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Some remarks on the convergence of functionals on bases
by
W. ORLICZ and Z. CIESIELSKI (Poznan)

1. In this paper X denotes a Banach space, unless explicitly stated
otherwise.
We shall say that a subset B of the set A C X is a linear rational
basis (briefly — LRB) of the set A if zed implies
m
(%) o= Y am,
! d=1
where ;¢ B, a; are rational numbers and m is a positive integer depending
on .
If the representation () is unique for each wed then the set B is-
called a rational Hamel basis of the set A.
We shall say that the subset B* of the set A C X is a convex rational
basis (briefly — ORB) of the set A4 if there exists a point aeB' and areal
number M > 0 such that xed implies

(%) | o= > Bilm—a)+a,

i=1
where ;e B, f; > 0 ‘are rational numbers satisfying the condition
pr4...4-Bm < M with a positive integer m, depending on .
We observe that every CRB of the set 4 is an LRB of this set.
We say that the functional £ defined in a convex set D C X is a con-
vew functional in D if for any z,yeD we have the inequality

) E(Me+py) < A () +uély),
where 1> 0 and w > 0 are arbitrary rational numbers satisfying the
condition A4 u =1. ' .

If the functional & is continuous in D the inequality (%*) is sabis-
fied for real A, u.

1.1. We denote by K (2, ) the closure of the sphere K (,,r). Fur-
ther we use the following terminology. '

An arbitrary functional & is wniformly bounded in a set A if there
exists a constant @& such that wed implies |&(w)] < G, where G does not
depend on .
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£ is Tocally uniformly bounded in a region D?) if-there exists for every
zeD a neighbourhood K such that ¢ is uniformly bounded in K.

The sequence {E,,} is bounded at the point @ if there exists a eonstant
G(z) such that |£,(z)] < G(x) for n =1, 2,

{&a} is bounded in a set A if it is bounded at each point of this set.

[En} is umiformly bounded in a set A if there exists a constant @ such
that wed implies |£,(z)| < @ for n =1, 2,

{En} is Tocally uniformly bounded in a regwn D if there exists for every
xeD a neighbourhood K such that {é‘n} is uniformly bounded in K.

We shall also use the notion of the boundedness above (below) of
a functional & and a sequence {&,}. The meaning of this terminology will
be analogical to that given above.

1.2. Let the functional & defined and convex in a convexw region D be
uniformly bounded above in a sphere K (xz,,7) C D by a constant G. Then
it is umiformly bounded below in this sphere by a constant 2&(x))—@.

Since yeK (2, r) implies £(y) <.@, we have for ze K (2, 7)

E(@) = 2&(@0) — & (20— ) > 2&(my) —G.

1.3. Let the functional & defined and convex in a convex region D be
uniformly bounded above in a sphere K(w,,v) C D. Then it is continuous
at the point z,.

Suppose &(x) < G for weK (@, 1)
we have the inequalities

G— E (o)

. Then one may easﬂy prove that

@,
> E(@m+B)— (@) 2 E(mo)— (@ —h) é(—%———,
where # and heX are such that x,d-nheK (2, 7) (see [4], p. 92-93).
Thus for every ¢ > 0 there exists a &> 0 such that |h|| < & implies

[&(@0) — & (wo+h)] < &.

icm

1.4. If the functional & is continuous, convex and wniformly bounded

above in K (m,, 1), then it satisfies for every 0 < y < 1 the Lipschite condi-
tion in the sphere K (x4, yr).

‘Supposts ) ly1—mll =7 and |ly,—ay|| = yr. Our assumptions imply
the mequa.htles 28(m) —G < E(y,) < G and —G < —&(y,) < G—2E(x,).

Hence 2( G) < E(y1)—E(ys) < 2(6‘"‘5(‘%))-
Since 7'(1 ¥) < ya—v.ll < r(1+4y), we have
2 (f(mo) "‘G) E(y) — &(y) 2 (G_f(wo))
r(1+y) ly, =l r(l—y)

] Let z,, & be arbitrary two points of the sphere K (w,, y7); We con-
sider four different points y; = ,+¢;(w,—=,) such that |ly,—a,| = r for

') E. g. an open set.
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i=1,4, |[ly;—=%| = yr for ¢ = 2, 3. The values of the parameters t,,,, f
and 4, corresponding to the points y,, y,, y; and ¥, respectively, satisfy
the conditions #,#, << 0 and #,f; < 0. We take ¢, < 0 and f, < 0. Since
Yss Yo ¢ K (29, y7) and 3;>0, 3,>0, we have ;> 1, t4> 1. We observe that
h<h<0<1<t<t,. Smoe the real ﬁmctlon p(t) = &+t (me—my))
is econvex in the closed interval <i,, ?,>, we have the mequaht1es (compare
[4], p- 93-94)

@) —o(t _ @ (&) — o (ts)
o <eh—p0) < T
Hence follow the inequalities
§(2)—£(y1) By) —& (1) £y —£(ys)
“yz._yﬂl ”-’1’2“971” lya—vsll
The above inequalities imply
|€ () —£(2y)] < H (e —a i

for arbitrary @, #,e K (@, y7).

2. If the functional & defined and convex in a comwvex region DCX
is uniformly bounded above in a ORB of D then it satisfies the local Lip-
schite condition and consequently is locally uniformly continuous in D.

Let * > 0 be such that K(a,7)C D. Then there exists a number
o> 0 such that every yeK(a, o) is of the form y = s(z—a)+a, where
zeK(a,r) and s = 1/M. Moreover, the constant s may be supposed to
be rational. Since zeB* implies £(2) < @, we have

£(y) = &(s(a— >+a)—s(2sm( 23— a)+a)
< S+ (1= St e
i=1 i=1

Hence it follows that yeK(a, o) implies £(y) < G Let z, belong to
D—K(a, o). Then there exist numbers a > 0, § >0 and a point be D such
that a+pf = 1 and @, = aa—+pb. The point z, is an interior point of the
cone

= [0:0 = py+ab, yeK(a, 0),p > 0,4.> 0, p+g =1}.

In fact; there exists a 6>0 such that |z —%H < 6 implies [ly—all <e-
Thus we have, for weK (z, 8), &(z) < max (G, &(b)). Hence 1.2, 1.3 and
1.4 imply 2.

Studis Mathematica XVI. 22
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2.1. The assumption of the completeness of the space X is super-
fluous in 2. :

2.2, Let 5 denote an additive functional defined in X as follows.
If @ belongs to a rational Hamel basis B of the sphere K (0, 1) then ()
equals an arbitrary negative number. For ze (0, 1) — B we put 5(z) =
= ay () + () +-... Fann(®,), Where ¢; and ;6 B are given by ().
Since the functional 7 is additive, it is convex. Moreover, it is uniformly
bounded above in an LRB of K (0, 1), but it is not continuous. It fol-
lows from 2 that the rational Hamel basis of the sphere K (0,1) cannot
be a CRB of the. sphere K(0,1).

3. Let the functional &, defined in a convex region D be continuous
and convex in D for n = 1,2, ... Then if the sequence {Fn} @8 bounded above
in o CRB of D and

(a) if the sequence {&,} is bounded in a set dense in D then it is locally
uniformly bounded in D, and &, satisfies the local Lipschite condition
uniformly in n (conseque'ntlg{ &, are locally equicontinuous),

(b) if the sequence {Eﬂ} is convergent in a set dense in D then it is con-

vergent in the whole region D to a convex and comj}nuous functional £.

Ad (a). Our assumption implies &,() <@ for n=1,2,..., veB*

Retaining the notation from the section 2 we may conclude that for every
yeK(a, o) there exists an xeD such that y = s(x—a)-+a. Hence

m

Eafs(@—a)+0) — & Y sBil@i— a)+a)

i=1

&uly) =

m

< ) sBitalm) +(1— Zm' 38:) £u(a)

i=1 i=1

< ZsﬁiG(%) + (1 — §8ﬂi) G(a)
i=1 i=1

< ma‘X(G(wl)y seey G(mm)y G(a,)) = G’(:’/)'

We consider the sphere K (a,0*)C K(a,p). We write F, ==
= {w: &uz) < 7y weK(a,0'), n =1,2,...) for »=1,2,... The sets
F, are closed and X(a,¢") = F, C F,C ... Thus there exists an 7, such
that F, O E(y,, ¢'). Hence we have &,(x) < 79+1 = @, for weK (y,, o)
and n=1,2,... If %eK(y,, ¢'), then the sequence {&,) is uniformly
bounded above in a neighbourhood of @y and the theorem is proved. Now
%et us suppose x,e.D—K (y,, o). Let H denote a set dense in D such that Ifn}
is bounded in H. Then there exist a sphere K(y;,0")CE(y,y,¢), a point
%6 H and numbers ¢ > 0,8 > 0 such that at+f =1 and @), = ay,+p2.

icm
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Now we repeat the arguments of the last part of the proof in the sec-
tion 2. We obtain £,(w) < max(@,, £,(z)) forn = 1,2, ... and ze K (z,, 6).
Since £&n(2) < G(2), we have, for every n and weK(x,, §), &(z) <
< max(Gy, G(z)) = G(w).

Further let us observe that the sequence {£,} is locally uniformly
bounded below in D. Indeed, there exists a point 2, ¢ H such that {jg; —,|| <
< §/4 and the sequence {£,} is uniformly bounded below in the. sphere
K (2,, §/2). Since z,e K (2,, 6/2), there exists a sphere K (z,, 6,) C K (2,, §/2).
Thus there exists for ze K (z,, 6,) a constant G*(x,) such that |£.(z)] <
< G*(m,) for n =1,2,... From 1.4 it follows that

| € (1) — &n(5)] Q(G*(”o)—fn(%))
[l — 0} r(1—y)
and for arbitrary w;, w,e K (%,, y0;), where 0 < y < 1.

for n=1,2,...

Consequently,
46" ()
r(1—y)

|€n(@1) — £nlea)] < lly —a4|
in the sphere K(wxy, yd).
Ad (b). The proof is immediately obtained from (a).

3.1. If we suppose X to be an arbitrary (¥)-space, then lemmas
1.2 and 1.3 remain true. However, Theorem 2 must be formulated for
spaces of type (F) in a less general form. -

If the functional &, defined and convew in o convex region D, is uniformly
bounded above in a ORB of D then it is locally uniformly continuous in D.

The method of the proof of the section 2 shows that & is locally uni-
formly bounded in D. Let , denote an arbitrary point of D. Applying
1.3 (with the same notation) we see that for every point xeK (m,71)
(where 0 < 7, < r) the inequalities

o N . —G
g:_i,(f”l_) > E(, 4 h) — E(@y) = E(py) — (w1 —P) > 5_(“"_71__,

1

hold for heX such that |mh| < r—r,. From 1.2 and from the last in-
equalities follows the inequality
< Z(G—f(%))

n

& (21) — & (@)l

H

where @, = @+ h. Thus for every &> 0 there exists §>0 such that

l2,—,]| << & implies |£(@,)— &(w,)| < & for arbitrary wl,mael?(mo,'rl).
+3.2. The formulation of Theorem 3 for a space X of type (F) is sim-

ilar to its formulation for a Banach space. In the case of (F)-spaces one


GUEST


e ©
340 W. Orlicz and Z. Ciesielski lm

must replace the local Lipschitz condition by the local equicontinuit,y
in D of the functionals £,, as follows from the method .of the proof of
Theorem 3 and from 1.2 and 1.3.

3.21. Let &, be a functional continuous and cowver in D for
n=1,2,... and let the sequence {£,} be convergent (bownded) in o set
dense in D. Then the sequence {En} is either convergent (locally uniformiy
bounded) in whole D or convergent (bounded above in) a set which is
not CRB of D. )

3.22. If D=X and if U, is a linear operation from X to ¥, X, Y
being Banach spaces, then the functional £,(z) = Un(x)|| is convex and
continuous on X for n = 1,2,... Then it is easily seen that if the
sequence {£,] is bounded in an LRB of X then it is also bounded in X,
Moreover, the functionals &, are positive-homogeneous. Thus, since the
sequence {&,} is locally uniformly bounded in a neighbourhood of zero
(see section 3), it is also uniformly bounded in the unit sphere. Conse-
quently, the well known Banach-Steinhaus theorem (see [3], p. 80) may
be formulated more generally as follows:

. 4 sequence of linear operations | U,} is either uniformly bounded in the
wnit sphere or bounded in a set which is mot an LRB of -X.

3.28. Let & = &(wy, ..., ) denole a functional defined for v;e K (2], ;)
C X;, X; being Banach spaces. If & is a continuous and convex functic;m;l
of the variable m; in K (2, ;) for i = 1,2,...,% then it is a continuous
functional of the point (@,, ..., u).

. Writ«i K =K(w?., 7)) X ...x K (af, 7). We choose for every point
(:ﬁl, e wk)sK‘ an arbitrary sequence of points (#7,...,%)eK such that
@ >y for 1=1,2,..,k Pubt &(m,)=£(a, #7). Then for every
e K (20, 7)), Enlmy)—> & 2). Accordi i iconti

1 1 71) Ealy *(wl,wg). ceording to section 3, &, are equiconti-
nuous at the point 2. Hence &(a}, 2§) — £(a}, 7). This implies by an
easy induction &(af,...,a}) - &gy, ..., af) ’

3.24. Let the functional &, satisty for n'= 1, 2
) L =1,2,...th -
tions as the functional £ in 3723. T ° pame Ay

If f“.(ml’ ceey @) = @y, ..., @) W0 K, then the &, are equicontinuQus
at an arbitrary point (2, ...,u,)eK. '

* * . )

Let (zy, ..., @) denote a fixed point belonging to K, and (4}, ..., o)) e K
%;r n=1, 2, ... an arbitrary point such that a? - for 4=1,2,...,k
" e gut Ny, ...,wi).= 5@(901, ey Wy B3y oy @), According to sec-
1o‘nt ,*nn(wl) are egmcontm*uous functionals of the variable #, at the
point aj. Thus Zn(wl) —>170(w1) = &(@;, ..., 7). An easy induction shows
that &,(a7, ..., 2%) - ooy, ovny m3).
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4. Now we shall give some remarks on subadditive functionals.

Given a positive integer k, we denote by Sy the class of functionals
defined in X such that for arbitrary zeX (i =1,...,%k+1) we have
the inequality “

(’) 5(w1+-~'+mk+1) < 5(931)++ &(wal.])-

k-1
Let us put 8 = Sp—{J87.
i=1
If 68y, we say that £ is a subadditive functional of order k. Evidently,
the classes S; are non-empty. We prove that Sy are also non-empty.
4.1. If 4 is an additive functional in X then &(x) = sin(n(x)+o k)|
belongs to Si. !
Indeed, since [sin#[eS; we bave
£t ) = (S0 (@)+ o+ @)+ ]
< gsin(n(wl)+n/k)1+...+{sin(n(mk+1)+n/k); = E(@))Foe+ E(@ria)

On the other hand, there exist #,...,2;¢X such that the in-
equality
E(y . tm) < E(w) ... HE@y)  for =2,k
is not satistied. It suffices to put 5(2;) = —=fk for j=1,2,...,14.
If # is a linear functional, then the functional & is continuous and

uniformly bounded in X. On the other hand, if » is non-continuous every-
where in X (of Hamel type) then & is non-continuous and uniformly

bounded in the whole space X.
4.2. Now we give a method of construction for some functionals

of the class Sj. - _
We say that the set Y'® C X is a semi-modulus of order k i the fol-

lowing eonditions are satisfied:
(1) @y, eoes dpire 500 implies (@ ATy € 5D,
(2) for every i (i =2,...,k) there exist points i, very @6 3® such
that (... +z)e XM,
It is easily seen that
1 for me}®,
) §@) = 0 for we)®

implies &e 8. _
For a given zyeX, x, 7 0, write

AP =gz = Mg+ [k, m = 0, £1, £2, o}
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and choose Y™ = A®. Then the functional defined by (++)is of the
class Sk_. Moreover, the set of all points of discontinuity of & is exactly
countable.

4.3. Functionals of the class 8 may also be constructed by applying
infinite series (for the case k = 1, see [5], p. 137).

We denote by Z;’" for n =1, 2,... a semi-modulus of order % such
that for each positive integer N and ¢ =2, ..., k there exist points

. LY o
Bi(N, 2), ey (N, 4) € ﬂZ,,,
: n=1
such that

(607, &)V, D) U S
1 ¥ 3 ? it n

_ Let us replace in (++) 3® by ¥ and & by &,. Further, let the
series |a,|-+]as|+... be convergent, where |a,] > 0. Then the functional

£@) = D o] bula)
is of the class S;. i
Evidently, £¢8;. Now we prove that for ¢ = 2,..., % there exist
@1y ...y @; Such that the inequality '
@it tmg) < Eln) .+ E ()
is not satisfied. The inequality

glanl En(@rte+00) < ) 1] (Bal @)+ (@)
implies -
1_\f‘ . o0 ’
Dlaalt D la Eufan(N i) 4. 4w, 4))
N=1 N=N+1
< ) ol (Eamal, D)+ o £, 4)
N=N+1

for i =2, ..., k. Thus for sufficientlﬁr large N the last i ity i
satisfied for ¢ =2,..., k. Hence £e 8. g meauallty i mot
4.31. Let £eS;. Every functional of the form &(x)
‘ -c&(x,), where
ﬁl(ek-;rl) /2_ —(12(() )—;)’;) /4]hm;z &(wy) = £(—my) =0 is of the class S:B:_(_l,k)/z.
over, since = 0, the functional &(x 0) 4
ooy e (i R (x)+-c&(0) is of the class 8, for
These remarks immediately follow from (+).
4.32. If §e8y then £eS;, for m =1,2, ...

icm
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4.33. Suppose that for &eSy there exisis' a point moe X such that & is
continuous at x, and &(we)+&E(—z,) = 0. Then & is continuous in the whole
space X.

Since £eSy, we have

E(m+h) < E@)+k (E(@o+h[E)+E(—,))
and :
E(@) < E(@+h)+k (E(@o—h/k)+E(—a,)).
Hence
|E(2)— E(@-+R)| < Tmax (£(@o+h/E)+E(—a0), &(@o—h/k)+E(—)
for an arbitrary point xeX.

4.34. If £e8), and &(z) = E(—) for every weX, then £ > 072).

Tt suffices to pub in (+) #; = (—1)' for ¢ =1,..., k+1.

4.4. Let &, be a functional continuous on X for n=1,2,... and let
&, € St for every n. Further, let the sequence {&,} be bounded above in a ORB
of a sphere in X. Then there exists in X a sphere K(x,,7) such that the
sequence (£,) is uniformly bounded above in K (we,1).

We denote by R the set of all points # such that the sequence (&)
is bounded above at z. Let us observe that there exist rational numbers
Bi=0,...,fn =0, satisfying the inequality fy+...+fn <1 and such
that the set

E = {w: wvz ﬁ'ﬂi(mi—a)—l—a, zcieB'}
=

is of the second category in X (compare the proof dn section 2). We choose
such a positive integer p, which is a multiplicity of k, that the numbers
pf; are non-negative integers. The set E, = {y:y = px+a, weE} is of
the second category. Since meB* implies £,(2) < G(x) for n =1, Dy inny
we ‘have for yeE, and n=1,2,...

NE

&) = Epota) = &, (Zm‘p.@iwi—}—p(l— ) a-+a)

=] =1

I

<Zmpﬁisn(wi)+p(1—~ D 8:) Eala)+Eu@)

f=1
< (14p)max(G(@y), .-, G(@n), G(a) = G(Y)-

Thus yeR. The set R is an F, and of the second category. Hence
there exists a sphere K (z,,r) C R such that the sequence {&) is uni-
formly bounded above in K (%, 7). .

*) The inequality & > 7 for two functionals &, 5 meaus &(x) == n(x) for arbitrary
zeX. :
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5. Let &, be a functional continuous on X for m = 1,2,..., and let
£,€85 for every n. Further, let the sequence {£,] be bounded above in a set
dense in X and in a ORB of a sphere in X. Then the sequence {5,,‘} 8 Ung-
formly bounded above in every bounded sel.

According to 4.4 there exists a sphere K(z,, ) such that &,(2) < @
for n =1,2,...,zeK(x%,,7). We choose a point x, e (x,,r) such that
there exists a constant G(—w,) such that &(—a;) < @(—w=) for
w=1,2,... Further we choose a sphere K (x,,7;) C K (x,,7). If the
set 4 is bounded, then the set {e: 2 = y—a,, ye A} is bounded too. We
- observe that there exists such a positive integer p, which is a multi-
plicity of %, that there exists for every yed a point zeK (2,,7,) such
that y = p(x—ax,)+x,. Thus we have for yed

Ealy) = Enlp (@—m1)+ur) < PEL(@)+FDEn(—21)+-&p (21)
< (2p+1)max (¢, G(—y)).

5.1. From 4.4 we conclude the following:

Suppose the functional &, to be continuous on X, &,e8y and &, < En1
for n=1,2,... If the sequence {&,} is convergent in a CRB of a sphere
L:’l’b X, then there exists a sphere K(xy,7) C X such that {571‘] is convergent
in K (2, 7).

5.2. From 5 we conclude the following:

Let &, be a functional continuous on X forn = 1,2, ..., and let &,e85,
&y < &y for every w. If the sequence {fn} is convergent in a set dense in
X and in a ORB of a sphere in X, then it is convergent in the whole space X.
N ldﬁ. The method of proving 4.4 and 5 shows that the following theorem

olds:

Suppose the functional &, to be continuous on X, &,eSy and £n()
= &,(—n), for. n=1,2,..., and weX. Further let the sequence (&} be
bounded above n an LEB of a sphere in X. Then the sequence {En} 8 uni-
formly bounded in every bounded set in X.

6.1. Theorem 6 implies the following:

Let &, be a functional continuous on X for n = 1,2,... and let &,¢8;
S < Epyy and Ex(w) = £,(—2) for every n and we X. Further suppose th;
sequence {£,} to be comvergent in an LEB of a sphere in X. Then the sequence
|&,) is comvergent in the whole space X.

6.2. fiet us suppose the functional &, to be continuous on X, &,=0
z.vn,d EneSy for m=1,2,... Moreover, let £,(x) -0 in a CRB of a sphere
in X. Then &,(x) -0 in a sphere in X. :

Dt?note by E the set of all points ¢ X such that &n(m) — 0. Arguments
analogical to that used in 4.4 show that the set B is of second category.
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Since B is F,;, 7.1 implies that the set B'= {w: 2 = (#;+5)/2, 21, £ B}
contains & sphere. Hence the set B = [y:y = 2kw-+a, weE’}, where
aeB*, also contains 4 sphere. The inequality

Eﬂ(y) < kfn(m1)+k§n(m2)+§1|,(a')
implies B C B.

6.3. Suppose the fundtional §, lo be continuous on X, £,eS; ond
Enlw) = E(—w) for m=1,2,...,0eX. Further &(z) >0 in an LRB
of a sphere in X. Then &,(x) -0 everywhere.

Arguments analogical to that.of 6.2 show that &,(w) >0 in & sphere
K (w,,7). Applying the condition ,(x) = &,(—x) we use the arguments
of b with z, = a;.

6.31. We observe that the lemmas, theorems and corollaries 4.4,
5, 5.1, 5.2, 5.3, 6, 6.1, 6.2 and 6.3 remain true if we replace the assump-
tion of the continuity of the functional &, for » = 1, 2, ..., by the lower
semi-continuity.

6.4. Let the functional &, be continuous on X for n=1,2,... and let
En€SE, En(m) = E,(—2x) for every m and weX. If & (») >0 in the whole
space X, then the &, are equicontinuous at each point of the space X,

First we prove the equicontinuity of £, at zero. Choose an arbitrary
> 0 and write By = {i: &u(x) < e/4k, n = N). Since the set Ey is closed,
there exists N, such that By, contains a sphere K (2, &). Let hjkeK (0, &).
Since h = k(h/k+ao)+k(—2)+1-0 and n >N, implies £,(0) < e/,
we obtain the inequalities

|£a(0) = En(B)] < krfn(%-l- %) +kEfm0) +28a(0) < &

for n > N = max(Ny, N,), [h/kl]l < . Hence it follows that, for suf-
ficiently small 6 > 0, |[h}j < & implies [€a(0)—Eq(B)] < & for n=1,2,...
Applying the inequality

h
}En(w) - En(m"‘h)‘ < kén (Z) H

valid for arbitrary xe X, we obtain the equicontinuity of &, at each point
of the space X. )

6.41. Our proofs of the lemmas and theorems on subadditive funetio-
nals of order k¥ may be applied to (F)-spaces without any change.

6.42. Let U, denote linear operations from X to Y forn =1,2,...,
X, Y being (F)-spaces. We shall prove a known theorem (see [71):

If the sequence {U,} is bounded at each point of X then U, are equi-
continuous at each point of X.
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Since t, — 0 implies U, (t,#)~ 0 for arbitrary zeX, we have Ea(@)
= ||Un(=)l] =0 for every e X. It follows from 6.4 that &, are equiconti-
nuous at every point zeX. Hence w, — 0 implies U,(t,z,) -0, e. g,
for every ¢ > 0 there exists a number > 0 such that the inequalities
[t < 6 and |lofl < 6 imply [|Un(iw)| < & for = 1,2, ... Since, for suffi-
ciently small 5 > 0, |jo]| < # implies [l/6]| < 6, |z < # implies || U,(z)] < &
forn=1,2,...

6.43. Let U, be a linear operation from X to ¥ for n =1, 2, ...,
X,Y being (F)-spaces. Applying 6.3 we may formulate a well known'
theorem (see [7]) in the following generalized form:

The set of the points of boundedness of the sequence {Un} 48 either iden-
tical with the whole space or it is not an LRE of any sphere.

6.44. There exists o sequence { fn} of functionals comtinuous on X
and of the class Sy, such that {£,} is convergent to a non-continuous fune-
tional & eSy. (Consequently, there emists o sequence {&) of continuous
functionals of the class Sy, convergent in the whole of space and such that the
Jfunctionals &, are not equicontinuous for & point weX),

We_define the functionals &, as follows:

§n(m)=l/sin(n(m)+n/k) for n=1,2,.., 2¢X,

where 7 is a linear functional in X which vanishes only at zero. It is easily
seen that £,eS; for every n (compare 4.1) and that the set of all zeros
of the functional &, is identical with a semi-modulus of order kj; it
may be denoted by X%, This set does not depend on #. Functionals &
tend to the functional & given by (++) and Y™ in 4.2.

icm°

We shall return to the investigations of the general properties of

convex functionals and subadditive functionals of order % in another
paper.

7. Now we give some examples related to the previons theorems.

7:1. If the set B C X 4s of the second category and satisfies the Baire
condition, then the set {m: 2 = (1,+2,/2, o, mgeE} contains a sphere.

Since the set satisfies the Baire condition, there exist a point ael
and a sphere K (a, o) such that the set B ~K(a, g) is residual in K(a, o)
(see [2]). Let us consider an arbitrary point we K ( ,
E(@) = |y: 20—y eB}. Notice that B ~ B (x)
% = (#,1%,)/2 with 2,, z,e H.

a, o) and write
# 0. Thus ze X (a, o) implies

7.2. If‘E'(?A CX, A being a bounded set, and if H is of second
category and satisfies the Baire condition, then B is a CRB of A.-
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Agcording to 7.1. there exists a sphere K (a, o) such that a¢F and
zeK (a, o) implies & = (x,+,)/2, where =, z,eE. Since the set 4 is
bounded, there exists a rational number g 0 such that yed implies
y = p(z—a)4a, where xeK(a, o), €. g¢., yeA implies y = f(x;—a)/2+
+B{z,—a)/2-+a, where x,, e B,

The method of our proof shows that 7.1 and 7.2 remain true for
(2)-spaces.

7.21. From 2 and 7.2 we conclude the following:

Let the functional & defined and convex in a conve region D be uniformly
bounded above in a subset of the second category satisfying the Baire condi-
tion. Then & is continuous in D.

7.22. From 7.21 we conclude the following:

If the functional £ defined and comver in a convew region D satisfies
the Baire condilion, 4t is continuous in D.

7.23. Theorem 7.1 and the arguments of 2, 3.1, 1.3 show that 7.21
and 7.22 remain true if the space X is of type (F).

We say that the set E*CX is homothetic with the set B if
E* = |y:y=1w+b,xeE}, where beX and ¢ is a real number. Denote
by C the Cantor ternary set. Put I'= {o: |w]| =1, e X,1eC}. The set I’
is non-dense in X.

7.3. If the set I'™* C K (my, ) is homothetic with the set T then I'* is a
CRB of the sphere K (o, 7).

We conclude from the triadic expansion of numbers of the closed
interval ¢0,1> and from the definition of the set C that t<0,1> impliei
t = (t,--1,)/2, Where t;,%,¢C. Hence it immediately follows that I7
is a CRB of K(xz, 7).

7.31. We conclude from 7.3 that in the formulation of 7.21 the seb
of the second category satisfying the Baire condition can be replaced
by I

7.4. Fﬁrther we denote by K, the n-dimensional real Euclidean
space. We define in ¥, the morm llelt = max (|4, -y [@nl)s Wl‘l?l'e
& = (%3, ..., %) In the following theorems the notion of measur-a,bmty
will be understood in the sense of Lebesgue. We obfain the following re-
gult, analogical to 7.1:

, If the measurable set B C B, is of finite positive measure then the set
{w: r = (wl—i—mg)/z,ml,wst} containg a sphere.

" Let us observe that there exists for every 1 >a > } a point ac B
and a real number ¢ > 0 such that u(E ~K(a, ¢)) = au(B) where u(X)

denotes the measure of the set I. Put § =1— 1/%,-—— a. For each we K (, Ba)

!
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we write B*(z) = {y: 20—yeB"}, where ' = B~ K(a, ¢) and K(z) =
‘= {y: 22—yeK(a, o).
Since
(B ~ K (@) = p(B")—p(K (a, 0)— K(»))
= w(B")—p(K (4, o)+ u(E (4, 0) ~ K (@)
w(B*)— u(K (a, @)+ (27 (1—B))" = (2r)"2

V

and similarly
u(E" (@) ~ K (a, o)) > (2r)"/2;
we have
wE B (2)) > p(B" ~ B(2))— p(K (a, 0) ~ K (2))+
+u((B*© B (@) ~ (K (a, o) ~ K ()
= u(B*(0) ~ K (a, o))+ (B ~ K (3) —
— (K (a, o) ~ K (x)) > (2r)"— (2r)* = 0.

Since E*~E'(w) %0, we have proved that zeK(a, o)
@ = (#;+,)/2, where 2, ¢ H. ‘

7.5. If we apply 7.4, arguments similar to that of 7.2 show that:

An arbitrary measurable set B C E, of positive measure contained
in & sphere K(xy,r) is a CRB of this sphere.

7.51. It follows from 2 and 7.5 that:

If the function f(wy,...,®,) of n variables, defined and convex in a
conves: set D C By, is. uniformly bounded above in a set B CD of positive
measure then f(w,, ..., x,) is continuous in D.

Especially, we obtain for » = 1 the theorern given by A. Ostrowski
(see [11]).

7.52. We conclude from 7.51 that:

If the function defined in 7.51 is measurable in D then it is continuous
in D.

For n =1 we obtain the theorem of W. Sierpiriski (see [12q.

7.58. It follows from 7.52 especially that:

If a function f(x,, ..., x,) defined and additive in E, is measurable
in B, then it is lUnears). ’

7.54. We conclude from 7.8 that:

There exist sets of measure zero contained in a sphere K (m,,v), which
are CRB of this sphere.

7.6. We say that the set B C X is totally asymmetric it there exists for
every &, ¢  a sphere K (z,, r) such that ze B ~K (2, r) implies 2z, —x¢ B,

implies

?) In the case n = 1 Theorem 7.53 was first proved by M. Fréchet. This theorem

has been the object of many proofs, see for example [1] and [13].
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7.61. Since in the proof of 7.1 the point a is taken from - the set E,
we find that:

If the space X is an (F)-space then every set satisfying the Baire con-
dition and contained in a totally asymmetric set is of the first category.

In the case X = F; we obtain the theorem given by 8. Marcus
(see [6]).

7.62. Ag in 7.61 we find from 7.4 that:

Every measurable set in E, contained in a totally asymineiric set is
of measure zero.

EBspecially we obtain for n =1 a theorem given by S. Marcus
(see [6]).

7.7. Let () denote a function defined in B, periodic with the period
1 and integrable im (0,1). If |A,| = oo then for arbitrary x,eB, and h > 0
we have the relation

Zo+h

1
L1 1
JE’EZEE%L lpthnitt = 7 [ lp(oa.

7.8. Let [z] denote the greatest integer <. Let us observe that
the function &(x) = a+1/k—[#-+1/k] is of the class S,; it may be ob-
tained by arguments similar to that of 4.1.

8. If the series

©0

Zla’ni (lnw‘f‘ % - I:ln+ 7]‘;‘]) y |An] = o0,

=1

18 convergent in a CRB of an interval (a, §) then

=]

D laf < ce.

N=1

= Fiefirs 3]

=1

‘Write

Evidently £,¢85 and &, is lower semi-continuous for » =1, 2,...
Since the sequence {£,} is convergent in CRB of the interval (a, f), accor-
ding to 4.4 and 6.31, it is uniformly bounded above in an interval
(#p—h, m+h). Applying 7.7 we obtain the convergence of the series

g @)

n=1
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8.1. ¥f the series

Zl<|aneosznw|+wnsmzww b (2l > oo,
is convergent in an LRB of an interval (a,p) then
2 (lan] +1bn]) < o0
N1 s,

Put

n

fal@) = D (lasc082,0]+[bssind; o).

=1

The functional &, satisfies the assumptions of the section 6 for
n=1,2,... Hence the sequence {En} is uniformly bounded in an inter-
val (% —h, @y+h). If we apply 7.7 as above, we obtain the convergence

of the series
D (@l +18a)).
n=1

8.11. A certain modification of the known method of proof yields,
if we apply 8.1 and 7.7 (compare [14], p. 133), a more general result?);
If the series

o
Z |G, €08 A 8+ by, 80 4, 2]

n=1

s convergent in an LRB of an interval (

Mn|‘>°°5
a, B) then
2(|an|+fbn|) < oo

It may be pointed out tha,t the results 8.11 and 8.1 are obtained
without the use of the Lebesgue integral.

8.2. Let u, be a.linear functional defined in X for n =1,2,
let {inull - oo. If

and

(ancos () +Dp 810 73,()) — 0
in LRB of a sphere, then
(1] +1by]) 0.

Write  &,(@) = a,co87,(x)+- by, sin n,(z)

: and  £n(0) = b, CO87,(%) —
—aysing,(2). If we put «

= #+y, where g, y,z¢ X, then we obtain
En(w) = En(z)ﬂos%(y)‘l—ff;(z) Sin"?n(?/-)‘

4)' Specia..l classes LRB were used in considering absolute convergence of trigo-
nometrical series by W. Niemytzki in [8]. . '

icm
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Let z be a fixed point of B. Our assumptions imply &.(2)— 0. Since
&.(z) - 0 for ze B, we have £(2)sinz,(y) -0 for yeB(z), where B(z) =
={y:y =%—2,2eB}]. The set B(z) is an LRB of a sphere. Since
the sequence {|£;"(}, where &"(y) = & (¢)sinn,(y), satisfies the assump-
tion of 6.3, we obtain £,"(y) = 0 for every ye X. Hence it follows that
£n(®) — O for every ze X. If we put # = 0 we obtain a,— 0. Write &,(z) =

= |by, 31n77n(a:)| Then the sequence {5,,] satisfies the assumptions of 6.3.

Hence £,(z) 0 for every e X. According to 6.4 the functionals £, are
equicontinuous at the point 2 = 0. If we put z, = y./|lyll, where
[7a(yn)l = |Iall/2 and |ly,|| = 1, then we obtain 1 > [7n(®a)| = 1/2. Since
&(@n) = |b,8ing,(a@,)| — 0, we have b, — 0.

8.3. Denote by {ﬁn} an arbitrary sequence of real numbers. Retain-
ing the notation of 8.2 we obtain the following theorem:

The set

E(#) = {m: {nn(m)+"9n"[’7n(w)+ﬁn}) =By [lnall = "0}’
is not an LRB of any sphere. ‘

Suppose that E(8) is an LRB of a sphere. Then sinz (n,(x)+,—»9)
— 0 in this LRB, which is contrary to 8.2.

8.31. From 8.3 we immediately conclude the following:

Let the function @ (x) periodic with period 1 be continuous and let ¢(x)
vanish only at & in the interval (0,1), where 0 < 9 < 1. If the séquence
{009 (na(2)+0,)} is convergent to zero in an LRB of a sphere then a, — 0
(compare [9]).

where 0 <9 <1,

9. Finally we give an application to the theory of (F)-spaces.
In connexion with other applications of subadditive functionals con-
cerning the theory of (F)-spaces we refer the reader to the paper [10].

Let X be the (F)-space under the norm || || satisfying for a number
a > 0 the condition

I
supﬂivg< oco. for zeX.
it,>0 |7]
Then the norm || || where
ol = sup 2l
>0 [t
is equivalent to the morm || || and satisfies the condition |tx|" = [t|]*||lz|".

It follows from the inequality |jz|* > z|| that convergence with
respect to the norm | ||*, implies convergence with respect to the norm
Ii . Let {t,} denote the sequence of all rational numbers different from
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zero. Put £,(2) = [[t,2(/|ts]* for » =1, 2,... The functionals £, satisfy
the assumptions of 6. Thus there exists a constant @ such that £,(z) < @
for w6 X (0,1). The continuity of the norm || || implies [ftz|/[t|* < @ for
real t and for ze K (0,1). Let ¢ be an arbitrary positive number. We choose
a number 7 > 0 such that G < v%. There exists a 6 > 0 such that ||| < 6
implies |rz]| < 1. Consequently, the inequality [ffzx|/|t|* << G is satisfied.
Hence |jz|| < & implies |ju]|* < e.
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Probléme de l’analyticité par rapport & un opérateur linéaire*
por’
M. NICOLESCU (Bucarest)

1. Définitions et premier axiome. Cas intermédiaires. Ce qui suit
constitue un schéma général abstrait de plusieurs résultats obtenus par
Tauteur dans la théorie des fonctions polyharmoniques, ou dans la théorie
de I'opérateur hyperbolique itéré ou encore dans la théorie des fonections
polycaloriques.

Le probléme de l'analyticité a été posé d’une maniére concréte dans
une communication récente au ITI® Congrés Unional des Mathématiciens
Sovietiques [6].

Le cadre le plus convenable, au schénia proposé me parait étre une
algébre normée, par exemple une algébre de Banach, possédant un
élément unitaire. D’ailleurs, dans les deux premiers §, les résultats
sont valables pour une algébre quelconque.

Soit, done, 93 une algtbre commutative & élément unitaire ¢. Nous
utiliserons au cours de ce travail des opérateurs linéaires A, B, ..., L, ...,
c’est-a-dire additifs et homogénes sur le corps K des nombres complexes.

Pour un opérateur linéaire quelconque A, nous poserons A° = e,
A'=4,4"=4(4"Y,n=1,2,3,....

Avec cela, la signification d’une opération telle que A™B"... L” est
claire.

A tout opérateur linéaire 4 nous attacherons l'opérateur bilinéaire
B, défini par 1égalité
@ B(z,y) = A(wy)—2dy—ydz,
olt xe, ye-B3. Manifestement, B(z, y) = B(¥, ).

11 peut arriver que I’on ait B(x, ¥) = @, quels que soient les éléments
x, 4. Alors A s’appelle un opérateur de dérivation, ou plus simplement une
dérivée algébrique de I'élément auquel il g’applique [1]. Nous laisserons
de coté ce cas, qui a été amplement étudié?) récemment.

Dans la suite nous considérerons un opérateur A linéaire, pour lequel
sont vérifides certaines conditions.

* Les résultats de ce Mémoire ont été présentés au Congrds des Mathématbi-

ciens Autrichiens, Vienne, 17-22 septembre 1956.
1) On consultera, & ce propos, avec profit le Mémoire [1] de M. J. Mikusifslki.
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