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A limit theorem for empirical distribution functions *
by
M. FISZ (Warszawa)

1. Let (211, T1ay -y Tany) B0A (Byy, Boy --ey Tan,) DE two independent
simple samples drawn from a population with a continuous distribution
function, 4. e. leb @y, T1ay ..vy Lings Tory Bazy o+ -y Lam, DO independent ob-
servations of a random variable X having a continuous distribution func-
tion. Denote by S, (#) and Sy, (#) the empirical distribution functions
of the two samples, i. 6., if 1, @ja, «-., T, (§ =1, 2) are the values of
D1y Bjzy + oy Bjn, arranged in increasing magnitude, S,-ny.(m) is given by
the formula

0 for o<y,

Spny (@) = 1 kfn;  for  ap <@ <jpyy  (B=1,2,...,m—1),
1 for o> .

Define

—D}rlnz = max [Sml () _Szﬂg ()], -Dnlnz = mgx |Sml () —sz ().

Smirnov [5], [6] has shown that if m,/n, = o > 0 the relations

: mny
lim P(]/ D, < /1) = 1—exp(—24%),

ny—c0 Ny +MNy

lim P (]/ M2 D) e < /1) = Q)

n)—>00 Ny Ny

bold for every A > 0, where Q(A) is the function found by Kolmogorov
[3] given by the formula

(*) QM) = D (—1yexp(—24r).

re—oco

'

* The paper contains a proof of a theorem of the author published (Bull
Pol. Acad. Sci. 5 (1957), p. 699) without proof.
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In our paper a limit theorem for 3 samples is given which can be
used for statistical purposes similar to that of Smirnov’s theorems.

2. Let us consider 3 simple samples drawn independently from
a population in which the random variable X has a continuous digtrib-
ution function. Let n; (f =1,2,3) denote the number of elements
of the j-th sample and let the relations

n, . p
(1) im — =¢ (j=2,3)

N)—00 Ty
hold. Further let 8, (#) (j =1,2,3) denote the empirical distribution
function of the j-th sample and
NNy
2 e T
(@) =

We now define two stochastic processes in the following way:

(4,7 =1,2,3;4 #14).

Yogngny (8) = (‘/: + G) Sy (@ Vn1282712 ()~ l/nl‘aé:ma( @)
nyngng T T P ’
£ l/1+ ‘,;,L‘“]/”'m Mg
3)
s (8) (Via — V) 81y () — Vg Sy (@) 4 Vngg s Sy (@)

Va ]/ 1__Vm:;

It my = ny = ny = n the formulae (2) and (3) are of the form
n

29 Ny = 5

(6,7 =1,2, 3;4 #4),

Zale) = Y/ 2 1S )~ ol

We congider the functionaly

+
Anlnzns == ma‘x Y111712n3 (), An1n2n3 = max | angng ()],
(4) .
+
Bn1n2n3 = m&xznlnzng (z), Bn1n2n3 = max Iannzm, (m)].
z

We prove the following
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THEOREM. Let A ,n s Anmgngs B ugn, and Byingng  be  defined by
formulae (2)-(4) and let the n; (j = 2, 3) satisfy (1). Then:
(i) For arbitrary positive a and b the following relations hold:

(8) nhm P (A g < &, Biliyny < b) = [L—exp(—24%)][1—exp (—2b%)],
100

(5" ]ij(Anl'n.zna <a, B‘nlnzns <b)

n—o0

= @(a)@Q(b),

where @ (1) is given above by formula (x).
(ii) If we denote by max (4, B) the greatest of the mumbers A and B,
the following relations hold for every A > 0:

(6) hmP(ma‘X(Anl'nzna; B;:-lnzna) < 2) = [1—exp(—22°)F,
’VL1—>00
(6/) n]imP(ma.x (An1n2n37 Bnlnzns) <) = [Q(l)]z
1~>00

Proof. The idea of the proof consists in showing that Anlﬂzna, and
Bnmna (resp. Ay ngn, and B ug,) aTe asymptoticaly independent, as n; — oo
(thus in virtne of (1) n, - co and my — oo). This is shown — following
a fruitful idea of Doob [2] — by reducing the problem considered to
that of finding the probability distributions of some functionals defined
on a Gaussian stochastic process.

Without restricting the generality of our considerations we can
agsume — gince the distribution function of X is supposed to be conti-
nuous — that X has a uniform distribution in the interval [0,1]. We easily
observe that for every value of », where 0 < # < 1, we have

(7 B[ Yy (#)] = B[ Znjpyny ()] = 0
and for every pair (s, #,), where 0 <z, < =,

(8) B[ Yﬂlnzﬂg (€2Y) Ynluzn3 ()] =E [Zn1n2ﬂ3 (ml)annzna (#)] = 1 (1—2,).

< 1, we have

We now consider three independent, equally distributed Gaussian
stochastic processes 7, (x), 7, (#) and 7;(x), where 0 < « < 1, whose means,
variances and covariances are given by formulae (7) and (8). In other
words, the vector {n;(a),...,n(®ms)} (G =1,2,3) is normally distri-

buted for m =1,2,3,... and for arbitrary points =, ..., s,, where
0<® <... <2y <1, and, moreover, the relations

9 BElp(z)] =0 (0<2<1),

(10) Blny(@)ns(@,)] =2 (1—m) (0 <a; <o <)

hold for j =1, 2, 3. From (9) and (10) follows P(1;(0) = 0) = 1.
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Tet us now define two stochastic processes by the formulae
are e 1 1
a
e (@) — === (1) — =5 (@)
(]/ T4 a F]/1+an3)17‘ Vita Vita,

Y(z) = ’
atza3
l/l—i ]/ (14ay) 1"!“13

(11) 1 1
(I/ The 1+a3 )“ (@) — Vi 712 (%) + Vi 115 (@)
Z(2) ’

a2a3
2 ]/ l/ (L+4-ay)( l—i—aa)

where the o; are given by (1). It is easily found that ¥ (2) and Z(x) are
also Ganssian processes with the same means, variances and covariances
as the 7(sz) processes and that for every pair of points (2, 2,) the equa-
lity B[Y (2,)Z (%,)] = 0 holds. The last equality implies that the processes
Y (x) and Z(x) are independent.

Tet us now rewrite formulae (3) in the following way:

Lo (@)= (Vg V1) [ 810, (@) — @] —V 1 [ S (#) — 21—V may [y (0) —0]
N Ny - - ?
1/51/1 =+ “1“ 1/’”12 N3
My
2y = VT )OS ()= 8] = ()0 Vs i) =],

_ 1 —
V2 1/1 —— 1/"’"12 N3
My

Let us now remark that form = 1,2, 3, ... and for arbitrary points
Dyyney B, Where 0 K 3y < ... < @y < 1, the central limit theorem implies
the convergence, as m, - co, of the probability function of the vector

{Ynlnzna (B1)5 - vy Tnngng (@), Znngng (B1) 5 <+ v yngny (wm)}
to that of the vector
(Y @), ooy X(@n)y Z(21); .0y Z(@n)}

“Let us now congider the functionals

At = max Y (z);

@

A =max|¥Y(z); B
&z

BY = maxZ(»);
z

= max|Z (z)|.
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(We can write max in these equalities since the realizations of the processes
Y(z) and Z(») are continuous with probability 1). We are now aimed
to obtain for arbitrary positive numbers ¢ and b the relations

(12)  m P(Afu, < @, Bipgp, < b) = P(4* < a)P(B* <),
n1—>oo
Ii'm -P(Anlnz'ns < a” Bn1n2n3 < b)

N—>00

(127 =P(A< a)P(B <b).
i Let P,L and P; (7 =1, 2, 3) denote the probability measures genera-
ted by the processes l/n, [Sf,,j 2)—a] and #;(x) respectively in the space
D[0,1] of functions ¢(x) defined on the interval [0,1] having left- and
right-hand limits and continuous at least from one side at each point
([4], p. 227-229). Donsker [1] has shown that
(13) PSP

Consider now the Cartesian product-space

D = D,[0,11xD,[0,1]x D;[0,1].

Let Quing, and @ denote the probability measures generated in @&
by the vector-processes {l/— [Sin, (@) —2], .. 1/72—3[83"3 (w)—x]} and
{m (@), 7y (®), 75 ()} respectively. The independence of Sjny () (7 =1,2,3)
and relation (13) imply
(14) Qnyngng = Py X Py X Py = PyX Py X Py = Q.

Denote by z and m, the transformations of the space D into the
space ()’ given respectively by the system of linear equations (11) and

* by a modified system (11) with o; replaced by n;/n,;. The sequence {”"1}

converges uniformly to = on every compact set in . Consequently from
(14) and a theorem of Prohorov ({4], Theorem 1.10) as well as from the
normality and independence of Y (%) and Z(x) the relation

(15) Qripyns > Q" = 91} Qs

follows, where Qnmzna and @" are probability measures generated in D'
by the vector-processes { ¥ un, (%), Znymny(#)} and {¥(w), Z (2)} respecti-
vely, whereas @; and @, are probability measures corresponding to ¥ (z)
and Z(x) respectively, concentrated at a subset of continuous functions
in D[0,1]. Since the transformations of the space @)’ into two-dimensio-
nal Euclidean spaces given by the correspondences

(@1 @) — (SUp@y, SUP @)
x x

(@1y @2) — (supley|, sup |gs|)
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are almost everywhere (@) continuous in D', we obtain from (15) — using
again a theorem of Prohorov ([4], Theorem 1.8) — the relations (12)
and (12°). _

As Doob [2] has shown the equalities

(16) P(A* < 2) = P(BY < 4) = 1—exp(—24),

(16") PAd <t =PB<i)=¢()
hold for every positive 1. We obtain formula (5) from formulae (12) and
(16) and formula (5') from formulae (12') and (16'). Assertion (i) of our
theorem is thus proved.

Agsertion (ii) of our theorem immediately follows from the assertion
(i). Indeed, formulae (12) and (12) imply the relations

(7 Hm P (max (A7 nuny s Bagngng) < 7) = P(max (4", BY) < A,
71.1—)00

(17)  Hm P{max(Apmings Buyngng) < A = P(max(4, B) < ),
nl—)oo

respectively. Taking into account the independence of A" and B, we
obtain at once relation (6) from relations (17) and (16). Relation (6")
follows from (17’) and (16').

Assertion (ii) is thus also proved.

The theorem proved here can be used in an obvious way for statisti-
cal purposes. We can verify the hypothesis that three simple samples
have been drawn from populations with the same continuous distribution
function, which we do not specify. This hypothesis will be rejected for
large m, 7y, %3 if, for instance, max (Annyngs Brpgng) > Ay where a is the
significance level and [@(A)T = 1—a.

We remark that our theorem remains true if (1) is replaced by the
assumption that #;/n, are bounded and n,, 1y, 1y — 0. Indeed, one can
then choose subsequences of the indices # satisfying (1) for some values
(which may be different) of a. Since the right sides of (5)-(6") do not de-
pend on a, the assertions of theorem remain valid.
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