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1. Introduction. K. Győry [G] obtained many interesting results on
the representation of integers (resp. algebraic integers) by binary forms. He
obtained sharp estimates, in contrast with the exponential bounds previ-
ously obtained on Thue’s equations by means of Baker’s results on lower
bounds for linear forms in logarithms of algebraic numbers. The bibliogra-
phy of [G] contains a useful selection of articles dealing with these problems,
including [N1] and [N2].

Most particularly, Győry considered binary forms of degree d with inte-
gral coefficients,

F (X,Y ) = a0X
d + a1X

d−1Y + · · ·+ ad−1XY
d−1 + adY

d,

which are products of ` irreducible forms, assuming that the roots of F (X, 1)
are totally imaginary quadratic numbers over a totally real number field,
and he proved that for m 6= 0, the solutions (x, y) ∈ Z2 of F (X,Y ) = m
satisfy

|x| ≤ 2|ad|1−(2`−1)/d|m|1/d and |y| ≤ 2|a0|1−(2`−1)/d|m|1/d.

In other words, the splitting field of each irreducible factor of F (X, 1) is
a CM-field , i.e., a totally imaginary quadratic extension of a totally real
number field. In particular, cyclotomic fields are such number fields.
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Examples of such binary forms with a0 = ad = 1 are given by the
cyclotomic binary forms, which we define as follows. For n ≥ 1, denote by
φn(X) the cyclotomic polynomial of index n and degree ϕ(n) (Euler’s totient
function). Following [N2, Section 6], the cyclotomic binary form Φn(X,Y ) is
defined by Φn(X,Y ) = Y ϕ(n)φn(X/Y ). In particular, we have Φn(x, y) > 0
for n ≥ 3 and (x, y) 6= (0, 0) (see §4 below).

In the special case of cyclotomic binary forms, Győry [G] proves

max{|x|, |y|} ≤ 2|m|1/ϕ(n)

for the integral solutions (x, y) of Φn(X,Y ) = m. In contrast with our The-
orem 1.1 below, Győry gives an upper bound for n only if max{|x|, |y|} ≥ 3.

Here is our first main result, in which we exclude the cases n = 1 and
n = 2, for which the cyclotomic polynomial φn is linear.

Theorem 1.1. Let m be a positive integer and let n, x, y be rational
integers satisfying n ≥ 3, max{|x|, |y|} ≥ 2 and Φn(x, y) = m. Then

max{|x|, |y|} ≤ 2√
3
m1/ϕ(n) and therefore ϕ(n) ≤ 2

log 3
logm.

In particular, there is no solution when m ∈ {1, 2}.
From the lower bound,

ϕ(n) >

(
n

2.685

)1/1.161

,

proved in six lines in [M–W], we deduce that the upper bound ϕ(n) <
2(logm)/log 3 of Theorem 1.1 implies

(1.1) n < 5.383(log m)1.161.

Theorem 1.1 is a refinement of Győry’s above-mentioned result for these
cyclotomic binary forms. Subject to gcd(x, y) = 1, Nagell (see [N1, Lem-
ma 1, p. 155]) comes up with a slightly larger bound than ours for ϕ(n),
namely he has ϕ(n) < (4 logm)/(3 log 2), and he does not exhibit a bound
for max{|x|, |y|}.

The estimates of Theorem 1.1 are optimal because for ` ≥ 1,

Φ3(`,−2`) = 3`2.

If we assume ϕ(n) > 2, so ϕ(n) ≥ 4, the conclusion of Theorem 1.1 can be
replaced by

ϕ(n) ≤ 4

log 11
logm and max{|x|, |y|} ≤ c−1/45 m1/ϕ(n)
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thanks to (5.1) (the constant c5 is defined in Section 4). Again these esti-
mates are best possible (1).

There are infinitely many integers n such that Φn(1, 2) < 2ϕ(n); for in-
stance, n = 2 · 3e with e ≥ 1. We will prove the following.

Theorem 1.2. For θ ∈ ]0, 1[, there are only finitely many triples (n, x, y)

with n ≥ 3 and max{|x|, |y|} ≥ 2 such that Φn(x, y) ≤ 2θϕ(n); these triples
can be effectively determined and they satisfy max{|x|, |y|} = 2.

As a matter of fact, we shall see that max{|x|, |y|} = 2 follows from the
weaker assumption

Φn(x, y) < 7ϕ(n)/2,

which is optimal since Φ3(1,−3) = 7.
Theorem 1.1 shows that, for each integer m ≥ 1, the set{

(n, x, y) ∈ N× Z2
∣∣ n ≥ 3, max{|x|, |y|} ≥ 2, Φn(x, y) = m

}
is finite. The finiteness of the subset of (n, x, y) subject to the stronger
condition max{|x|, |y|} ≥ 3 follows from [G], but not for max{|x|, |y|} ≥ 2.
Let us denote by am the number of elements in the above set. The positive
integers m such that am ≥ 1 are the integers which are represented by a
cyclotomic binary form. We will see in §7 that the sequence of integers m ≥ 1
such that am ≥ 1 starts with the following values of am [OEIS, A296095 and
A299214]:

Table 1

m 3 4 5 7 8 9 10 11 12 13 16 17 18 19 20

am 8 16 8 24 4 16 8 8 12 40 40 16 4 24 8

The only result in this direction that we found in the literature is a1 = 0:
see [G, N1, N2].

For N ≥ 1 and n ≥ 3 let A(Φn;N) be the set of positive integers m ≤ N
which are in a restricted image of Z2 by Φn. In other words, for n ≥ 3 we
define

A(Φn;N) :=
{
m ∈ N

∣∣ m ≤ N, m = Φn(x, y) for some (x, y) ∈ Z2

with max{|x|, |y|} ≥ 2
}
.

The following theorem describes the asymptotic cardinality of the set of
values taken by the polynomials Φn for n ≥ 3. Defining

A(Φ{n≥3};N) :=
⋃
n≥3
A(Φn;N),

we have

(1) We thank Peter Luschny for pointing out an inaccuracy in a previous version of
this remark.
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Theorem 1.3. There exist sequences (αh) and (βh) (with α0 > 0 and
β0 > 0) such that, for every M ≥ 0, uniformly for N ≥ 2,

(1.2)

|A(Φ{n≥3};N)| = N

(logN)1/2

{(
α0−

β0

(logN)1/4

)
+

1

logN

(
α1−

β1

(logN)1/4

)
+ · · ·+ 1

(logN)M

(
αM −

βM
(logN)1/4

)
+O

(
1

(logN)M+1

)}
.

The proof of this theorem will be given in §6 with the precise defini-
tions of the coefficients α0 and β0. This proof will show that the largest
contribution to |A(Φ{n≥3};N)| comes from the sets A(Φ3;N) and A(Φ4;N).

It follows from Theorem 1.3 that the set of integers m such that am 6= 0
has natural density 0. Combining Theorem 1.3 with Lemma 5.1, we will
deduce that the average of the nonzero values of am grows like

√
logm.

More precisely, we have the following.

Corollary 1.4. For N ≥ 1, define

AN = |A(Φ{n≥3};N)| and MN =
1

AN
(a1 + · · ·+ aN ).

Then there exists a positive absolute constant κ1 such that

MN ∼ κ1
√

logN.

In particular, the sequence (am)m≥1 is unbounded; this follows from the
fact that the number of representations of a positive integer by the quadratic
form Φ4(X,Y ) is an unbounded sequence. The same is true for the quadratic
forms Φ3(X,Y ) and Φ6(X,Y ).

In Lemma 5.1, we will prove that the number CN of integers ≤ N
which are represented by a binary form Φn(X,Y ) with ϕ(n) > 2 and
max{|x|, |y|} ≥ 2 is less than κ2N

1/2 where κ2 is a positive absolute con-
stant.

For m ≥ 1, denote by bm the number of elements in the set{
(n, x, y) ∈ N× Z2

∣∣ ϕ(n) > 2, max{|x|, |y|} ≥ 2, Φn(x, y) = m
}
.

We will see in the last section that for m between 1 and 100, there are
exactly 16 values of m for which bm is different from 0:

Table 2

m 11 13 16 17 31 32 43 55 57 61 64 73 80 81 82 97

bm 8 8 24 8 8 4 8 8 8 16 24 16 4 24 8 8
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Lemma 1.5. We have

lim sup
m→∞

bm log log logm

log logm
≥ 8,

and therefore the sequence (bm)m≥1 is unbounded.

Proof. For the sth odd prime ps, consider the integer

ks = ϕ(3 · 5 · · · ps),
the product being taken over all the primes between 3 and ps. Set ms = 2ks .
Then Φn(x, y) = ms for at least 8s values of (n, x, y), namely

(`, 0,±2t), (`,±2t, 0), (2`, 0,±2t), (2`,±2t, 0),

for each prime ` between 3 and ps with t = ks/ϕ(`). Therefore, by excluding
` = 3 we have bms ≥ 8(s− 1).

Because
log ks =

∑
3≤p≤ps

log(p− 1),

the Prime Number Theorem implies that for s→∞ we have

log ks ∼ ps ∼ s log s,

hence

s ∼ log ks
log log ks

with ks =
logms

log 2

and

s ∼ log logms

log log logms
·

This completes the proof of Lemma 1.5.

2. Positive definite binary forms. Consider a Thue equation F (X,Y )
= m associated with the polynomial f(X) defined by f(X) = F (X, 1),
where f(X) has no real roots and has positive values on R. This is the case
for cyclotomic polynomials. Such a situation was also considered in [G]. The
following result shows that the study of the associated Diophantine equation
F (X,Y ) = m reduces to finding a lower bound for the values of f(t) on R.

Lemma 2.1. Let f(X) ∈ Z[X] be a nonzero polynomial of degree d which
has no real root. Let g(X) = Xdf(1/X). Assume that the leading coefficient
of f(X) is positive, so that the real numbers defined by

γ1 = inf
t∈R

f(t), γ2 = inf
t∈R

g(t),

γ′1 = inf
−1≤t≤1

f(t), γ′2 = inf
−1≤t≤1

g(t), γ′ = min{γ′1, γ′2}

are > 0. Let F (X,Y ) be the binary form Y df(X/Y ) associated with f(X).
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(1) For each (x, y) ∈ Z2, we have

F (x, y) ≥ γ1|y|d, F (x, y) ≥ γ2|x|d, F (x, y) ≥ γ′max{|x|d, |y|d}.
(2) The following statements hold true:

(i) For any real number c1 with c1 > γ1, there exist infinitely many
couples (x, y) in Z2 satisfying y > 0 and

F (x, y) < c1y
d.

(ii) For any real number c2 with c2 > γ2, there exist infinitely many
couples (x, y) in Z2 satisfying x > 0 and

F (x, y) < c2x
d.

(iii) For any real number c with c > γ′, there exist infinitely many
couples (x, y) in Z2 satisfying

F (x, y) < cmax
{
|x|d, |y|d

}
.

Before proceeding to the proof, some remarks are in order. For |t| > 1,
from g(t) = tdf(1/t) we deduce f(1/t) ≤ g(t). Hence

inf
−1≤t≤1

|f(t)| ≤ inf
|t|≥1
|g(t)|.

Therefore, if we set

γ′′1 = inf
|t|≥1

f(t), γ′′2 = inf
|t|≥1

g(t),

then

γ1 = min{γ′1, γ′′1}, γ2 = min{γ′2, γ′′2}, γ′2 ≤ γ′′1 , γ′1 ≤ γ′′2 .
Hence

γ′ = min{γ′1, γ′2} ≤ min {γ′′1 , γ′′2} ≤ max {γ1, γ2}.
It follows that for a reciprocal polynomial f we have γ1 = γ2 = γ′1 = γ′2 = γ′;
in particular, for a reciprocal f ,

(2.1) inf
t∈R

f(t) = inf
|t|≤1

f(t).

Proof of Lemma 2.1. (1) The proof of the first two lower bounds is direct.
Let us prove the third one. It is plain that

F (x, y) ≥ γ′1|y|d for |x| ≤ |y| and F (x, y) ≥ γ′2|x|d for |x| ≥ |y|,
and the third lower bound follows.

(2) Here we prove that the lower bounds of (1) are optimal.

(i) Let t0 ∈ R be such that f(t0) = γ1. There exists a real number a > 0
such that, for t ∈ ]t0 − a, t0 + a[,

|f(t)− γ1| ≤ (|f ′(t0)|+ 1)(t− t0).



Cyclotomic binary forms 73

For y > 0, let x in Z be such that

|t0 − x/y| ≤ 1.

For y sufficiently large, x/y is in ]t0 − a, t0 + a[ and we have

|F (x, y)− ydf(t0)| ≤ (|f ′(t0)|+ 1)yd−1.

As a consequence, for y sufficiently large,

F (x, y) < c1y
d.

(ii) is proved in the same way.
(iii) Assume first c > γ′1. Suppose −1 ≤ t0 ≤ 1. Our argument above

gives infinitely many couples (x, y) in Z2 with F (x, y) < c|y|d and |y| ≤ |x|.
Hence

F (x, y) < cmax
{
|x|d, |y|d

}
.

The same argument, starting with |t0| ≥ 1, gives infinitely many couples
(x, y) with F (x, y) < c|x|d and |x| ≤ |y|. The case c > γ′2 is proved in the
same way.

Let us mention in passing that Győry [G, p. 364] exhibited Thue equa-
tions which have as many (nonzero) solutions as one pleases, by allowing the
degree to be large enough. Let us give a similar example. Let cj (j = 1, . . . , `)
be different rational integers and let c > 0 be any fixed integer. Consider
the binary form F (X,Y ) of degree 2` defined by

F (X,Y ) =
∏̀
j=1

(X − cjY )2 + cY 2`.

Here F (x, y) > 0 for all (x, y) ∈ R2 \ {(0, 0)}. Moreover, for j = 1, . . . , `, we
have F (cj , 1) = c, and the minimum value on the real axis of the associated
polynomial f(X), defined by F (X, 1), is c.

3. On cyclotomic polynomials. The cyclotomic polynomials φn(X)
∈ Z[X], n ≥ 1, are defined by the formula

(3.1) φn(X) =
∏
ζ∈En

(X − ζ)

where En is the set of primitive roots of unity of order n. One can also define
them via the recurrence provided by

(3.2) Xn − 1 =
∏
d|n

φd(X).

The degree of φn(X) is ϕ(n), where ϕ is Euler’s totient function. We will
always suppose that n ≥ 3, so ϕ(n) is always even. For n ≥ 3, the polynomial
φn(X) has no real root.
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Two important formulas for cyclotomic polynomials are the following:
whenn is an integer≥ 1 written asn = prmwith p a prime and gcd(p,m) = 1,
we have

(3.3) φn(X) =
φm(Xpr)

φm(Xpr−1)
and φn(X) = φpm(Xpr−1

).

We will use the following properties:

(i) The nth cyclotomic polynomial can be defined by

(3.4) φn(X) =
∏
d|n

(Xd − 1)µ(n/d),

where µ is the Möbius function.

(ii) Let n = 2e0pe11 · · · perr where p1, . . . , pr are different odd primes,
e0 ≥ 0, ei ≥ 1 for i = 1, . . . , r and r ≥ 1. Denote by R the radical of n,

R =

{
2p1 · · · pr if e0 ≥ 1,

p1 · · · pr if e0 = 0.

Then

(3.5) φn(X) = φR(Xn/R).

(iii) Let n = 2m with m odd ≥ 3. Then

(3.6) φn(X) = φm(−X).

4. The invariants cn. The real number

cn = inf
t∈R

φn(t)

is always > 0 for n ≥ 3; this invariant cn will play a major role in this paper.
Since the cyclotomic polynomials are reciprocal, we deduce from (2.1) that

(4.1) cn = inf
−1≤t≤1

φn(t).

Proposition 4.1. Let n ≥ 3. Write

n = 2e0pe11 · · · p
er
r

where p1, . . . , pr are odd primes with p1 < · · · < pr, e0 ≥ 0, ei ≥ 1 for
i = 1, . . . , r and r ≥ 0.

(i) For r = 0 we have e0 ≥ 2 and cn = c2e0 = 1.
(ii) For r ≥ 1 we have

cn = cp1···pr ≥ p−2
r−2

1 .

Here are the first values of cn for n odd and squarefree, with for each n
a value of tn ∈ ]−1, 1[ such that cn = φn(tn):
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Table 3

n cn tn

3 0.75 −0.5

5 0.673 . . . −0.605 . . .

7 0.635 . . . −0.670 . . .

11 0.595 . . . −0.747 . . .

13 0.583 . . . −0.772 . . .

15 0.544 . . . 0.669 . . .

17 0.567 . . . −0.808 . . .

n cn tn

19 0.562 . . . −0.822 . . .

21 0.496 . . . 0.723 . . .

23 0.553 . . . −0.844 . . .

29 0.544 . . . −0.867 . . .

31 0.541 . . . −0.873 . . .

33 0.447 . . . 0.787 . . .

35 0.375 . . . 0.782 . . .

n cn tn

37 0.536 . . . −0.889 . . .

39 0.433 . . . 0.808 . . .

41 0.533 . . . −0.897 . . .

43 0.531 . . . −0.900 . . .

47 0.529 . . . −0.907 . . .

51 0.414 . . . 0.838 . . .

53 0.526 . . . −0.915 . . .

Proof of Proposition 4.1. In view of the properties (3.5) and (3.6), we
may restrict to the case where n is odd and squarefree.

We plan to prove

(4.2) φp1···pr(t) ≥ 1

p2
r−2

1

for r ≥ 1 and −1 ≤ t ≤ 1.

We start with the case r = 1. Let p be an odd prime. For −1 ≤ t ≤ 0,
we have 1 ≤ 1− tp ≤ 1− t ≤ 2, hence

(4.3) 1/2 ≤ φp(t) ≤ 1.

For 0 ≤ t ≤ 1, we have 0 ≤ 1−t ≤ 1−tp ≤ 1 and φp(t) = 1+t+t2+· · ·+tp−1,
so

(4.4) 1 ≤ φp(t) ≤ p.
We deduce 1/2 ≤ φp(t) ≤ p for −1 ≤ t ≤ 1. Since c3 = 3/4, this completes
the proof of (4.2) for r = 1.

Assume now r ≥ 2. Using (3.4) for n = p1 · · · pr, we express φn(t) as
a product of 2r−1 factors, half of which are of the form φp1(td), while the
other half are of the form 1/φp1(td), where d is a divisor of p2p3 · · · pr.

For t ∈ [−1, 0], using (4.3), we have

1/2 ≤ φp1(t) ≤ 1 and 1/2 ≤ φp1(td) ≤ 1,

hence

(4.5)
1

22r−2 ≤ φp1···pr(t) ≤ 22
r−2
.

For t ∈ [0, 1], using (4.4), we have

1 ≤ φp1(t) ≤ p1 and 1 ≤ φp1(td) ≤ p1,
and so

(4.6)
1

p2
r−2

1

≤ φp1···pr(t) ≤ p2r−2

1 .
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From (4.5) and (4.6), we conclude that (4.2) is true. Thanks to (4.1), in-
equality (4.2) can be written as

log cn ≥ −2r−2 log p1.

We need an auxiliary result.

Lemma 4.2. For any odd squarefree integer n= p1 · · · pr with p1< · · ·<pr
satisfying n ≥ 11 and n 6= 15, we have

(4.7) ϕ(n) > 2r+1 log p1.

Proof. If r = 1, then n is a prime ≥ 11 and (4.7) is true with p1 = n. If
r = 2, n 6= 15, we have p2 ≥ 7, hence

ϕ(p1p2) = (p1 − 1)(p2 − 1) > 6(p1 − 1) > 8 log p1,

so (4.7) is true.
Assume r ≥ 3. Then

ϕ(n) = (p1 − 1)(p2 − 1) · · · (pr − 1)

> (p1 − 1)22(r−1) ≥ (p1 − 1)2r+1 > 2r+1 log p1.

We deduce the following consequence.

Proposition 4.3. For n ≥ 3, we have

cn ≥ (
√

3/2)ϕ(n).

This lower bound is best possible, since there is equality for n = 3 (and
for n = 6).

Proof of Proposition 4.3. It suffices to check the inequality when n is
odd and squarefree, say n = p1 · · · pr where p1 < · · · < pr with r ≥ 1. The
lower bound is true for n = 3 (with equality, since c3 = 3/4), and also for
n = 5, for n = 7 and for n = 15, since

c5 > 0.6 > (
√

3/2)4, c7 > 0.6 > (
√

3/2)6, c15 > 0.5 > (
√

3/2)8.

Using Proposition 4.1(ii) and Lemma 4.2, we have

8 log cn ≥ −2r+1 log p1 ≥ −ϕ(n),

which implies

cn ≥ e−ϕ(n)/8 ≥ (
√

3/2)ϕ(n)

since log(2/
√

3) > 1/8.

Proposition 4.3 will be sufficient for the proofs of Theorems 1.1 and 1.2
and Lemma 5.1. However, it may be of independent interest to state further
properties of cn, which are easy to prove.

For p an odd prime number, the derivative φ′p(t) has a unique real root;
it lies in ]−1,−1/2] and will be denoted tp.
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• For p = 3, we have t3 = −1/2.

• For p an odd prime number, one has cp = ptp−1p .
• The sequence (tp)p odd prime is decreasing and converges to −1; in fact,

−1 +
log(2p)

p
− (log(2p))2

2p2
< tp < −1 +

log(2p)

p
+

log(2p)

p2
.

• The sequence (cp)p odd prime is decreasing and converges to 1/2; in fact,

cp =
1

2
+

1 + log(2p)

4p
+
νp(log p)2

p2
with |νp| ≤

1

4
·

• Let p1 and p2 be primes. Then

cp1p2 ≥
1

p1
·

Further, for any prime p1,

lim
p2→∞

cp1p2 =
1

p1
·

• We have lim infn→∞ cn = 0 and lim supn→∞ cn = 1.

5. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Assume

Φn(x, y) = m

with n ≥ 3 and max{|x], |y|} ≥ 2. Using Lemma 2.1, we deduce

(5.1) cn max{|x], |y|}ϕ(n) ≤ m.
From Proposition 4.3 we get

(5.2)

(√
3

2
max{|x|, |y|}

)ϕ(n)
≤ m.

Since max{|x], |y|} ≥ 2, we deduce the desired upper bound for ϕ(n):

3ϕ(n)/2 ≤ m.
Using again (5.2), we arrive at

max{|x|, |y|} ≤ 2√
3
m1/ϕ(n).

Proof of Theorem 1.2. We first prove that if the triple (n, x, y) satisfies

n ≥ 3, max{|x|, |y|} ≥ 2, Φn(x, y) < 7ϕ(n)/2,

then max{|x|, |y|} = 2. Using Maple [M], we check that this property holds
for n ∈ {3, 5, 7, 15}, namely, each of the inequalities

Φ3(x, y) < 7, Φ5(x, y) < 72, Φ7(x, y) < 73, Φ15(x, y) < 74

implies max{|x|, |y|} = 2.
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For n an odd squarefree integer 6∈ {3, 5, 7, 15}, according to (4.7), we
have

ϕ(n) > 2r+1 log p1.

Since log(3/
√

7) > 1/8, we deduce from (5.1) and Proposition 4.1 that the
assumption Φn(x, y) < 7ϕ(n)/2 implies

ϕ(n) log max{|x|, |y|} ≤ logΦn(x, y)− log cn <
ϕ(n)

2
log 7 + 2r−2 log p1

<

(
1

2
log 7 +

1

8

)
ϕ(n) < ϕ(n) log 3,

hence max{|x|, |y|} < 3 and therefore max{|x|, |y|} = 2. Since 2 log 2 < log 7,
we deduce that the assumptions n ≥ 3, max{|x|, |y|} ≥ 2, and Φn(x, y)
≤ 2ϕ(n) imply max{|x|, |y|} = 2.

Let θ ∈ ]0, 1[ and let n ≥ 3, max{|x|, |y|} ≥ 2, and Φn(x, y) ≤ 2θϕ(n).
Then

cn ≤ 2(θ−1)ϕ(n).

Proposition 4.1 implies

(1− θ)(log 2)ϕ(n) ≤ 2r−2 log p1.

It remains to check that the set of odd squarefree integers n satisfying this
condition is bounded. Indeed, if r = 1, then n = p1 satisfies

2(log 2)(1− θ)(p1 − 1) ≤ log p1,

hence p1 is bounded. If r ≥ 2, then the condition

(1− θ)(log 2)(p1 − 1)(p2 − 1)(p3 − 1) · · · (pr − 1) ≤ 2r−2 log p1

shows that p1 · · · pr is bounded.

The proofs of Theorem 1.3 and Corollary 1.4 will use the following result,
the proof of which rests on Proposition 4.3.

Lemma 5.1. Let d > 2. There exists an effectively computable positive
constant C(d) such that the number of triples (n, x, y) in N × Z2 which
satisfy ϕ(n) ≥ d, max{|x|, |y|} ≥ 2 and Φn(x, y) < N is bounded by
C(d)N2/d.

Given a positive integer N and a binary form F (X,Y ) of degree d, with
integer coefficients and nonzero discriminant, denote by RF (N) the number
of integers of absolute value at most N which are represented by F (X,Y ).
In [S–X], the authors quote the foundational work of Fermat, Lagrange,
Legendre and Gauss concerning the case where F is a binary quadratic
form, and a result of Erdős and Mahler (1938) for forms of higher degrees.
They prove that for d ≥ 3, there exists a positive constant CF > 0 such that
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RF (N) is asymptotic to CFN
2/d. Lemma 5.1 concerns a sequence of forms

having no real zero, a situation which is easier to deal with.

Proof of Lemma 5.1. If m < N is represented by Φn(x, y) with ϕ(n) ≥ d,
then Φn(x, y) < N , hence by (5.1) we have cn2ϕ(n) < N . From Proposi-
tion 4.3 we deduce 3ϕ(n)/2 < N , so ϕ(n) < (2 logN)/log 3. Next, from (5.2)
we deduce

max{|x|, |y|} ≤ 2√
3
m1/ϕ(n) <

2√
3
N1/ϕ(n) ≤ 2√

3
N1/d,

which proves that for each n, the number of (x, y) is bounded by (16/3)N2/d.
From (1.1) we deduce that the number of triples (n, x, y) in N × Z2 which
satisfy ϕ(n) ≥ d, max{|x|, |y|} ≥ 2 and Φn(x, y) < N is bounded by
29N2/d(logN)1.161.

Now we consider two cases. If there is no n with ϕ(n) = d, then we deduce
the sharper upper bound 29N2/(d+1)(logN)1.161. If the set {n1, . . . , nk} of
integers n satisfying ϕ(n) = d is not empty, for 1 ≤ j ≤ k the number of
couples (x, y) in Z2 satisfying max{|x|, |y|} ≥ 2 andΦnj (x, y) < N is bounded

by (16/3)N2/d, while the number of triples (n, x, y) in N×Z2 with ϕ(n) > d,
max{|x|, |y|} ≥ 2 and Φn(x, y) < N is bounded by 29N2/(d+1)(logN)1.161.
Since k is bounded in terms of d, Lemma 5.1 follows.

6. Proofs of Theorem 1.3 and Corollary 1.4. We start from an
easy inequality concerning the cardinality of the union of finite sets:

(6.1) ∣∣|A(Φ{n≥3};N)| −
(
|A(Φ3;N)|+ |A(Φ4;N)| − |A(Φ3;N) ∩ A(Φ4;N)|

)∣∣
≤
∣∣∣ ⋃
ϕ(n)≥4

A(Φn;N)
∣∣∣.

By Lemma 5.1 the right-hand side of (6.1) is O(N1/2), which is absorbed
by the error term of (1.2). So we are led to study the cardinalities of three
sets: A(Φ3;N), A(Φ4;N) and A(Φ3;N) ∩ A(Φ4;N). For algebraic reasons,
it is better to consider for k ∈ {3, 4} the larger sets

Ã(Φk;N) :=
{
m ∈ N | m ≤ N,m = Φn(x, y) for some (x, y) ∈ Z2\{(0, 0)}

}
,

which differ from A(Φk;N) by at most two terms. In conclusion, the proof

of Theorem 1.3 will be complete (with αh = α
(3)
h + α

(4)
h , h ≥ 0) as soon as

we prove

Proposition 6.1. There exist sequences (α
(3)
h ), (α

(4)
h ) and (βh) (h ≥ 0)

of real numbers, with α
(3)
0 , α

(4)
0 , β0 > 0, such that for every for M ≥ 0,



80 É. Fouvry et al.

uniformly for N ≥ 2,

(6.2) |Ã(Φk;N)| = N

(logN)1/2

{
α
(k)
0 +

α
(k)
1

logN
+ · · ·

+
α
(k)
M

(logN)M
+O

(
1

(logN)M+1

)}
(k = 3, 4)

and

(6.3) |Ã(Φ3;N) ∩ Ã(Φ4;N)|

=
N

(logN)3/4

{
β0 +

β1
logN

+ · · ·+ βM
(logN)M

+O

(
1

(logN)M+1

)}
.

The proof of this proposition occupies the next three subsections. We
will exploit the fact that Φ3 and Φ4 are binary quadratic forms, which also
are the norms of integers of imaginary quadratic fields with class number 1.
Finally, the characteristic functions of the sets Ã(Φk;∞) for k ∈ {3, 4} are
studied by analytic methods via the theory of Dirichlet series.

6.1. Algebraic background. We fix some notation. The letter p is
reserved for primes. If a and q are two integers, we denote by Na,q any
integer ≥ 1 satisfying the condition

p |Na,q ⇒ p ≡ a mod q.

Proposition 6.2. The following equivalences hold true:

(i) An integer n ≥ 1 is of the form

n = Φ4(x, y) = x2 + y2

if and only if there exist integers a ≥ 0, N3,4 and N1,4 such that

n = 2aN2
3,4N1,4.

(ii) An integer n ≥ 1 is of the form

n = Φ3(u, v) = Φ6(u,−v) = u2 + uv + v2

if and only if there exist integers b ≥ 0, N2,3 and N1,3 such that

n = 3bN2
2,3N1,3.

(iii) An integer n ≥ 1 is simultaneously of the forms

n = Φ3(u, v) = u2 + uv + v2 and n = Φ4(x, y) = x2 + y2

if and only if there exist integers a, b ≥ 0, N5,12, N7,12, N11,12 and
N1,12 such that

n = (2a3bN5,12N7,12N11,12)
2N1,12.

Proof. Part (i) is well known (see [H–W, Theorem 366] for instance). It
can be proved by detecting primes in the ring Z[i] of Gaussian integers of
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the quadratic field Q(i). This ring is principal and the norm of an element
x+ iy is given by the quadratic form Φ4(x, y) = x2 + y2. The quadratic field
Q(
√
−3) has similar properties: its associated ring of integers is a principal

domain equal to Z[j] with j = (−1 +
√
−3)/2. The primes of Z[j] (also

called Eisenstein primes) are detected by the values of the Kronecker symbol
(−3/p) and the norm of the element u+ vj of Z[j] is equal to Φ3(u,−v) =
Φ6(u, v) = u2 + uv + v2. This gives part (ii). Also, this statement is a
particular case of [B–Ch, Théorème 3, p. 267] and it is implicitly contained
in [H–W, Theorem 254], [H, Exercise 2, p. 308].

Combining (i) and (ii), we deduce part (iii) directly.

6.2. Analytic background. Our main tool is based on the Selberg–
Delange method. The following version is a weakened form of the quite gen-
eral result due to Tenenbaum [T, Theorem 3, p. 185]. It gives an asymptotic
expansion of the summatory function of a sequence (an) when the associ-
ated Dirichlet series can be approached by some power of the ζ-function in
a domain slightly larger than the half-plane {s ∈ C | <s ≥ 1}.

Proposition 6.3. Let s = σ + it be the complex variable and let

F (s) :=
∑
n≥1

ann
−s

be a Dirichlet series such that

• the coefficients an are real nonnegative numbers,
• there exist z ∈ C and c0, δ,K > 0 such that the function

G(s) := F (s)ζ(s)−z

has a holomorphic continuation in the domain D of the complex plane
defined by

(6.4) σ > 1− c0
1 + log(1 + |t|)

,

and satisfies

(6.5) |G(s)| ≤ K(1 + |t|)1−δ

for every s ∈ D.

Then there exists a sequence (λk) (k ≥ 0) of real numbers such that for all
M ≥ 1, uniformly for x ≥ 2,∑

1≤n≤x
an = x(log x)z−1

{ ∑
0≤k≤M

λk
(log x)k

+O

(
1

(log x)M+1

)}
·

In particular,

λ0 =
1

Γ (z)
G(1).
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6.3. Proof of Proposition 6.1. We restrict ourselves to the proof
of (6.3) since the proof of (6.2) is simpler. Let ξn be the characteristic
function of the set of integers n ≥ 1 which are simultaneously represented
by Φ3 and Φ4. Let F (s) =

∑
n ξnn

−s be the associated Dirichlet series. Note
that

|Ã(Φ3;N) ∩ Ã(Φ4;N)| =
∑
n≤N

ξn.

By Proposition 6.2(iii), F (s) factorizes into the product

(6.6) F (s) = H(s)Π(s)

with

H(s) =

(
1− 1

4s

)−1(
1− 1

9s

)−1 ∏
p≡5,7,11mod 12

(
1− 1

p2s

)−1
,(6.7)

Π(s) =
∏

p≡1mod 12

(
1− 1

ps

)−1
.(6.8)

The function H is holomorphic for σ > 1/2 and uniformly bounded for
σ ≥ 3/4. The infinite product Π(s) is absolutely convergent for σ > 1 and we
want to study the behavior of this product in the vicinity of the singularity
s = 1. To detect among the primes p ≥ 5 those which are congruent either
to 1 modulo 12 or to 5, 7, 11 modulo 12, we use the formula

(6.9)
1

4

(
1 +

(
−3

p

)
+

(
−4

p

)
+

(
12

p

))
=

{
1 if p ≡ 1 mod 12,

0 if p ≡ 5, 7, 11 mod 12.

Inserting (6.9) into (6.8), we deduce that for σ > 1 we have

Π(s) =
∏
p≥5

{(
1− 1

ps

)(
1− (−3/p)

ps

)(
1− (−4/p)

ps

)(
1− (12/p)

ps

)}−1/4

×
∏

p≡5,7,11mod 12

(
1− 1

p2s

)1/2

.

Completing the first infinite product with the factors associated with the
primes p = 2 and p = 3 to obtain the ζ-function and some L-functions, we
deduce that for σ > 1,

(6.10) Π(s) = H1(s)ζ(s)1/4 L(s, (−3/·))1/4 L(s, (−4/·))1/4 L(s, (12/·))1/4,

with

H1(s) =

(
1− 1

4s

)1/4(
1− 1

9s

)1/4 ∏
p≡5,7,11mod 12

(
1− 1

p2s

)1/2

.
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By (6.6)–(6.8) and (6.10), we deduce that for σ > 1,

(6.11) F (s) = H2(s)ζ(s)1/4L(s, (−3/·))1/4L(s, (−4/·))1/4L(s, (12/·))1/4,

with

H2(s) =

(
1− 1

4s

)−3/4(
1− 1

9s

)−3/4 ∏
p≡5,7,11mod 12

(
1− 1

p2s

)−1/2
.

The function H2 is holomorphic for σ > 1/2 and uniformly bounded for
σ ≥ 3/4.

By the classical zerofree region of the Dirichlet L-functions, there exists
c0 > 0 such that in the domain D defined in (6.4) the function

L(s, (−3/·))L(s, (−4/·))L(s, (12/·))

does not vanish. This implies that the function

G(s) := F (s)ζ(s)−1/4 = H2(s)L(s, (−3/·))1/4L(s, (−4/·))1/4L(s, (12/·))1/4

can be extended to a holomorphic function onD satisfying (6.5) with δ = 1/2,
as a consequence of the functional equation and the Phragmén–Lindelöf
convexity principle (see [I–K, Exercise 3, p. 100] for instance).

All the conditions of Proposition 6.3 are satisfied with z = 1/4 and we
obtain (6.3) with

β0 = H2(1)L(1, (−3/·))1/4L(1, (−4/·))1/4L(1, (12/·))1/4/Γ (1/4),

which can be written as

β0 =

(
3

2

)3/4 1

Γ (1/4)
L(1, (−3/·))1/4L(1, (−4/·))1/4L(1, (12/·))1/4

×
∏

p≡5,7,11mod 12

(
1− 1

p2

)−1/2
.

Since [OEIS, A101455, A073010, A196530]

L(1, (−4/·)) =
π

4
, L(1, (−3/·)) =

π

33/2
, L(1, (12/·)) =

log(2 +
√

3)√
3

,

we deduce

β0 =
31/4

25/4
π1/2(log(2 +

√
3))1/4

1

Γ (1/4)

∏
p≡5,7,11 mod 12

(
1− 1

p2

)−1/2
.

The proof of (6.2) for k = 3 and k = 4 is simpler since the formula to
detect the congruences p ≡ 1 mod 3 and p ≡ 1 mod 4 contains only two terms
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instead of four as in (6.9). In both cases k = 3 and k = 4, the parameter z
is 1/2. This gives (6.2) with

α
(3)
0 =

1

21/231/4

∏
p≡ 2mod 3

(
1− 1

p2

)−1/2
,

α
(4)
0 =

1

21/2

∏
p≡ 3mod 4

(
1− 1

p2

)−1/2
.

Finally, (6.2) is a detailed version of Landau’s formula which states that
for N tending to infinity, we have

|Ã(Φ4;N)| ∼ C N√
logN

,

where C = α
(4)
0 = 0.764 223 653 589 220 . . . is the Landau–Ramanujan con-

stant (cf. [L, pp. 257–263] and [OEIS, A000404, A064533]). Using Pari/

GP [P], one checks that the first decimal digits of α
(3)
0 are 0.638 909, while

the first decimal digits of β0 are 0.302 316.

6.4. Proof of Corollary 1.4. For N ≥ 1, a1 + · · · + aN counts the
number of triples (n, x, y) with n ≥ 3, max{|x|, |y|} ≥ 2 and Φn(x, y) ≤ N .
The number of such triples with n = 4 is asymptotically πN . The number of
such triples with n = 3 is asymptotically (π/

√
3)N , and the same for n = 6.

The number of such triples with ϕ(n) > 2 is o(N), as shown by Lemma 5.1.
Hence

a1 + · · ·+ aN ∼
(

1 +
2√
3

)
πN,

and Corollary 1.4 with

κ1 =
π

α0

(
1 +

2√
3

)
follows from Theorem 1.3.

7. Numerical computations. From (5.2), we deduce that the assump-
tions n ≥ 3, Φn(x, y) ≤ 20 and max{|x|, |y|} ≥ 2 imply(√

3

2
max{|x|, |y|}

)ϕ(n)
≤ 20.

We deduce firstly 3ϕ(n)/2 ≤ 20, hence ϕ(n) ≤ 4, and secondly

max{|x|, |y|} ≤ 2
√

20/3,

hence max{|x|, |y|} ≤ 5. It is now again a simple matter of computation
with Maple [M] to complete the rest of Table 1. For instance, one can find in
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Table 4 the values of (x, y) which are the only ones satisfying the stronger
condition Φn(x, y) ≤ 10.

Table 4

m = 3: n = 3, (x, y) = (1,−2), (−1, 2), (2,−1), (−2, 1)

m = 3: n = 6, (x, y) = (1, 2), (−1,−2), (2, 1), (−2,−1)

m = 4: n = 3, (x, y) = (0, 2), (0,−2), (2, 0), (2,−2), (−2, 0), (−2, 2)

m = 4: n = 4, (x, y) = (0, 2), (0,−2), (2, 0), (−2, 0)

m = 4: n = 6, (x, y) = (0, 2), (0,−2), (2, 0), (2, 2), (−2, 0), (−2,−2)

m = 5: n = 4, (x, y) = (1, 2), (1,−2), (−1, 2), (−1,−2), (2, 1), (2,−1),

(−2, 1), (−2,−1)

m = 7: n = 3, (x, y) = (1, 2), (1,−3), (−1, 3), (−1,−2), (−3, 1), (3,−1),

(2, 1), (2,−3), (−2, 3), (−2,−1), (3,−2), (−3, 2)

m = 7: n = 6, (x, y) = (1, 3), (1,−2), (−1, 2), (−1,−3), (3, 1), (−3,−1),

(2, 1), (2,−1), (2, 3), (−2,−3), (3, 2), (−3,−2)

m = 8: n = 4, (x, y) = (2, 2), (2,−2), (−2, 2), (−2,−2)

m = 9: n = 3, (x, y) = (0, 3), (0,−3), (3, 0), (3, 3), (−3, 0), (−3, 3)

m = 9: n = 4, (x, y) = (0, 3), (0,−3), (3, 0), (−3, 0)

m = 9: n = 6, (x, y) = (0, 3), (0,−3), (3, 0), (3, 3), (−3, 0), (−3, 3)

m = 10: n = 4, (x, y) = (1, 3), (1,−3), (−1, 3), (−1,−3), (3, 1), (3,−1),

(−3, 1), (−3,−1)

With similar calculations, we obtain Table 2. The triples (n, x, y) which
contribute to Table 2 satisfy ϕ(n) ∈ {4, 6} and max{|x|, |y|} ∈ {2, 3}.

Notice that given h ≥ 3, the smallest value mh of m for which there
exists (n, x, y) with n ≥ 2, max{|x|, |y|} ≥ h and Φn(x, y) = m is

mh =


Φ3

(
h− 1

2
,−h

)
= Φ3

(
h+ 1

2
,−h

)
=

3h2 + 1

4
if 2 -h,

Φ3

(
h

2
,−h

)
=

3h2

4
if 2 |h.
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Ark. Mat. 5 (1963), 153–192.
[N2] T. Nagell, Sur les représentations de l’unité par les formes binaires biquadratiques
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Institut de Mathématique d’Orsay
Université Paris-Sud
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