+h To--h
EAPP (0, 1) = [ j f Clf o, z)| Aoy de, ... dw,.
[ X

We deduce therefrom that the integral

xo+h .
[ €lf(w, @)l day
’.l»'z
is finite for almost every =, in the interval ¢, < , < % & (see, for instance,

{51, § 36).
The quantities t, and » being arbitrary, the expected value ¢ |f(w, t)|
is locally integrable.
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Let us set
!

glw, b)) = J.f(cu, w)du;
0
then g¢(w,t)e€, the expected value Clg(m, )] is locally integrable, and
c‘j(af,t) = dCg(w,t)/dl. We also have Bf(w,t) = d€g(w,1)/di, which
implies Bf(w, 1) = Ef(w, ).
Sufficiency. Suppose that the function €|f(w,?)| is locally inte-
grable. Put

P
hlw,t) = f 1w, w)|du.
b

The process h(w,t) is continuous and for every a < b we have

b Rl
J e, 0@ < [ [ ¢if(o, widudt < co.
a a |t

Since

d
[flo, ) = 7 Moyt

the expected value B|f(w,t)] exists. Thus the theorem is proved.

II.1. In this section we shall concern ourselves with the independence
of stochastic processes. The generalized stochastic processes @,(w,1t),
Dyw,t), ..., D(w,t) are said to be independent if there exist repre-
sentations {f.},n(w,t)}e@s(w,t) (s =1,2,...,7) such that for arbitrary
Ng, Mgy ..., Ny, the processes

(38) fl,nl(wyt)yfz,nz(wyt)9 ...,f,.,,,,'(m,t)

are independent.

THEOREM 3. Let the generalized processes @y (w, t), Py(w,1),..., Dp(w,¥)
be independent; then for every system my, My, ..., M, of mon-negative
integers the processes

dml dm2

Ei?ni'@l(w:t);m@z(w:t)’- D, t)

o

are also independent.

Proof. Let us consider representations {fs,,,(co, t)}ed?,,(w, t) (s =

= 1,2,...) such that for every n,,n,,...,n, the processes (38) are

independent. Then for every n,, 7y, ..., n, and hy, hy, ..., h, the processes
1

1
M A;»T]) fl,'nl(w! 1)y eeny hTAg:r)fr,n,,(wi ?)
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are independent. Choosing the sequepnces {h“,} (¢s=1,2,...,7) in an

appropriate manner (see section 1.6) we get

ams

7).

@Aw,t):[ vln (mS)fsn (w t)] (s=1,2,...
. hs,"’h
This concludes the proof.
Lmma 2. Let the generalized processes @i(w,1), Polw, 1), .5 D(w, 1)
be independent. Then there exist continuous processes Fw,t), Fyw,t),
., F,(0,1) and a non-negative integer k such that
&

”c‘lzk‘Fs(wyt)=¢e(wyt) (s =1,2,...,7)
and such that the processes
A;lk)Fl(w, 1), A§ I Fy @, 1), AX)F (@,1)

are independent for every h.

Proof. Let us consider the representations {fs,n(w, t)} € Dg(w, t)
(s =1,2,...,7) such that for every n, ns, ..., 7 the processes (38) are
mdependent From the definition of fundamenta;l sequences follows the

existence of continmous processes Fylw,t), Fsalw,t) A )y (8=1,2,
n=1,2,...)and of a non-negative integer % such that PO, 1) = f& a t)
(s—l,d,. Lrym=1,2,...) and
- (39) Fyalw, 1) 3 Folo, 1) (8 =1,2,...,7).
In particular we have
Fyw, ) = Do,1) (8 =1,2,...,7)

dt’“

We shall show that the processes Fyw,t) satisfy our lemma. The
independence of the processes (38) implies the independence of the pro-
cesses

i [
[ = (e, 0du, oy [0 (0, w)du.
0 [}
Hence the equality

As:k)Fs,ﬂ(w) 1) = A&k)

Fo1
= 1), f (b= ol ) de

gives the mdependence of the processes APF, ,(w,1), Aﬁf:F,, a(@, 1)
(n =1, 2,...) for every k. Thus in virtue of (39) the processes APF (w,1),
. AS{‘)F, (w, t) are independent, which concludes the proof.
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LE‘\IMA 3. Let the k-th differences of the continuous processes (o, 1),
Folw, 1), ..., Fylw, 1),

Llll )Fl(w7 t), Aszk)Fz(ws t), CRY) A#)Fr(w7 t)
be independent for every h. Then the processes
ar 3

&
‘(hTFI(“% t),

Fz(w’t): (w t)

d d
ar ar
are independent.
Proof. This follows directly from the possibility of the representa-
tion (see section I.6)
k

Etl?Fs(w: 1) =

(WA Fo(w, )] (s =1,2,...

Lemmas 2 and 3 give

THEOREM 4. The generalized stochastic processes @y(w, 1), Py(w, 1), ..
D (w, 1) are independent if and only if there is a k& such that these proresses
are generalized derivatives of the k-th order of certain continuous processes
Fy(w, 1), Fo(w,t), ..., F(w,t), for which the k-th increments

Aﬁf"Fl(w, 0, AFyw,1), ..., AP0,
form an independent system for every h.
9.

We shall also need the following strengthening of Lemma 2:
LevwmA 4. Let the generalized stochastic processes D w,t), Po(w, 1)y ...,
D, (w, 1) be independent, and let the continuous processes (o, 1), Fy(w, 1),
.y Folw, 1) satisfy, for a certain integer m,
Z’In

(40) M,,F(w 1) = Ow,t) (s=1,2,..

1)

Then for every h the system
A(M)Fl(wy t), A;Lm)Fz(m; 1},
consists of independent processes.

Proof. Suppose that the generalized processes &,(w,t), Dy(w, 1),
-y D(w, t) are independent. Hence by Lemma 2 there exist continuous

processes Gi(w,t), Gy(w,1),...,6G{(w,t) and a non-negative integer k
such that

.y A;{”’F,(w, 1)

k

(41) ?j{;gga(wy 1) = Dw,?) (s=1,2,...,7),

and for every h the processes

A&L}C)GI(LU, 1), A;:‘)Gg(w, B)y.ney
are independent.

AS:k) Gr(w, 1)
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Let us set for s =1,2,...,7
’ {
v J =) "G (w, w)du  as  m >k,
(42)  Hyw,t) ={ (m—k—1)!
GE"w, t) as  om <k.
Then we get

!

a4 _'—;710 i [ =yt 4 6w, wan as m>k,
m—r—L)n
0

Agm)Hs(w’ t) =

" k—m n—1 h} m
lim (z) 2 A6 (w,t+;; ji) as m < k.
noree TlaereeIm=0 =
Hence for every h the processes A{VH(o,1), A Hy(o, 1),

AMH,(w,1) are independent. The formulae (40), (41) and (4
m 1

Wﬂs(w,t) = —m Fe(w, ?)

ﬁm
which, in turn, leads to
A;,m)Hs(w, 1) = A;:")_Fs(w7 t)

2) unply

(5=1,2,...,7)

(s=1,2,...,1),

which proves the lemma.

COROLLARY. It follows from Lemma 4 that the independence of general-
ized processes is imvariant under the passage to the limit.

Tndeed, let @, ,(w,1), Pynlw, ), ..., Dralw,t) be a sequence of
systems composed of independent processes and let P ,(w,t) — D(w, t)
(¢s=1,2,...,7). By the definition of convergence there exist continuous
processes Fi(w, 1), Foplow, @) (s=1,2,...,15n=1,2,...) and a non-
-negative integer k such that

k

?Fs(wyt)—_—‘@s(wyt) (s=1,2,...,7),
(43) . '

aﬁps,n(a”t) = Dy u(w,1) (8 =1,2,..,r5n=1,2,..),
(44) Fy (o, t) 3 Fo,t) (s =1,2,...,7).

By Lemma 4 the processes APF, . (w, 1), AF, J(w, 1), ..., APF, 4(0,1)
are independent for every &, Whlch in virtue of (44), implies the
independence (for every k) of the processes AP F.(w, 1), AP Fy(w, 1), ...,
APF (v, t). From this fact and from (43) we deduce in virtue of Lemma 3
that the processes @ (w, 1), Py(w,t), ..., D{w,t) are independent.
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IL. 2. Our next object is a generalization of the concept of the inde-
pendence of increments of generalized stochastic processes which for ordi-
nary processes would coincide with the usual concept of the independence
of increments. At first sight it seems that the generalized stochastic pro- v
cess with independent increments should be required to have a repre-
sentation composed of processes (continuous of course) with independent
increments. It turns out, however, that this postulate implies the normal-
ity of the elements of the representation (see, for instance, [1], p. 420).
Hence among regular processes only the normal one has this property
(see Theorem 7). Before introducing the definition of the independence
of increments of a generalized stochastic process we shall deal with an
auxiliary concept — the e-independence of increments of ordinary processes.

The stochastic process f(w, t) (f(w, t)eR) is said to have e-independent
inerements (e > 0) if for every system (u; s, ;) ( = 1,2,...,7: § =1, 2,
.., 7) of intervals distant one from another by more than ¢ the (vector
valued) random variables

<f(0)7 tl,l)“f(wy '"/1,1)? f(wa tﬂ,l)“"f(“’; “2,1); weey fo, tjl 1)—'f(w’ uﬁ,l));
<f(wytl.z)"f(“’:ul,z):f(w:tz,z)“—f(m u"’ f(w t]q 2)— f(w’ui2.2)>7
<f(w7 tl,r)_'f(w)ul,r);f(w1t2,r)”"f(wa uz,r yeees [0y t},. = f(w ui,.,r)>

are independent.
Further on we shall need the following lemma:

Leuma 5. Let f{w,t)eR; then the process APV F(w,t) has, for every
h > 0, kh-independent inerements if and only if the process

i
A [F(o, wdu
0
has (k+1)h-independent increments for every h.

Proof. Necessity. Suppose that the process A f(w,?) has kh-
-independent increments. Let us consider the system of intervals (@; s, ¥;,s )

(j=1,2,...,98 =1,2,...,7), which are distant from one another
by more than (k+1)k. Let w5e < %ss < Yjeth (E=1,2,...,%;
i=1,2,...,5558=1,2,...,r). Then the intervals (u;; s+ ®; s— Y55 %ij,s)
for different s are distant by more than kh. Hence the random variables
<A$f)f(w; Uy,1,1) “A;Lk)f (o, U1+ 20— Y1)y 0y
<A§zk)f(w7'”f1,1z A;wa Uy 1,0+ 81— Y1)y -0y
(AP (w, u],l,?‘)'—Agbk)f(w7 Uy 1ot Ty — Y1)y el

Studia Mathematica XVL, e
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are independent. Thus, in virtue of the equality

Yjss

A"‘“)—j fle, w)du— A},"“)f flw, u)du

7/]"-?’1'11.
= [ (4w, w)— AP (o, utw;o—y;,s) du
Yjss
we deduce the independence of the random variables
u,1 <11 .
Ay ] Ho, 10)d2(~41},’“+1)j flw, u)du, >,
]

0

LoPs

&L,
0
Thus we have proved that the process
i

“AgD J’f(co, w) du

0

has (k-+1)k-independent increments.
Sufficiency. Suppose now that for every h > 0 the process

i
A ff(co, ) du
0

has (k+41)h-independent increments, and let (%559 Ys,8) (T =1y 2,..0,0s5
s =1,2,...,7) be a system of intervals distant from one another by more
than kh. Let the smallest of these distances be equal to %h--c where ¢ > 0.
If n >"hle, then for different s the distances of the intervals

(wﬂ',ﬂ’_'_ Znu JJ s+ — 2'"’1) n/:. = 0, 1, ceey 'n——l)

1=l

(Feneralized stochastic processes R

are greater than (k+1)kn~'. This implies the independence, for n > h/e,
of the random variables

r k
”1;1-1— 2‘ L -171,1+;L '21 ey
L=

(A Of Ho,wdv—AfFD [ fo,w)du,...),
) 0

n k
i/1,z+ 2 Lo 21, 2+;,[i21'1 ng

<Agf;f1 f flew, w)du— AL f o, w)du, >,
0

noko nk
<A§{?,f“ f flo, wdu—AgD fle, wdu, ...).
0 [ :
Arguing as in the first part of the proof and taking into account
the equality

ts h §”_
niZy !

Aff(w, ) = lim 2 A [ e, wde

N g =0 o

we infer that the random variables

CAPf (0, 41,0)— AP (@, B11)5 D5
<A§,,k)f(w, yl,z)—Al(L’c)f(w’ Byz)y ooy

<A§Lk)f(w7 yl,r)ﬁA;Lk)f(w7 w},r); e

are independent. Thus the process A4Pf(w,?) has kh-independent incre-
ments.

II.3. It is easily seen that a regular process has independent inere-
ments (in the ordinary sense) if and only if, for every £ > 0, it has e-inde-
pendent increments. Observing this fact we adopt the following definition:

The generalized stochastic process ®(w,t) is said to have indepen-
dent increments if there exists a representation {fu(w, t)} ¢ P (w,t) such that
for every &> 0 the processes fu(w,t) have z-independent inerements
for sufficiently large .

We shall prove later that the independence of increments defined in
this way coincides with the usual one in the class of regular processes.

From the definition of the independence of the increments we directly
obtain the following implication: :
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If ®(w, t) has independent increments, then d® (w , 1) [dt has independent
inerements t0o.

To prove that it is sufficient to observe that if {fu(w, 1)} is the repre-
sentation of the process occuring in the definition of the independence
of the increments, then for a certain sequence h,,

|1 1
1?’: (fn(w, f"i"hn)"’fn(w’ t))]

is a representation of the process d®(w,?)/dl (see section 1.6.) composed
of processes having, for every &> 0, s-independent increments for suf-
ficiently large n.

We shall consider first the relations between the generalized processeé
with independent increments and the ordinary ones with e-independent
inerements.

LeMMA 6. For every generalized process @(w,1) with independent
inerements there exists a continuous process F(w,t) and a non-negative
integer k such that

a*
Fra Flw,t) = ®(w, 1),

and such that for every h > 0 the process APF(w,t) has kh-independent
increments.

Proof. Let {fn(w, t)} be a representation of the process @(w,?)
such that for every ¢ > 0 the processes f,(w,t) have e-independent incre-
ments for almost all n’s. By the definition of the fundamental sequence
there exist continuous processes F(w,t), Fy(w,t) (n =1,2,...) and
a non-negative integer % such that

da* P

- dt,l n(@;1) = falo, 1) (n=1,2,..),
e, =01,

(46) Fofo, 1)z Flo, 1).

We shall prove that the process F(w, t) satisfies the conditions of
our lemma. For this sake it is sufficient, in virtue of formula (46), to show
Fha.t for every h> 0 the processes A{®F,(w,?) have kh-independent
increments for sufficiently large n. Lebt (., 9;6) (= 1,2, ...50s3
§=1,2,...,7) be a system of intervals which are ‘distant from one another
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by more than kh; let the smallest of these distances be equal to kh-+e
where ¢ > 0. From the equality

(47) Agc)'Fn(wy y:i,s)_A;zk)Fn,(wy Z; 5)

.'z;-,s'—}-h f},»-.i-/l to+h
= [ ] i [ laley )= Falws b4 o=y o)) dtrdly .. At

Zivg 1A 1 ,

resulting from (45) we see that the increments (47) are, for different s,
integrals of the increments of the process f,(w, t) on the intervals whose
mutual distances are at least e. Arguing as in the proof of Lemma 5 we
infer that for sufficiently large » the increments of the process ARF (0, )
are kh-independent, which proves the Lemma 6.

LemMA 7. Let F(w,t)eR. If, jor every h > 0, the process AV F (w, 1)
has kh-independent increments, then the generalized process d*Flw, t)[dt"
has independent increments.

Proof. Let us write

‘
G(w,t) = [ Flo, wdu.
F .
The process G(w,t) is continuous and

&

2 Bl = A6 o, 1
(see section I.6.). By Lemma b the process 1 AETIG (0,8) has (B+1) -
-independent increments, which completes the proof.

The Lemmas 6 and 7 enable us to state the following necessary and
sufficient condition for the independence of inerements of generalized
stochastic processes:

THEOREM 5. A generalized stochastic process has. independent inere-
ments if and only if, for a certain k, it is the generalized derivative of the
k-th order of a continuous process F(w, t) such that for every h > 0 the process
AP F(w, 1) has kh-independent increments.

Trom Lemma 5 follows the following strengthening of Lemma 6,
which seems useful in applications:

Levma 8. Let the generalized process @(w, 1) have independent incre-
ments and let the continuous process F(w,1) satisfy, for a certain k, the

equality
i

d
W Flw,t) = Plo,t).

Then, for every h >0, the process APF(w,?) has kh-independent incre-
ments.
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We shall now prove that in the class of regular processes the generalized
independence of increments coincides with the independence of increments
in the ordinary sense.

Proof. Let the regular process F(w, t) have independent increments
in the ordinary sense; then by Lemma 5 (with % = 0) for every h > 0
the process

i
A;pfzw(w, u)du
0

has h-independent increments. Taking into account the continuity of the
process

&
fF(w,u)du
0

we deduce from Lemma 7 that the proces%

(ut—~—wau

has independent increments (in the generalized sense).

On, the other hand, if the process F(w,t) has the increments inde-
pendent in the generalized sense, then by Lemma 8 for every % > 0 the
process

13
A$:>fp(w, u)du
1]

has h-independent increments. Hence by lemma 3 (with %k = 0) the
process F(w, t) has 0-independent increments, 7. e., has the increments
independent in the ordinary semse.

The following theorem shows that the independence of increments
of a generalized stochastic process is invariant under the passage to the
limit —:

THEOREM 6. Let {(l’)n(w,t)} be a sequence of generalized processes
with independent increments and let D,(w,t) - O(w, t) as n - co; then the
process @ (w, t) also has independent increments.

Proof. By the definition of convergence there exist continuous
processes F(w,t), Fylw,1) (n =1,2,...) and a non-negative integer k&

such that
d*

(48) 'dtT.;Fn(w;t)ZQn(w:t) (n=1,2,..),
ar

(49) ;{th(w t) = d(w, i),

(50) Fylw,t)=z Flo, ).

icm

Generalized stochastic processes 295

Because of the independence of increments of the processes Pp(w, t)
we deduce from (48) by Lemma 8 that for every h > 0 the processes
APF(w,t) (n=1,2,...) have .kh-independent. increments. Hence by
formula (50) we obtain for every h > 0 the kh-independence of the incre-
ments of the process A‘,C”)F(az,t). Thus in virtue of formula (49) and
Lemma 7 we see that the increments of the process @ (w), f) are independent,
which completes the proof of our theorem.

THEOREM 7. Let {fn(w, t)} be a sequence of normal processes and let
fulw, 1) = flw,?) as n — oo. If the process f(w,t) is regular, then it is
normal (whence continuous).

Proof. Using the fact that the generalized independence of incre-
ments is equivalent to independence in the ordinary sense in the class
of regular processes, we infer by Theorem 6 that the process f(w, ?) has
independent increments in the ordinary sense. Therefore, in order to prove
our theorem it is sufficient to show that the increments of the process
f(w,t) have a normal distribution. The proof of this fact will be based
on the following elementary properties of normal processes:

(a) the limit in probability of a sequence of normal random variables
is a normal random variable;

(b) if g(w,?) is a normal process, then for arbitrary a,b, and h the
random variable

ath zp+h Ly +h

f f J (g(o, 2)—g(w, 2, b)) de, day ... doy,
3 ay. £
is normal.

From the definition of the convergence of generalized stochastic pro-
cesses follows the existence of continuous processes F(w,t), Fp(w, 1)

(n=1,2,...) and of a non-negative integer % such that
(51) FPw, 1) = fulw, 7)) (n=1,2,..),

(52) Fw, &) = f(w, 1),

(53) Fow,t)z Flo,t).

(In the formulae (51) and (52) the generalized derivative d*/di” is repla-
ced by the ordinary one, for the processes f{w, 1), (o, 1), n =1,2,...,
are regular.)

From (51) it follows that
(54) 40F
22—‘{7’1

o | (Pl )= Fal@, 3t — o)) dn do, .. Ao

(0 1) — AP Pl 1)

io-y-lz g R

=/,
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Hence, because of the property (b), the random variable (54) has a normal
distribution. Thus by (53) and the property (a) the random variable
APF (0w, t,)— AP F(0,1,) also has a normal distribution. The process
f(w, t) being regular with independent increments, it has at most a de-
numerable multitude of points of discontinuity, ¢. e., points ¢, such that
im f(w,?) # f(")y t)
t—>ty—-0
holds with a positive probability (see [1], p.407-408). Suppose that i,
and t, are points of continuity of the process f(w, t). Then it follows from
(52) that the random variables (which, as we have already shown, are
normal)

%k- (APF (0, ts)~ AP F(w, 1))

tend in probability to the increment f(w, ¢,)—f(w, ¢;) as h - 0. By prop-
erty (a) the increment f(w,?;)—f(w,?,) has a normal distribution if #,
and i, are points of continuity of the process f(w, t). The set of points
of continuity and of the continuity on the right of almost all the realiza-
tions of the process f(w,t) being dense, it follows that the increments
of the process f(w,t) over any arbitrary interval have a normal distri-
bution. This completes the proof.

1I.4. Among ordinary regular processes only the determined processes
flw, t) = f(t) have independent values at different points; these are unin-
teresting from the point of view of the theory of probability. This is not
80 in the class of generalized stochastic processes. Generalized stochastic
processes with independent values are defined similarly to those with
independent increments. Viz., we first define ordinary processes with
e-independent values:

The process f(w, t) belonging to the class & is said to have s-indepen-
dent values if, for every system e 1=1,2,.00,05; 8§ =1,2,...,7) of
points distant by more than ¢ from one another, the random variables

o, tl,l)’ flow, t2,1)’ cons flay ty’,,l))’
o, tx,z); fo, t2,2)7 N ICH tz‘z,z»:

are independent.

) Example. If the process F(w,1) is regular and has independent
increments, then the process f(w, 1) = Flw,t+e)—F(w,t) (¢ > 0) has
¢-independent values.

icm°®
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A generalized stochastic process @(w,t) is said to have independent
values if there exists a representation {f.(w, )] e ®(w, t) such that for every
&> 0 the processes f,(w,t) have eindependent values, the integer »
being sufficiently large. .

Examples. (a) The derivative of a normal process F(w,?) has inde-
pendent values. As a representation appearing in the definition of the
independence of values we may choose

o) e

(b) Let ®(w,t) be a generalized process with independent values
and let {fa(w, 1)} be its representation compesed of processes with values
e-independent for sufficiently large n’s. Then, for every multiplicator
f(t), the process f(t)®(w,?) has independent values, and {f(#)f,(w,t)]
is its representation composed of processes having e-independent values
for » sufficiently large. )

(e) Let £,(1), falt), ..., fx(f) be multiplicators and let the process
F(w,t) be normal; then the process

k 8
ht e P,

§=1

has independent values. This follows directly from the representation

d ds k‘ 2 4(8)
Efs(t)-d—t;Fm, 1) = [S;lfs(t)n AL Flo, 1)].

s=1

The proofs of the following properties of generalized processes Wi'th
independent values are the same as the proofs of analogous properties
of processes with independent increments:

1. Let the generalized process @ (w,t) have independent_ values and
let Fw,t) be a continuous process satisfying, jor a certain integer k, the
equality

dlr
'd—tk—F(ﬂ),t)=¢(w,t); ) N
then, for every h > 0, the process APP(w,t) has kh-independent values.

2. Let F(w,t)eR. If for every h>0 the process APF(w,t) has
kh-independent values, the generalized stochastic process
dk

' ar*
has independent values.

(0, 1)
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3. The generalized and the ordinary independence of values are equi-
valent in the class of reqular processes.

4. The independence of values of generalized stochastic processes is in-
variant under the passage to the limit —.

‘We shall now prove a theorem connecting the processes with inde-
pendent values with those with independent increments.

THEOREM 8. A generalized stochastic process has independent values
if and only if it is the generalized derivative of the first order of a generalized
process with independent increments.

Proof. Necessity. Let {f,(w,?)} be a representation of the gen-
eralized stochastic process @(w,t) with independent values, such that for
every &> 0 the processes f,(w,?) have es-independent values, n being
sufficiently large. By the definition of fundamental sequences there
exist continuous processes F(w,t), F,(w,?) (n =1,2,...) and a pos-
itive integer % such that

(85) F(w, 1) = fulo,t) (0 =1,2,...),
gk
(56) WF(UMt):@(w’t):
(57) Fo(w,t) 3 F(w,t).
Let us set
(58) P(w,1) = [Fy¥ N w, 1)].

From formulae (55)-(57) it follows directly that

d
7 Y(w,t) = D(w,t).

We shall show that the process ¥(w,t) has independent increments.
Let (u6,5) (§ =1,2,...,0s5 8=1,2,...,7) be a system of intervals
distant one from another by more than ¢ (e > 0). From the equality

g
(59) Fs.k—l)(wy tj,s) _Fg-c_l)(w7 u:f,a) = j Fuley w)du
U, g

resulting from (55) we see that the increments are integrals of the va-
lues of the process at the points distant from one another by more than
e. Arguing as in the proof of Lemma 5 we deduce thereof the s-indepen-
dence of the increments of the process Fﬁ,"‘”(w, t) for » sufficiently large.
Hence in view of (88) the process ¥(w,1) has independent increments.

Sufficienecy. Let ¥(w,t) be a generalized process with independent
increments and let {f,(w, )} be its representation such that for every
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& > 0 the processes f,(w, t) have e-independent increments for sufficiently
large n's. It is easily verified that if h, — 0, the processes

1 .
Z_(fn(wi t4hy) — fal o, t))

have, for every &> 0, s-independent values for sufficiently large n’s.
Choosing the sequence {h,} in an appropriate manner we have (see see-
tion I.6.)

d 1
57,0 = [ (o, trmi—(o,0)],
which proves the independence of values of the process d¥(w, t)/di.
Thus the theorem is proved.

III.1. As in the case of one variable {, we define generalized stochastic
processes depending on many variables i, 1, ..., .. It will be manifest
later that in the study of generalized stochastic processes dependent
on one variable the use of stochastic processes dependent on more
than one variable is inevitable (see section III). We shall now supply
the definition of generalized stochastic processes dependent of many
variables and present the simplest theorems dealing with these proces-
ses. The proofs of these theorems will be omitted, for they are iden-
tical with the proofs of the corresponding theorems dealing with proces-
ses dependent on one variable.

‘We shall deal first with ordinary stochastic processes dependent on 7
variables %, ts, ..., &. The process f(w,t,,ts,...., %) is called continuous
if almost all its realizations f(wg,ty,%sy ..., %) (w,€Q) are continuous
functions of the variables t,,¢,, ..., .. The class of continuous processes
will be denoted by €,. Two processes are identical if they have the same
realization with ithe probability 1. The sequence of processes
{falw, by oy ..oy 1)) 18 s8id to be convergent o the process f(w,ty,ty, ..y By),
in symbols

faley Ty oy ooy ) 3 fl@y Bry oy oeny B)

if, for almost every w, ¢ 2, the sequence of the realizations {fu(wo, 1 ..+, &)}
converges almost uniformly with respect to the variables ty,1s,...,%,
to the realization fu(w,t,%s...,%). The sequence {fulw,t:,ts ..., %)}
of continuous processes is called fundamental if there exists a convergent
sequence of continuous processes {Fn(w,ty,lay ..., i)} and a system of
non-negative integers %, ks, ..., k, such that

grrt..thy

B (w, by, T, ..
At ok TR

7tr)=fn(w,t1at2:---:tr) (n=1,2,...).
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sequences of " continuous processes {fn(w, Bry vony tr)} and
(gl by - t,)} are said to be equivalent if there exist two sequences of
continuous processes |{Fn(w, by, .- 1)) and {Gulw,t, ..., 4)]  conver-
gent to the same limit, and a system of non-negative integers k,, ko, ..., k,
such that

Two

6k1+...+k,~

mﬁ’n(wytu'--’tr)=f'n(w1t11-~'ytr) (n=1,2, )s
1t eetke

B—tkl_——man(wy ty ey ty) = Gu(@, by, oy ) (R=1,2,...).
1., 0t

The relation of equivalence of fundamental sequences is reflexive,
symmetric, and transitive, whence it splits the class of all fundamental
sequences into disjoint sets; these sets are called, as in the case of one va-
riable, generalized stochastic processes depending on r variables by, 1y, ..., 1,
and will be denoted by the symbols P(w,ty, ..., &), Plw,tyy .oy by
I {falw by oy ) eP(@y by, oy b)), We write Do,y .y b)) =
= [ful@, t1y -, t,)] and we shall say that the sequence JACTE T i)} of
continuous processes represents the generalized stochastic process D(w,ty,...,1,).

Addition, multiplication by a complex scalar and, generally, multi-
plication by a multiplicator, the conjugate process, and translation are
defined by the formulae:

Ualw, by oy 8] Tgnl@, by ooy 8)] = Doy By ooy B) F gl By oeey B
sty ooy ) fnl@y by ooy 8] = [floo, 1y ey ) ful@, by ooy W],
[fulwy try ooy 8] = Ualeoy tyy o0y 2],
and if G(w,tyy ...y 8) = [falw, &, ..., 1,)], then, for every system h;, ..., k.

of real numbers, :
D (0, tythyy ooy o thy) = [falw, by, .0y bRy ]
The proof of every generalized stochastic process @ (w,ty, ..., %)

having a representation composed of processes which are polynomials
of the variables i,,1,, ..., t, proceeds as for Lemma 1. This enables us to
define the generalized derivative -

ak1+...+k,
ot ... atkr

of an arbitrary generalized process @(w,?,...,1,) by the formula

Bkl*"“"’kr 0k1+ +hy
ot ol Tt b) = [Bt'{l i tn(@star s t')]’
T cor P
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where {hn (@, ty; .- t,)} is a representation of the process @(w,t;, ..., 1)
having almost all the realizations differentiable infinitely many times
with respect to the variables f,,1,,...,%,. One can prove that if
Flw,ty, ..., t)eC€, and

akl"‘ Ak

tkl 0tk Flo,ty,y ...

t) =0,
then

Flw,ty,...

,>—22 fos@ e

=1 8=0

i1y bipay oeey t)tfe

From the definition of generalized partial derivatives immediately
follows the equality

ity
otk ... atlr

gtk

0w,y b) = g

D(w, tyyeneyly)

for every permutation §i, js,...,J, of the integers 1,2,...,r.

The realizations of the generalized stochastic process @(w, ty, ..., )
= [fu(@, Ty -+y )], 4. €., the classes of sequences D(wgybyy ey te) =
= [fal®os t1, -+, &)] are distributions depending on r variables t;, s, ...y Ix
(in Mikusifiski’s sense). The analogue of Theorem 1 is

THEOREM 9. For every genmeralized process @(w,ty, ...,
a continuous process F(w,ty,...,t) and a system ki, ks, ...,
-negative integers such that

1,) there exist
k, of non-

ak1+ Ak

3t"1 6t"" Flow,ty, ...

y b)) = P(w, by, TS AR

The sequence {Pn(w,l, .. , )} of generalized processes iz said
to converge as n —> oo to the genemhzed process D(w, by, ..., &), in symbols
D@,y conyly) > Plwyty,.0eyly)y, if there exist contmuous processes

F(w,tl,...,t,),li’ﬂ(w,tl,...,t,.) (m=1,2,...) and a system of mnon-
-negative integers ki, ks, ..., k, such that
ak1+ Atk
A otkf Fo(w,tyy ey te) = Pul@, 1,005 0) n=1,2,...),
ak1+...+k,-
mF(w7t17-'-ytr) =O(w, l1;. s b))

and

Folw,tyy ooy te) > Flo,ty, S AR
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From the definition of convergence follow directly the properties:
I By, tyy ..y ty) > D@, tyy ...y ), then
ak1+ ke rrt -ty

atk" n(m’tl’"~;tf)_>m¢(w7tly""7 tr);
1 eee O

Dp(wytyyienyty) > D@, by ooy b)),y
and for every multiplicator f(w,ty,...,%):
Flwytry ooy t) Dnl@, tyy ey b)) > Flo, by ooy T) P(0y8y5 ey by).

The addition of generalized processes is continuous with respect to
convergence.

‘We shall now define a product of generalized processes depending
on different variables, called in the sequel the direct product. Let
B0, by, ey bs) = [nl@ybryeery B)], P@, tary ooy be) = [Gn(@ 3 taray - eny t)].
Then we set

By 81y veny )P0y bopxy ey ) = [fal@y By ooy T Gul@y Bopas -0y B)].

It is easily seen that the product defined in this fashion does not
depend on the choice of the representation. The direct product
D(wytyyeery b)) P(w,tsy1, ..., 1) 18 2 generalized stochastic process depen-
ding on the variables ¢,,%,...,%. In particular, the direct product
D(w, t,)P(w, 1,), often appearing in the sequel, is a generalized process
depending on the variables ¢, and %,.

Let us suppose that for a certain system k., k,, ..., k. we have

Prrt . thy

D(w,ytyyeinyty) = 6t"1 ;’ﬂr

Flo, by ...y by),
where F(w, ty,...,%)eC,. and the function &|F(w,t,...,1)| is locally
integrable with respect to the variables ?,,1,, ..., .. In this case, as for

the processes of ome variable, the expected value of the generalized
process is defined by the formula

a"l‘l' ey

BO(w,t,y...yt) = t"l o

EF(w, by .y ty).

The expected value EB®(w,ty,...,1) is, in general, a distribution
depending on r variables %, ..., %,.

IIT.2. We shall now be concerned with generalized stochastic proces-
ses O(w,t) for which the expected value E®(w,t)P(w,t;) exists.
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LemMa 9. If the expected value E@(w,t,)P(w,t,) erists, then
there exists a continuous process F(w,t) such that the function E|F(w,1)|®
is locally integrable and for a certain k we have

W.F’(w t) = P(w,t).

Proof. Suppose that the expected value E®(w,t,)?(w, ;) exists.
Taking the indefinite integral of appropriate multiplicity with respect
to ¢, and i, of the continuous process appearing in the definition of the
expected value, we deduce the existence of a continuous process H (w, 1, ts)
and of a k such that the expected values ¢H(w, iy, 1) and E|H (w, 1, )]
are continuous functions of ¢, and #,, and

5% L

(60) 6tk6t2 H{w, tutz) = @(w,4)P (o, tz)

Without loss of generality one may suppose that for the same integer
% there exists a continuous process G(m,1) satisfying the equality

k

(61) 73

Glw,1) = P(w,t).

Let @, #y, ..., T (@; 7 % for 1 3£ §) be an arbitrary system of real
numbers and set

(). (1= 0) ) (8—0)
@ —1y) o (8 — B3 ) (By—T7.1) - - - (L5 — )

Plo,1) = 6o, t)—ZG @)

It is easily seen that
13

) =

Flo,)@(w,t), Flo,u)=0 (G=1,2,..., k).

From (62) we infer-that
25k

WF(‘% ) Flw, 1) = (o, ) D (w, ),

Consequently, in view of (60),

k-1

(63) F(w,t,)F(w,t H(w,tl,tz—l—z (@, t)#+Bj(w, t)8).

7=0
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Substituting in this equality # =1, ta =1, (§=1,2,..., %) and
taking into account the equality (62) we see that the functxons 44w, 1)
satisfy the system of equations

k-1 k-1
Z‘Ai(wy ), = —H(o, 1, wS)—Z Bij(w,a)t (s =1,2,..., k).
=0 i=0
Henee it follows that the functions A;(w,t) are of the form
k-1 .
Ay, 1) = Dy(o, )+ D degl@)t® (1 =0,1,...,k—1),
8=0
where €|D;(w,t)| is continuous. In the same way we obtain
k-1
By(w, 1) = Bi(0, )+ Y rasl@)t  (1=0,1,...,k—1),
8=0

where €[R;(w,t?)| is continuous.
in formula (63) we get

Substituting the expression obtained

+Zc¢,

4,7=0

(64) Flw, ) F(o,t,) = C'J tls tltzs
where ¢ H*(w,1,,1,) is locally bounded. Setting 1, = @,, t, = @, (8,7 =
=1,2,...,k) and taking into account the equality (62) we infer that
Eleg(w)] < oo (4, =0,1,...,k—1). Consequently, from (64) it follows
that E}F(w, t)]? is locally integrable, which proves the Lemma.
TEEOREM 10. The existence of the expected value BD(w,t,)P(w,1s)
implies the existence of the ewpected value E®(w, t).
Proof. For the proof, the process @(w,t) must be represented in

the form
k

at
where F(w, t) is the process appearing in Lemma 9. Since the function
E|F (o, t)}* is locally integrable, the function €|F(w,t)| is locally inte-
grable too. Thus the process @ (w, t) has the expected value d*CF (w, )/,
which proves our theorem.

The class of all the generalized processes @ (w, t) for which the expected
value Ed(w, 1,)P(w, t,) exists will be denoted by K. The following im-
plication is easily verified:

If ®(w, 1)ef, then we have PD(w, 1)/dt° R for every positive integer 8
and f(t)D(w, t)e@ for every mult@plwator f(t).

We shall see later that the class & behaves in the same way as the
clags of ordinary processes with a finite expected value of the square.

P(w,it) = F(w,1),
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THEOREM 11. Suppose that ®(w,1)eR and ¥(w, t)eR; then there evists
the expected value EP(w, t,)¥(w,t,).

Proof. Let us represent the processes @(w,t) and ¥(w,t) in the
form

oy ks

Dl(w,t) =— Fy(w, 1) Y(w,t

d
) 1 y 1) :_dtk2 Fow, 1),

where the processes F;(w, t) and Fy(w, t) appear in Lemma 9. Let us set

G, b, t) = Fy(w, 1) Fy(w, t;). Then we have the equality
ak1+k2
ot G b t) = Blo, ) F(w; ).

From the inequality
ClG(w, By b)) < CFy(w, tl)lz“‘éle(w: tz)lz

and from the local integrability of the functions ¢|Fy(w,t)* and
E|Fy(w, 1))* follows the local integrability of the function €|G(w, 1, 1)l
with respect to ¢, and t,. Hence @(w, t,)¥(w, t;) has the expected value
defined by the formula

9F1tke
191k

COROLLARY. Prom Theorem 11 it follows that @(w, t)eR together with
Y(w,t)eR imply O(w,t)+¥P(w,)ef,

THEOREM 12. Let the processes @ (w,t) and ¥(w,t) belonging to the
class & be independent; then

Ed(w, 1)V (w,1,)

EP(w,t)¥(w, 1) = EG(w, B, ta).

= E®(w,t,) EP(w, 1s).

Proof. Let us represent the processes @(w,t) and ¥(w,?) in the
form

koy kg

W Fl(wy t)] ![/(w’ t) = dtkz

where the processes F(w, ) and Fy(w, t) satisfy Lemma 9. An argument
similar to that used in the proof of the foregoing theorem gives the equal-
ities

Q(Wyt) == Fz(wat)y

L

d*s
Ed(w,t) = 7oy EFy(w,t), E¥Y(w,t) =—d—ECF2(w, t),
gtk
Ed(w, 1) (0, b)) = atklatkz CFi(w, ) Fy(w, 1),

Studis Mathematica XVI. 20
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whence, as k, -0 and h, -0, we have

1

hklh’“’ 1))6(A§£2)F2(w, b)) = BP(w, 1) B¥ (w, ),

(65) (A F

(66) E(AFIF (@, 4y) AFDFy(w, 1)) > BO (0, 1) BV (0, ty).
1 2

h;“lhfzc?
The processes @ (w, ) and ¥(w,?) being independent by hypothesis,
we infer by Lemma 4 that the increments A} "V (w,t,) and AL"Z)Fz(w t,)
are independent. The left-hand sides of formulae (65) and (66) are identical,
whence the theorem follows.

NI.3. In the sequel we shall need the following lemmas concerning
processes of the class K:

Lemma 10. Let @ (o, t)eR. If for a certain integer k there ewists a con-
tinuous function a(t,,t,) satisfying the equality

3% C -
ikatk a(tyy 1) ‘qu(wyt) (o t)

then there exisis a continuous process F(w,t) with a continuous expected
value €|F(w,t)]* and such that

dk—i-l

WF(UJ, t) = ®(w, ).

Proof. From Lemma 9 follows the existence of a continuous process
G(w, t) with a locally integrable expected value € |G (w, t)|* and satisfying,
for a certain s, the equality

8

(67) Gw,t) = D(w,t).

ar
In the case s < k it is easily seen that the process
1 t
Flw,t) = | (t—u)** /
(w,1) (k—s)!bj (t—u)"*@(w, w)du

satisfies the requirememts of the lemma. Thus it is sufficient to con-
sider only the case s > %. We may suppose that
(68)

Go,2) =0 (j=1,2,...,8),

where @y, @y ..., @, (4; 7 @; for i % §) be a system of real numbers.

icm

Generalized stochastic processes 307
From the hypothesis and formula (67) we have

- el [

1 — ;) (fs"“uz)]s’k_

I3
FoE EG(w, 1)@ (w, 1) = oE G—t—D) @y, Uy) Aty dus
28
=_——b
atfat; (t11t2)7
where
az(s_k)
Wb(tutz)
is continuous. Hence
s—~1
EQ (e, )G {w, ta) = bty £a) +2 (8) 8 -4+By(t) ).

j=0
Substituting in this equality #;, = ¢, t, =&, (r = 1,2, ..., 8) and taking
into account the equality (68) we see that the funemons 4;(t) satisfy
the system of equations

8—1 8—1
;Ai(t)af,: —b(t,w,)—jgij(wf>t’ (r=1,2,...,3)
-k
Hence it follows that p —~54;(t) is continuous. In the same way we obtain
5o
that E —— B;(t) is continuous. Consequently,

=B

5?“"0#“" CG (v, 1) Fw, 1)
1 by

Ao(ty; 1) =
is continuous.
Let us define the family of processes

AL-DQ(w, 1)
=

A1 4(s=1)
_——_%i—kh;?k EG{w, )

(69) Hy(w,t) =
Since

(EHILI((“, tl)H7a2(w, by) = G(w, 1),

then, in virtue of the continuity of the function a,(f;; ),
(70) EHpy(w, ) Ha(w, 1) = 8o (b, 1a)
as hy, hy - 0. Thus from the equality
C|Hpy (o, t)—Hyy(w, 1)|* = E[Hylo, H*+E [ Halo, -
—CHp(w, 1) Hyfw, 1) —CHy (0, () Hagw, 1)
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we obtain, as hy, by =0, €|Hy(w,?)—Hp(o,?)?2 0. This implies the
exigtence of a process H(w,t) such that

(T1) E|Hpw, ) ~H(o,t)*=z0 as  h—>0.

Formula (70) leads to &|H(w, )" = at,t), whence the expected
value €|H(w, )| is a continuous function. From (71) it follows that for
m =1, 2,... the sequence

n
A [ B, )—H(w, 1)k
-
tends to zero as h — 0. Thus there exists a sequence hy, ks, ... — 0 such
that for almost every weQ and for m = 1,2, ... the sequence

m *

{ [ 1By, )—H (o, 0l

—-m

tends to zero as n — co. It follows (see section 1.6, p.275) that

(72) Hy,(0,1) > H(w,1).
By definition (69) we obtain for h -0
d* 1 d* @
Wﬂh(wai) =-i;:;A5f”k)WG(w,t)+;u—sG(w,t),

which in virtue of (67) and (72) leads to
%

E#'H(wst) = D(w,t).

The stochastic process H(w,t) has a continuous expected value
€|H(w, ?)°, whence almost all of its realizations are locally integrable.
Setting

1
Flo,t) = [ H(w, u)du

we obtain a process satistying our lemma.

LeMyma 11. Let {ay(ty, o)} be a sequence of continuous functions satis-
fying the conditions

2k 2k
at"{‘{é_t;can(tutz)zman(twﬁ) (n=1,2,..,,

On(t1y35) 3 0.
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Then there ewisis a sequence of continuous functions {b(ty,15)} such
that
bn(tl) ;) = bn(tgy ) (n=1,2,...),
2k 2k

an(tu t,) = atktaka'n(tly ) (n=1,2,...),
1V 1v92

:

bu(try t2) 3 0.

Proof. In the proof we must assume that

by(tys ty) = ‘é‘(an(tsn )+ an(ts, tl)) -

LEMMA 12. Let Bo(w, )e® (n=1,2, ...). [f B®,(w, ;) Du(w, &) > 0,
then there emists a sequence {F,(w,1)} of continuous processes with conti-
nuous expected values €| Fo(w, )| such that E|F(w,)* =0, and such thal
for a certain k
dk
0,0 = B0, ) (1=1,2,...)

Proof. Suppose that ED,(w,t,)Pp(w,ts) - 0.
From the definition of convergence —- follows the existence of a se-
quence of continuous functions {a,,,(tl, t,)} such that

(76) Anllyy 1) 2 0
and such that, for a certain %,

2k

&fégﬁaﬂ(tl,tg) = B®,(0, ;) Dufw, T) (n=1,2,...).

(17)

From this equality and from formula (76) it follows that the functions
Galts, t) (n =1,2,...) satisfy the hypotheses of Lemma 11. Hence without
loss of generality we may suppose that

(78) Uty 1) = an(tw 1) (n=1,2,..)

holds. We may also suppose without loss of generality that the functions

‘y(tyy ta) (w =1,2,...) have continuous partial derivatives with respect

to both variables (in the contrary case we should consider the indefinite
integrals of these functions). Applying Lemma 10 to the function

2

gty b
atlatga(” a)
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and the processes Py(w,t) (n=1,2,...) We deduce the existence of
a sequence of continuous processes |Gy(w,?)] with continuous expected
values ¢|Ga(ew,)* (0 =1,2,...) and satisfying the equalities

i

(79) L 60,0 = B0y ) (1=1,2,..).

Let @y, %5, ...,
numbers and set

my, (w; # m; for ¢ 5% §) be an arbitrary system of real

.
_ . (=) ... G—@5_1) (E—2j41) ... (E—ap)
B t) = Gl )= Dl ) e ety

It is easily seen that the processes F,(w,?) are continuous and have
continuous expected values ¢€|Fy(w,?)’. We also have

(80) Fyo,o) =0 (=1,2,....,5n=1,2,..).
From (79) we infer that
dk
(81) d—‘tEF(w 1) = Pfw, ) (n=1,2,..).

To prove our lemma it is sufficient to show that &|F,(w,?)*= 0.
From (77) and (81) using simple arguments we get

k-1
ERW0, 8) B, to) = Gulta 1)+ D) (Taalt) G4 Vaalta) ).
8=0
Interchanging in this equality ¢, and ¢, and passing to the conjugate
value, we obtain from (78)
k-1

éF (J) tl n(w t2) = Gy tl’ z) + Z 8, 'n. t2+ Us n(t tl)
8=0
Hence
k-1
(82)  EFu(@,0) Fo(0, ) = Gultys o)+ ) (Wonlta) ti+ Wi, alta) ),
8=0
where
W&,n(t) = {’"(Us,n(t)‘l"vs,n(t)) (3 = 0, 1, .y IG-“l; " = l, 2, .)

Substituting in formula (82) t, =1, t,=a; (j =1,2,...,k) and
taking into account equalities (80) we see that the functions W, (1)
(s =0,1,..., k—1) satisfy the system of equations

k-1
VWS all) @] = —ay(t, ¥) — 2 W nle)t®

8= §=0

G=1,2,.., k.

-iIcm
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Hence it follows from (76) that the functions W, ,(t) are of the form

k-1
) = 2 }‘i,s,ntj"{‘Ds,n(t) (s =0,1,.. yE—1;n=1,2 2,..)

j=o0
where 4; s (j,8 =0,1,...,k—1;n =1,2,...) are constant coefficients
and Dy (1) 0 (s = 0,1, ..., k—1) as » - co. Substituting the expression
obtained in formula (82) we get

E—1 k-1
(83) EFy(w, 1) F, (R,g,n+ 2y 5, ) B+ Dalty 1s)
=0 8=0
where
(84‘) Dn(tla tz) = 0

Setting ¢, =1t,t, =2, (r =1,2,...,k) in equality (83) and taking
into account formulae (80) and (84) we infer that for n —» >

kol
|
?7‘

1 k-1

(3 g0 mtHssnad) =0

7

r=1,2,..,k),

%

3
1
<
N
Y

whence
k1

hmz BJTL—I-Z]'SN

N—+00 720

It follows that

H=0 (8=0,1,...

(85) Lm (A n+Aisa) =0 (5,5 =0,1,...,k~1).
Formula (83) implies
k1 k1
EFL 0, 0F = D D (Regtie )t +Dalt, 1),
=0 8=0

whence, by (84) and (85), &|Fy(w, t)]* = 0, which proves the Lemma.
LEMMA 13. Let E®,(w, b)) Pu(w, 1) — 03

quence ky, ko, ... such that @y (o, 1) = 0.
Proof. If Ed,(w,t,)Pw,1,) -0, then applying Lemma 12 we see

that there exists a sequence of continuous processes {F,(w,?)] with
continuous expected values C|F,(o, t)]> and a % such that

then there exists a subse-

(86) ENFu(w, D20,

k

(87) 7

Fow, ) = Bulw, )  (n=1,2,...).
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It follows from (86) that for m =1, 2, ... the sequence

! }bé 1P, D)2dt}

—m

converges to zéro as n - co. This implies the existence of a sequence of
indices %y, ks, ... such that for m = 1,2, ... and almost every we Q the

sequence
m

[ 1B o, 0l

converges to zero as n - oco. We know that this convergence implies
Fy, (0, 1) - 0 (see section L6, p. 275). We obtain the lemma differen-
tiating this formula % times and applying formula (87).

I0.4. It is possible to define in the class ® a convergence which
corresponds to the convergence in mean of ordinary stochastic processes.

The sequence {@n(w,?)} of generalized stochastic processes is said
to converge in mean to the generalized stochastic process @ (w, t), in symbols
D(w,t) —> @o, ), if

E(¢n(m7 )~ (w, tl)) (an(a’! ts)—D(w, tz)) - 0.

It follows from Lemma 13 that the limit in mean @ (w, t) is uniquely
determined. Directly from the definition we obtain the following impli-
cation:

I &,(w,t) = P(w, t), then

d d
n(w, 1) —> D(w, 1), qun(wat)—"7¢(wat),

d
and, f(t) being a multiplicator,
F(8) D, €) = () P (w, 7).
One may also prove that @, (w,?) ~» P(w,t) with Pu(w,?) = Plo,1)
imply
(Pulw, 1)+ P, B)) = (D (w, ) +P(w, 1)
From lemma 13 follows directly

THEOREM 13. Let @,(w, t) —> P(w, 1), then there emists a subsequence
Ky, kay ... such that Dy (w, 1) - P(w, 1)

There exist, however, sequences of generalized processes convergent
in mean but not in the sense of the convergence —. Ag an example we may
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take the sequence @,(w,?) = ai(w) (n =1,2,...) where a,(w) are ran-
dom varidgbles satisfying the condition

lim & |ay(w)[* = 0
—>00
and such that the sequence {an(w)} does not converge almost everywhere.
Since EDp(w, 1) Pu(w, 1) = Clan(w)izy we have @,(w,?)—> 0.
Suppose, on the contrary, that @,(w,?) 0. Then there exists
a sequence of continuous processes F,(w, ) almost uniformly convergent
for almost every « and satisfying for a certain % the equality:
dk
Ek—Fﬂ(w,t)z-—an(w) (7?."——1,2,...).
It follows that
w(@) | o ;
Foo,) = ==+ D Bin(@)f .
! =

Hence, the sequence {F,(w,?)] converging almost uniformly for almost
any o, the sequence of random variables {an(w)} converges almost every-
where. This leads to a contradiction, which proves that the sequences
{@n(w ,t)} does not converge in the sense —-.

THEOREM 14. The relation Py (w,t)— P(w,t) is equivalent to the
existence of a sequence of continuous processes Fulw, 1) (n = 1,2, ...) such
that the functions E|F(w,t)—F(w,t)* (n=1,2,...) are continuous,
E|Fu(0,t)—F(w, )20, and for a certain k satisfy the equalities

@& , a

Eth(w,t)=¢(wat)y aiFn(wst)zén(wat) (n=1,2,..).

Proof. The necessity of the condition follows directly from Lemma 12.
We now prove the sufficiency. Suppose that, for a sequence of continuous
processes F,(w,t) (n =1,2,...), the expected values ¢ |Fy(w, t)—F(w, 1?
are continuous functions satisfying € |Fn(w,t)—F (o, )3 0.

It follows that

6(Fﬂ(wl ) —F(w, tl))(Fﬂ(wy ) Fw, tz)) = 0.

Differentiating & times with respect to ¢, and i, we get

dlc dk dlc dk
E(Et']flﬂn(wytl) - Et’f_F(w’ tl)) (EEFn(wrtz)_ 'd_t];F(ws t2))_>'0’

which proves our Theorem.
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TaEOREM 15. Leét ®y(w,t)—» 0; then Edy(w,t) — 0.

Proof. Suppose that &,(w, t)—> 0. By the foregoing theorem there
exists & sequence of continuous processes {F,L(w, t)} with a continuous
expected values ¢|Fy(w, 1)|* and such thab

(88) E|Fn(o, Bz 0

and for a cerfain Ié
Vi

(89) -WFﬂ(co,t) = O,(0,t) (m=1,2,...).

Thus we see that the expected values C|Fy(w,?)| (n=1,2,...)
arve locally integrable functions and, in virtue of (88), EF,(w,
Hence by (89)

i

BE®y (0, 1) = L

T Fplw,t) -0,

- which proves the theorem.

Let f(w,t) be an ordinary process, and let {@(ew,?)} be a family
of generalized stochastic processes. Suppose that for every sequence
=Ry <Ayn<..<Ag,n=0bof partitions of the interval (a,b) satis-
fying the condition

lim max (Aiyn—A.) =0
neroo 0Ki<hy~1

the sums
k=1

D0, (0, 0(F(@, dys,n)—Fl@, Ayn)
§=0

converge in mean. If this limit does not depend upon the choice of the
partitions, it will be denoted by

b
[ #:(0, Dif(e, ).
The integral

[ ®io, (@, 2)
—oa
will be defined as the limit in mean as n - oo of the integrals

[0, af(@,2).
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By the definition of the integral and from the proﬁexmes of the con-

vergence in mean of generalized stochastic processes we directly obtain
the following implications:

If the integral

[ &w, 9)df(w,

exists, then the integral
b

f (@, B)df( w’ 1

exists and

b b
d d -
J G vifto,p = 7 | oo, 0w, p.
If the integrals

b b
[oue,0df (0,2, [0, df(a, 2)

exist, then for every couple 1, €y Of complexr numbers the iniegral

f(ol (@, ) +e ¥y, 1) df (o, 3)

exists and

b
Jlex®y(w, ) +ePyo, t)df(w,1)

b
= elfaa(co,t)df(m,z)w [P, 8 (@, 2).
If the integrals ‘

b b
[ @0, Ddf(0,2) and  [Bw, Ddfyw, 4)

exist, then for every couple ¢, ¢, of complex numbers the integral
b
[ B0, aesfilw, H+afso, )
a

exists and
b

J o, Daafio, )+ afs(w, 1)

b b
=0 [ (0, 0)i(0, D+ 0s [Bifw, ) dfs(w, A).
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Example. Let. f(w,?) be & continuoug process belonging to the
class ®. Let us write

Hit) ={1 for t>=0,
0 for t<0.
Then for every n we have
u 0 for t< —m,
fH(t—A)dj(w, 2 =i, )—fo, —n) for —n<t<n,
- flo, n)—Fflw, —n) for t> .
Thus we see that
n
[Ht—naf(w, H+f(0, —m)—>f(o,1) a5 0 oo,
-

whenece differentiating with respect to ¢ we obtain

J Blt— 1)f (0, )=> - 1(@, 0.
Hence

o0

[ 8—1)df(, 1) ——f(w,t)
IL5. Let O(w,t)eR. Then by Theorem 10 the expected value
E®(w, ) exists; let us denote it by mo(t). As for ordinary processes, the
distribution

E(‘D (0,%)— ’m'm(tl)) (@(w, t,) —'mas(ta))

will be called the correlation distribution of the generalized process @(w,1)
and will be denoted by Bal(t, ts).
As a consequence of Lemma 13 we obtain
THEOREM 16. Let By(ly, 1) = 0; then P (w,t) = mq(t).
On the other hand, Theorem 15 implies '
THEOREM 17. Let Oy(w,t) — P(w,t); then By (f, 1) = Bo(ly, ).
From the definition of the correlation distribution it follows directly
that

.

B%as(tl? tg) = Bo(tyy 1),

at,0t,

BE(tu ty) = Bo(ly, ty).

By(tyy ts) = Ballsy 1),

icm°®
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Examples. (a) Let F(w,t) be an arbitrary stochastic process with
independent increments. Suppose that the variance o2(¢) of the inerement
Fyw,t) =F(w,t)—F (o, 0)is alocally integrable function. Then Fy(w,t)e K,
whence

a a
O(@,) = —Flw, 1) = = Fw, )cR.

Moreover we have

az
Boaliy; ty) = at, 01, BFo(tn 1s).
Since
o* (min (|t,], |2, 8 bty =0
BFo(tutz) _ ( ([t} 1 2”) as 1t = U,
0 as 4, <0,
we have
a
(90) Bg(tyy ) = 5(t1—t2)a¥"52(t1)-
1

(b) Let us consider the Brownian motion of a particle in a fluid.
Suppose that the surrounding medium acts on the particle in the follow-
ing way: 1° the particle meets with friction proportional to the velo-
city of the particle; 2°-in consequence of random collisions of the mole-
cules of the fluid with the Brownian particle, there arises a supplementary
random force which is supposed to have independent values at different
moments, its impulse being supposed to have a normal distribution in
every finite time interval. Thus the velocity v(w,?) of the Brownian
particle is a stochastic process determined by the equation of motion
(called the equation of Langevin)

—v(w, 1) = —av(w, 1) +0(a, 1),

where « is a constant and @(w,?) is the generalized derivative of a
normal process, 4. e., a generalized stochastic process with independent
values (concerning the theory of Langevin’s equation, see [37]). We find
that in this theory the velocity »(w,?) is & continuous process (in the
theory of Einstein-Smoluchowski, assuming that the trajectories of a
Brownian motion form a normal process, velocity is not even an ordinary
process). We shall determine the distribution of this velocity using the .
methods of generalized stochastic processes.

Suppose that F(w, ¢) is a normal process with the mean u(t) and the
variance o¢2(t) and that

(91) B, 1) = %F(m, 1.
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Let us also suppose that the functions x(?) and o*(t) are locally inte-
grable. To simplify the computations, we may suppose without loss of
generality that F(w, 0) = 0. From the foregoing example (formula (90)) we
obtain

(92) Bty 1) = 5(t1—"'2)%02(t1)-
Let us write

(93) Vo, 1) = o(w,1),

(94) Y(o,t) = Do, 1);

then Langevin’s equation assumes the form

(95) —d-mw,t) = V(o,1).

dat
The process ¥(w,?) also has independent values (see section II.4,
example (b)), whence by Theorem 8 it is the derivative of a generalized
process G(w,t) with independent increments:
d

EG({D’ t) = ¥(w, ).

From (91) and (94) it follows that

(96)

d t
Tt(eﬂ‘zﬂ(m, t)—a [ €“F (o, v)du) = P(o, 1),

which, together with (96), implies
. .
G(w,1) = ¢"F(o,t)—a [ F(w, u)duta(o).
0

Hence follows the continuity of the process G(w, t), which, in virtue of
the il.ldependence of the inerements of this process, implies that this pro-
cess is normal (see, for instance, [1], p. 420). By (95) and (96) we infer
that V(.w,t) = ((w, 1)+b(w). Hence the process V(w,1?) is also normal.
Hence, in virtue of formula (93), follows the continuity of the process
v(w,t): From (92) and (94) it follows that

(9T)  Bylty, t,) = e“"ﬁ‘z’a(tl—tz)icﬂ(tl) = 0§ (t,— tg)ia’(tl)
dt, )

at

Denoting the variance of the process V(w, #)—V 0 2
obtain from formula (90) ( ’ ) (CO’ ) by O'o(t), we

d
By(ty, tp) = 3(t1—1y) th—U%(tl)-
1
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From this formula and from (97) we obtain after simple computations
t
oh(t) = ¢'a’(t) —2a [ & o*(u)du.
[
Taking into account formulae (91), (94) and (96), we see that the mean

value of the increment V(w,t)—V(w,0) is equal to

¢
lut)—a J u(u)du.
0

Finally, using £ rmula (93), we get

Plv(w,t)—v(0, 0)e™¢< a) =
t
) : y—ult)+a ofe“"""ﬂ(u)du)zl

- expl{— day.
]/ 2 (0%(t) — 2a [ ¢°®~9 o*(u) du) — l
o

2(o*(t)—2a fe”tu—’)aﬂ(u) du)
0

IV.1. Stationary generalized stochastic processes may be defined
in the same way as stationary ordinary ones.

A generalized stochastic process @(w,?) belonging to the class R is
said to be stationary if

1° the expected value me(f) is constant,

90 the correlation distribution By(t,,1?,) depends only on the differ-
ence t,—ty, 4 €., Bolty, ) = [ba{ti—ts)]-

It is easily verified that if Bo(t;, t2) = {balty—15)}, then the sequence
{b,,(t)} is fundamental (considered as a sequence of functions of one va-
riable t), whence it represents a distribution depending on one variable;
this distribution will be written as Bg(t). We obviously have Ba(i, ty) =
=Bm(t1—t2)- .

B,(t) will also be called the correlation distribution of the stationary
process P(w, 1).

Examples. (a) In order to show thab the ordinary stationary pro-
cess F(w, t) is also stationary in the generalized sense i is sufficient to
show that

my(t) = CF (e, 1),

Bylty, 1) = (S(F(ah t)—CF (o, tl))(F(“” ta) — CF (@, ta)).-

To prove these equalities it is sufficient to establish the local integ-
rability of the functions on the right side (for the expected value & is
then equal to the expected value ). The process F(w, t) being stationary
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(in the ordinary semse), €|F(w,t)® = &|F(w,0). Thus we see that
every ordinary process stationary in the ordinary sense is stationary
in the generalized sense.

(b) Now we shall supply an example of a continuous process which
is stationary in the general but not in the ordinary sense. For this purpose
we shall set forth a new hypothesis about the space of elementary events:
we suppose that there exists a partition of £ info measurable disjoint
sets:

2 =

Cs

Q,

n=1

with P(Q,) >0 (n=1,2,...). We define a sequence of random variables:

]/ P (D) i
P Q1) P(Qon) + P (210)"

we 2y,
(98)  ayw)= P(Q
) 3 it wey, 4,
P (Lo _1)P(250) + P (23n_1)
0 elsewhere.

Let us write
Hoyt) = D aa(w)d™,
N=1
By formula (98) we infer that f(w, 1) = ayw)e™, for we Qyw Oy,

which implies the continnity of the process f(w, t). We shall show that this
process is stationary in the generalized sense.

Let
Pl = 310

=1

(99)

The process F(w,t) is also continuous and we have

(100) 2 F(,0) = f(0, 0.

Formulae (98) and (99) lead to

-]

R 1

(101) EF (0, 1) F(w, t;) = Zﬁ dnta-ty
. n=1

(102) EF(w,t) = 0.
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By (101) we see that the expected value €F(w,t,)F(w, t,) is conti-

nuous. From formula (100) we deduce the existence of myt) and By(t,, ts).
Taking into account (101) and (102) we have

(103)

D8

my(t) =0, Bty 1) = gt

:
consequently the process f(w,?) is stationary in the generalized sense.
If the process f(w, t) were stationary in the ordinary sense, arguing as in
the foregoing example we should prove that the right side in formula (103)
is an ordinary function, which is not true.

I
-

(e) Let F(w,t) be a homogeneous normal process. Then the mean
value of the increment #(w,t)—F(w, 0) is equal to ut and the variance
to o?f. Thus the example (a) of section ITL.5 implies, for the process

B0, 1) == (0,1

the equalities

me(t) = py  Bo(ts, I} = 020(t,—15).

Consequently, the generalized process @ (w,1) is stationary.

(d) Let the process ®(w,t) be stationary; then the process d@(w,?)/dt
is also stationary. This follows from the equalities

- D

a
ma, (0 = gmold);

9
B;id,(tu 1) = a—tlgt:Bm(tu 12).

IV.2. We shall recall some results concerning ordinary stochastic
processes with stationary %-th increments. These results will lead directly
to the theorems on generalized stationary processes.

An ordinary stochastic process F(w,t?) has stationary k-th incre-
ments if -

1° for every h the expected value CAPF(w,t) does not depend
on {,

2° the expected value CAPF(w,t,)Af)F(w, %) is a continuous
function depending only on %y, ks, and #,—%, (In the particular case of
k = 0 we obtain ordinary stationary processes.)

A. M. Yaglom ([7], p.152) has given the following spectral repre-
sentation of processes with stationary k-th inerements:

() For every process F(w,1) with stationary k-th increments there
exists a process z(m,i) with non-correlated increments (i. e., satisfying, for

Studia Mathematica XVI. 2
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all b <1y, <ty <1y, (f(z(w, t)—2(w, tz))(z(w, t5)— 2(w, tq)) =0 and o sys-
tem ag(w), ay(®), ...y Gg_y(w) of random variables such that

—1
1 (a2)\ (L-ia)"
1+MI’"2 ) e ”*2“7

(this integral is understood in the sense of almost uniform mean conver-

gence with respect to ¢, whence also in the sense of the convergence —»),
Every bounded non-decreasing function Hpy(t), continuous on the

right and satisfying, at the points of continuity i, > ¢,, the relation

(104) Plw,?) = f(e“‘

(105) Cla(w, ti)—2(w, t)* = Hp(t) —Hg(t),

and such that Hy(0) = 0 is called the spectral function of the process F(w, t);
this function is uniquely determined. A. M. Yaglom has shown that every
bounded, non-decreasing funetion, continuous at the right, and vanishing
at zero, is a spectral function of a process with stationary &-th differences
(see [71, p.154).

We shall now prove some lemmas connecting generalized stationary
processes with continuous processes having stationary k-th increments.

LuwwaA 14. For every generalized stationary proces @(w, 1) there ewist
a non-negative integer k and a continuous process F(w, ) with stationary
k-th increments such that
dlc
—dT:EF(O), t) = QD((D, t).

Proof. The process @ (o, t) is in the clas &, for it is stationary. Ma-
king use of Lemma 9 we deduce the existence of a continuous process
F(w,t) with a continuous expected value ¢€|F(w,?)|* and satisfying,
for a certain %, the equality

k
i
whence also the equality

Fw, t) = @, 1),

2k

i _—
(106) g CT (@, )T (@, 8) = Bolty, )+ Imal?

‘We can suppose without loss of generality that for the same % there
exists a continuous function b(t) such that

dzk
(107) 770 (M = Bo(l).

icm°®
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‘We shall show that the process F'(w, t) has stationary %-th increments.
From the equality

dk
ar
valid in this case for every h, it follows that EAPF(w,1) = mgh*. The
continuity of the function €|F(w,t)|* implies the continuity of the fune-
tion CAPF(w, 1) AR F(w,1,) with respect to ki, hs,t, and f,. From
formulae (106) and (107) we obtain
AP (0, 4,) AT (0, 1) = (—1)*4f 45
from which it follows that the process F(w, t) has stationary k-th incre-
ments.
Lemwa 15. Let F(w,t) be a continuous process having stationary
k-th incremenis; then d*F(w,?)[dt* is a stationary process.
Proof. This immediately follows from the representation
m gk (t) =[n CAu;»F(m’ 01,
dtk
Bak (1) = [0 C AT (0, 1) AR F (@, ta) = Mgy -
k"

CF(w,1) = ma,

b (f, — 1)+ mBRERE,

Joining Lemmas 14 and 15 we get

TramorEM 18. A generalized stochastic process is statwnary if and only
if it is the generalized derivative of the k-th order of a continuous process
with stationary k-th increments, k being o non- negative integer.

COROLLARY. Using theorem 18 and the theorem (%) of Yaglom we im-
mediately obtain the spectral repr esentation of the stationary generalized
processes given by K. Iio [6].

Tndeed, let the stationary process O(w,t) be the derivative of the
k-th order of the continuous process F(w,?) with stationary %-th incre-
ments. From formula (104), differentiating % times, we obtain

" (108) O(w,1) = fe“‘dZ(w,l),

where the process

13
Z(w,t) = [(1+iw)fde(o;w)
0
has non-correlated increments. The function

i
Holt) = [ (144 dHz(u)
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is called the speciral function of the generalized process $(w,1). It is easily
seen that the funetion_H¢(t) is non-decreasing, continuous on the right,
vanishing at zero, and satisfies, at the points of continuity ¢, > t,,

(109) ElZ (0, 1) —Z (0, t)[* = Ho(t:) —Halts).

The spectral function of a stationary generalized process is unboun-
ded in general. There exists however a number m such that . )
Ha(?)

=0 tm ‘

(110) =0.

Every non-decreasing function H (¢) continuous on the right, vanishing
at zero and satisfying relation (110) is, for a certain m, the spectral
function of a stationary generalized process. This follows from the fact
that, in this case, the function

¢
_f aH@)
o) = f (1-+uh)y™

0

is a spectral function of an ordinary process with stationary m-th incre-
ments (compare the theorem (x)).

IV.3. Now we shall investigate the correlation distributions of gen-
eralized stationary processes. For ordinary stationary processes the cor-
relation function is the Fourier-Stieltjes transform of the spectral fune-
tion of the process. An analogous theorem holds for generalized processes

(compare [6], [4]). We adopt the following definition: If the sequence
of functions

| [ 96, wif(w}

—n

is fundamental, then the distribution

[ [ 9@, wafw)

will be denoted by -

oo

[ gtt, waf )

and will be called the generalized Stieltjes integral.

TepoREM 19. The correlation distribution of a stationary generalized

process is the generalized Fourier transform of the spectral function of this
process, 1. e., k

holds. Bot) = [ ¢™dH(u)

—00
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Proof. Let us represent the generalized stationary procéss ®(w, t)
in the form (108). We define a sequence of ordinary processes

(111) oo, ) = [e*dZ(0,0) (n=1,2,..)

-7
for which the relation F,(w,t) => @(w,t) is valid. Hence by theorem 17
(112) By, (1, ta) = Bal(l, t2)-
The formulae (109) and (111) imply

n
Brftit) = [0 W), n=1,2,...,
—n

from which, taking into account the continuity with respect o #; and %,
of the functions on the right side of this formula and formula (112), we
obtain

Bolts, ta) = | [ 6“0 aH,(w)].
Hence

By(t) =| fn M AH 5 (u)] = fe”"‘dH@(u),

which proves our theorem.
This theorem together with the hitherto quoted properties of the
spectral function implies the following necessary and sufficient condition:
The distribution B(t) is a correlation distribution of a stationary gener-
alized process if and only if it is the Fourier-Stieltjes transform of a wmon-
-decreasing fumction H (1) satisfying for-a certain m the condition
im 2O,
{t| >0 i
Example. The correlation distribution Bg(f) of the derivative of
a homogeneous normal process is equal to 028(t) (compare the example
(e), section IV.1). Since

1 oo
8(f) = o fe""*du,
—00

the spectral function of the process @(w,?) is equal to ¢%/2x. The deriv-
ative of the spectral function, 4. e., the spectral density is therefore equal


GUEST


e ©
326 K. Urbanik lm

to 0%/2n. Hence the process $(w, t) is the so called “white noice”, 4. 6.,
a stationary process with a constant spectral density. Similarly we obtain

o0
2
(113) Bar (1) = (—1)ffc?®0 (1) = f Gy gy
- 27 _J
A generalization of formula (113) to arbitrary generalized processes
with independent values has been given by I. M. Gelfand [4]. The fol-
lowing theorem gives an analogue of formula (113) for generalized sta-
tionary processes with independent values:
TeuoREM 20. The distribution B(t) is the corvelation distribution of
a stationary generalized process with independent values if and only if the

equality
Z (—1)°6,6¢)(2)

8=0,

holds, where ¢y, €1y ..., Cp are reals such that the polynomial

m @
S
§=0
takes on mon-negative values for real .

Proof. Necessity. Without loss of generality we may suppose
that the generalized stationary process @(w,t) with independent values
satisfies the condition ma == 0. From the property 1 of section II.4 and
from Lemma 14 follows the existence of a continuous process F(w, 1)
having, for a certain k, stationary k-th increments and satisfying the
equalities

k

Flw,t) = D(w, 1),

a*
a‘.’.lc
. (114) Frona EF (0, 3,) F (o, ty) = Bo(t,— t,),
(115) dt’“ CF(w 1) =mg =0,

and such that for every 1 > 0 the processes AMF (w, 1) have kh- -indepen-
dent values. It follows from formula (114) ag h - 0 that

(116) h% CART (0, 1) 4f°F (0, ) > Bofty—ty).

The k-th increments of the process F(w), f) being stationary, we can
seb

i) ba(ti—1s) = 0* AR F (o, 1) AT, F(w, 1y).
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The functions b,(f) (» =1,2,...) are continuous, whence formula
(116) implies
(118) Bo(t) = [ba(1)]-

We deduce from the kh-independence of the process APF(w, 1)
and from formulae (115) and (117) that

(119) bty =0 for [ >kn (n=1,2,...).

From the definition of fundamental sequences it follows that there
exist continuous functions g(t), g.(f) (n =1,2,...) such that

(120) galt) = g(2)
and such that for a cerfain r > 1
(121) g0 = bty (m=1,2,...).
Henee from (118) it follows that
d

. (122) =+(t) = Ba().

We infer from formulae (120) and (121) that Afg.(t)= AN gt
for every h, whence, in virtue of (119), AP g(4) = 0 for t, h > 0 and for
t, h< 0. Thus there exist two polynomials V.(t) and Vy(t) of degree less
than r such that

(123) g(&) = Vi) H () + V() H(—)+9(0)
where H (¢) is a function equal to 1 for t >0 and equal to 0 for ¢ < 0.
From the equality
d .
E{(t"H(t)) = H{@E) (s=1,2,...)
and formulae (122) and (123) we obtain directly

(124) Bu(t) = ), as6®) (1),

8=0
where g, @y, ..., Gy are certain complex numbers. From
By(t) = Bo(—1),

80(t) = (=169 (—1), 00 =69 (8=10,1,...)
and from (124) it follows that

m

Bot) = D, (—1)'@d(),

B0
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whence
. :
(125) Bolt) = D' (—i)6,® (1),
8=0

where the reals ¢y, ¢, ..., ¢, are defined by the formula

,I;S

6 =7 (asH(—1)'G) (3=0,1,...).

From formula (125), using the equality

8

. 2 WSl
5()(t)=-2——; fe’”td(é+1) (s =0,1,...),

=,

we obtain

©

m a1
Ba(t) — iutd( _G¥ )
ol f ¢ £ (s 11

From this equality and Theorem 19 we easily deduce tha.t':

va e, o’
£ Im (s 1)

is the spectral function of the process &(w, ¢), whence in particular it does

not decrease. Differentiating with respect to the variable z, we obtain
for all real a’s ’

. m

et > 0;
8=0

thus the necessity is proved.

Sufficiency. Let ¢, ¢y, ..., ¢, be a system of reals such that for
every real x

(126)

8=0)
We shall show that the distribution

n

(127) D (—i)e,89(1)
8=0

is the correlation distribution of a i i
i generalized stationary process with
independent values. We shall use the fact that there exi 8

normal process (see [2]). sts & homogeneous

icm
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Let @(w,t) be the generalized derivative of this process. Taking
into account example (¢) of section IT.4 we see that for every system of
numbers g, A;, sy ..., A, the process

n N
&
v 1) = Jon—
(128) (@, ;’z = (@, 1)
has independent values. Let us suppose that the variance of the consi-
dered normal process is equal to 1, i. e., that B,{t) = &(f). From (128)
we obtain Mmy(t) = Aymg.
The following equality is easily verified:

2n
Bo(t) = ( > (—1/ady) 8.

8=0 kij=s

(129)

Hence the process ¥(w, ?) is stationary. We shall show that it is possible
to choose complex numbers 2y, 4y, ..., 4, in formula (128) so that By(?)
be equal to distribution (127). Without loss of generality we may suppose
that m is equal to the degree of the polynomial on the left side of inequal-
ity (126). In virtue of (126), the number m is even and ¢, > 0. We define
the number » in formula (128) as n = {m.

Trom (126) we also deduce that every real root of the polynomial

m
S
8=0

is of even multiplicity. The coefficients are real, whence if a non-real
number is a root of this polynomial, its conjugate complex number is
also a root. Thus there exist # complex numbers z,...,2, such that

(130) 21y By eees Bny 1y Bayeeey

are all the roots of the polynomial

m
St

8=0
(each root counted with its multiplicity).

Let (Y, Yy --+3 Yr) (B 3> 0) be the k-th fundamental symmetric poly-
nomial of variables ¥i,%s; ..., Ys. This means that 7o(Yyy ..oy ¥r) = 1,
and for & >1 the polynomial =x(y1, ¥z, ..., ¥») is the sum of all
the products of the form ¥y, ¥y, --- Yoy where the indices Pi, Pay---3Pn
run through the values 1,2,...,7 and 1o two of them are equal. If is
known that the coefficients of the polynomial

fc,f

8==0
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may be expressed by its roots (130) as follows:

(131) 6 = (—1)" 0 Tm_s(R1s 22y «ovs Zny 1y Zay o) (8 =0,1,..,m).
The following relation is easily verified:
(132) 2 Tn 181, %25+ ooy #n) Tai (1 %2y « o s 2n)
ktj=s
okign .
= 1m—8(z17 22’ RS zn7217 227 A ] Eﬂ,)

where n = m/2. Let us set in formula (128)
A= in+il/o—;1n—j(zla Ryy o evy Zn)

then we infer from formula (129) that

(j=0,1,...,n);

4 OmTni(#1r P23 -+ vy %) Tacg (15 Ry o5 7)) 3(1).
8=0  k+j=8
ogkign

Making use of formula (132) and the equality n = m/2 we get
m
By(t} = Z (=0 (—1)" " CaTm_s(Z1) %2y o+~ %ny 21, Zgyeey Zn) 6(8)(”’
8=0
which, in virtue of (131), gives
By () = D' (—i)°e,691),
8=0

which proves the theorem.

VI.4. Let &(w,?) be an arbitrary generalized stochastic process;
then there exists a generalized stochastic process ¥(w,t) satisfying

g P(w,t) = Do, t).

dt
Then, for every couple @, b of real numbers, we set
b
(133) [ &0, w)du = ¥(0,t+h)—¥ (o, i+a)
tia

(this expression does not depend on the chojce of the process ¥(w, t)).
This definition is due to Z. ZieleZny (in connection with this see the paper
[8]). From the definition we directly infer the following:
1. Let the expected value Ed(w,?) exist; then the expected value
i4b
B f O (o, u)du
t*u

icm
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exists and we have
. i+b i4+b
E [ ®0,wdu= [ E®(w,w)du.
t+a i+a
2. Let @y(w,t) - D(w,1); then

t+b t4b
f Bo(w, w)du > [ D(o,u)du.
t+a t+a

The same implication holds for the convergence —».
LEMMA 16. Let ®(w,t) be a generalized stationary process and let

1 4T
Pp(, 1) = o f B (u, u)du;
t

then a8 T — oo we have

4T
ﬁ;t_f Bg(u)du — Hy(+0)—Hga(—0),

Byyltyy ta) = Ho+0)—Hg(—0).

Proof. We infer from Theorem 19, as n — oo, that

[ 6t ,(u) - Bo(2),

whence by property 2

n t+T

i . 1
fiui“_Tem‘dH@(u)-)_ f By(w)du as n - oco.
uT 2T i

The continuity with respect to ¢ of the function on the left side of
this formula gives

o0

wr sinuT )
. iuT .
(134) T fT B (w)du = _£ B S TaH ()

Let us represent the stationary process @(w,t) in the form (108)
and let us define the sequence of ordinary processes

(135) B0, 1) = [¥iZ(@,2) (r=1,2,..).
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Then we have &,(w,t)-» ®(w,t). Thus, writing

"y
f Gp(w, w)yiu  (n=1,2,...),

1
Tn,i"("-’? 1) =

136
(136) v

we deduce from property 2 for n — co that Yo, p(wy t) => Pp(w, t).

By Theorem 17 we see that By, it ta) = By, (t1,1s) a8 1 - oo,

Since in virtue of (109), (135), and (136)

V Fosin?ul |
BY’n,T(tl’ t,) = f_(q;"l—")-z— Gm(t:—tz)dgm(u)’
-7
we have
F osin?ul '
(137) By (tyy ts) = f W 61"“"52)dﬂ'¢(u).

From the definition of the spectral function it follows that there is
an m such that

hﬁl H (1)

[ 4

Let &k = 2m; then the function

* AH ()
14uk

Pty =

is bounded, non-decreasing and satisfies the equality

(138) F(+0)—F(~0) = Hy(+0)—H,(—0).
Let us seb

k=1
e\ (But)

Tr(u, T) = (—iy SB0L_ (40 [ ’ 1%) i
ulT  (1+ur) ute ,‘i‘h———uk ———)7

f2®) = [ Jr(u, t)ap(u),

ooty t) = [ Jatu, t) o0, 7] ‘%%,,l

icm
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Taking into account (138) we obtain as 7' — oo

ke

(139) ()% (Ho(+0)—Ho(—0)) 7,
- 4t
(140) galtsy to) = (Hol+0)—Hy(—0))

R
and from (134) and (187) we infer that

+T ol

@ 1
Tt =55 [ Bawdu, o, galt, 1) = Bgltss ).
o 1V

The conclusion of our Lemma then follows by formulae (139)
and (140).
Let @ (w, t) be a stationaiy process; then by property 1 of the distri-
bution integral the expected value of the process
1 4T
Prlw, ) == [ Olo, u)du
2T
. 1
is equal to m,. Hence the convergence of the correlation distributions
By, (ty, ts) > 0 as I' — co is equivalent to the convergence ¥r(w,1)—>mq
as T - co. Hence from Lemma 16 we deduce the following ergodic theo-
rem for generalized stochastic processes:
TuEoREM 21. Let P(w,t) be a generalized stationary process. The re-
lation.
14T
l ~
— J D(w, u)ydu —>»mg; a8 T oo
2T, 4, .

is equivalent to the relation

1T

1 r

— By (u)d 0 a8 T ->oco.
ZT’_JT o(u)du -
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Some remarks on the convergence of functionals on bases
by
W. ORLICZ and Z. CIESIELSKI (Poznan)

1. In this paper X denotes a Banach space, unless explicitly stated
otherwise.
We shall say that a subset B of the set A C X is a linear rational
basis (briefly — LRB) of the set A if zed implies
m
(%) o= Y am,
! d=1
where ;¢ B, a; are rational numbers and m is a positive integer depending
on .
If the representation () is unique for each wed then the set B is-
called a rational Hamel basis of the set A.
We shall say that the subset B* of the set A C X is a convex rational
basis (briefly — ORB) of the set A4 if there exists a point aeB' and areal
number M > 0 such that xed implies

(%) | o= > Bilm—a)+a,

i=1
where ;e B, f; > 0 ‘are rational numbers satisfying the condition
pr4...4-Bm < M with a positive integer m, depending on .
We observe that every CRB of the set 4 is an LRB of this set.
We say that the functional £ defined in a convex set D C X is a con-
vew functional in D if for any z,yeD we have the inequality

) E(Me+py) < A () +uély),
where 1> 0 and w > 0 are arbitrary rational numbers satisfying the
condition A4 u =1. ' .

If the functional & is continuous in D the inequality (%*) is sabis-
fied for real A, u.

1.1. We denote by K (2, ) the closure of the sphere K (,,r). Fur-
ther we use the following terminology. '

An arbitrary functional & is wniformly bounded in a set A if there
exists a constant @& such that wed implies |&(w)] < G, where G does not
depend on .


GUEST




