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Exponential sums with automatic sequences

by

Sary Drappeau (Marseille) and Clemens Müllner (Wien)

1. Introduction. A complex-valued sequence (an) is called automatic
if there is a finite deterministic automaton such that for each n, the value an
is given by a function of the final state of the automaton when the automa-
ton is given as input the digital representation of n. There has been strong
interest recently in understanding correlation of automatic sequences with
other types of arithmetical functions. Much of this interest has stemmed from
the Sarnak conjecture: it was recently shown by the second author [Mül17]
that all automatic sequences are asymptotically orthogonal to the Möbius
function µ(n), in the sense that

∑
n≤x anµ(n) = o(x) as x→∞.

In the present paper, we are interested in asymptotic orthogonality of
automatic sequences with oscillating functions given by periodic exponentials
of rational fractions. The prototype of correlations we wish to study are the
incomplete Kloosterman sums

(1.1)
∑
n∈I

(n,q)=1

ane

(
n

q

)
, (e(z) = e2πiz, nn = 1 (mod q))

for an interval I of integers. Our goal is to find conditions on q and on the
size |I| of the interval which ensure that we have asymptotic orthogonality
of (an) and (e(n/q)), in the sense that the sum in (1.1) is o(|I|) as |I| → ∞.

When (an) is constant, a classical result of Weil [Wei48] shows that the
condition |I| ≥ q1/2+ε suffices; we will refer to this condition as the Pólya–
Vinogradov range (in reference to the Pólya–Vinogradov bound for sums of
Dirichlet characters). This may be improved in specific circumstances [Kor00,
Irv15], but the range obtained by the Weil bound remains unsurpassed in
general.
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Our main result, which we will describe shortly, shows that asymptotic
orthogonality for (1.1) holds in the Pólya–Vinogradov range for all automatic
sequences.

Statement of results. Let us now describe the precise setting of our
study. Given a base k ≥ 2, Σ = {0, . . . , k − 1}, and a deterministic finite
automaton A = (Q,Σ, δ, q0, τ) with output function τ : Q → C, we define
the associated automatic sequence (an)n≥0 = (τ(δ(q0, (n)k)))n≥0, where (n)k
denotes the representation of n in base k without leading zeros. When we
refer to an automatic sequence in what follows, it will always be one given
by such a construction. In particular, we assume without loss of generality
that δ(q0, 0) = q0. For a more detailed treatment of automatic sequences see
for example [AS03].

For a rational fraction f = P (X)/Q(X) ∈ Q(X), n ∈ Z and q ∈ N>0, we
define eq(f(n)) following [CFH+14, Section 4A]; we describe this in detail
below (Section 2) and simply note for now that whenever (Q(n), q) = 1, we
have

eq(f(n)) = e

(
P (n)Q(n)

q

)
.

Definition 1. Let f ∈ Q(X), which we write in reduced form f = P/Q
with P,Q ∈ Z[X] and coprime. Let also an integer q ≥ 1 be given.

(i) We let (q,Q) denote the greatest common divisor of q and Q in Z[X].
(ii) We will say that f is well-defined modulo q if (q,Q) = 1.
(iii) We define a subset of the primes by

Qf = {p : f reduces to a quadratic polynomial modulo p}.
(iv) We will say that f has degree d if max(degP,degQ) = d.

Our main result is the following bound.

Theorem 2. Let (an) be an automatic sequence, f ∈ Q[X] be a rational
function of total degree d ≥ 1, and q ≥ 1 be such that f is well-defined
modulo q. Let q1 be the largest squarefree divisor of q, coprime to k and
having no prime factor in Qf :

q1 :=
∏
p‖q

p 6∈Qf , p-k

p.

Then there exists c > 0, depending at most on d and the underlying automa-
ton A, such that

(1.2)
∑
n∈I

aneq(f(n))�ε,A,d |I|1+ε
(

1

q1
+

q2

q1|I|2

)c
for any interval I 6= ∅ of integers.
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If f(X) is a polynomial of degree exactly 2 and leading coefficient u/v
with (v, q) = 1, then

(1.3)
∑
n∈I

aneq(f(n))�ε,A,u,v |I|1+ε
(
1

q
+

q

|I|2

)c
,

where the implied constant may now also depend on u and v.

Remarks. 1. When q = p is prime, and f does not reduce to a lin-
ear function modulo p, the estimates (1.2) and (1.3) are non-trivial in the
range |I| ≥ q1/2+ε. Actually, É. Fouvry has remarked to the authors that in
the case when q is prime, we can apply a recent result of Fouvry, Kowalski,
Michel, Raju, Rivat and Soundararajan [FKM+17], and obtain the improve-
ment

(1.4)
∑

y<n≤y+x
anep(f(n)) = oA,f (x)

whenever x, q → ∞, x ≤ qO(1) and x/q1/2 → ∞ (see the remark after
Lemma 4 below).

As an example, if s2(n) denotes the sum of digits of n in base 2, and
given a function ψ(q)→∞ as q →∞, we have∑

y<n≤y+x
s2(n) is even

e

(
n

q

)
= o(x) (y ≥ 0, x ≥ 1)

for q prime, q →∞ and q1/2ψ(q) ≤ x ≤ qO(1).
2. Note that the bound (1.2) is trivial when f is a linear or constant

polynomial, as q1 = 1 in this case. It is clear that for f constant, or f(X)
= X, there is essentially no cancellation on the left-hand side of (1.2) in the
range I = [0, q/2] ∩ Z when an = 1 for all n.

3. As mentioned, we will prove a general statement (Proposition 13 below)
showing that for a bounded sequence of coefficients (K(n))n≥1, we obtain a
non-trivial bound for

∑
n∈I anK(n) as soon as we have non-trivial bounds

on two-point correlation sums of the kind∑
n∈I

n≡a (mod q)

K(n+ r)K(n)

with some mild uniformity in q and r. For instance, this offers the possibility
to takeK(n) to be a more general algebraic trace function [FKM14, FKM15],
or Fourier coefficients of a GL2 holomorphic cusp form [Blo04].

4. The case when the automatic sequence is sparse, in the sense that∑
n∈I |an| = o(|I|) as |I| → ∞, is more delicate, as then the “trivial bound”

obtained from the triangle inequality is possibly smaller than the right-hand
sides of our bounds (1.2) and (1.3). Our bounds yield a non-trivial saving as
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long as
∑

n∈I |an| � |I|1−η and η > 0 is small enough, in the range |I|O(η) ≤
q ≤ |I|2−O(η). For instance, our results apply for numbers with one missing
digit in a large enough base k ≥ k0. Obtaining a good estimate for the
smallest such k0 is a challenging question, which we do not address here;
see [May16] for recent progress on the corresponding question for primes.

Bounds of the type of Theorem 2 can be used to answer additive problems
(see [FM98], and the argument in [OS12a, p. 30]). We illustrate this by the
following statement, concerning solutions to congruence equations.

Theorem 3. Let S ⊂ N be a set of integers with the property that (an) =
(1n∈S) is an automatic sequence; such a set is called an automatic set. There
exists δ > 0, depending only on the automaton A underlying (an), such that
the following holds. For all rational fractions f1, f2, f3 none of which is a lin-
ear or constant polynomial, allm ∈ Z and all prime q, the number NS((fj), q)
of solutions to the congruence equation

f1(n1) + f2(n2) + f3(n3) ≡ m (mod q)

with nj ∈ S ∩ [1, q] for each j is asymptotically

(1.5) NS((fj), q) =
|S ∩ [1, q]|3

q
{1 +O(q−δ)}.

The implied constant may depend on f1, f2, f3 and S.

Remark. As we have already remarked, constant sequences are auto-
matic, so the above does not hold in general when considering a single con-
gruence f(n1) ≡ m (mod d).

Context and overview. There has been much work on correlations
of automatic sequences with other arithmetic objects. Some of this interest
has stemmed from questions of diophantine approximations and normality
of numbers constructed from automatic sequences. For instance, Mauduit
[Mau86] obtains non-trivial bounds on sums of the kind

(1.6)
∑
n≤x

ane(αn)

for irrational α. See the references in [Mau86] for more on the history of this
question (1) We also mention the papers [OS12b, BCS02], whose authors
study exponential and character sums over specific sequences, related to
digit expansions. In particular, the sum T`,q(r, f) of [BCS02] is closely related
to (1.1).

(1) We emphasize that in these works, the case when
∑
n≤x |an| = o(x) is particularly

important. As we have already remarked, we do not focus on sparse sequences in the
present paper.
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The method presented here, however, is related to partial progress on Sar-
nak’s conjecture [Sar12]. For automatic sequences of the kind of (−1)s2(n)
(where we recall that s2(n) is the sum of base-2 digits of n), Mauduit and
Rivat [MR10] point out a certain property (which was later called “carry
property”), and show how it can be exploited, in conjunction with the differ-
encing method of Weyl and van der Corput together with strong estimates
for the L1 norm of the discrete Fourier transform of this sequence, to obtain
Sarnak’s conjecture for this case; they also apply this method to show or-
thogonality to Λ(n), which gives a prime number theorem. Their approach
was further formalized and generalized in [MR15] (see also [Han17]), but the
estimates on the L1 norm were replaced by a so-called “Fourier property”
(L∞-bounds on the discrete Fourier transform). Finally, the second author
recently showed Sarnak’s conjecture for automatic sequences [Mül17], gener-
alizing in particular results for synchronizing automatic sequences [DDM15]
and invertible automatic sequences [Drm14, FKP+16].

The present work shows that both Mauduit–Rivat’s “carry property” and
the second author’s structure theorems for automatic sequences can be suc-
cessfully combined with van der Corput differencing when handling algebraic
exponential sums. At the heart of the bounds (1.2) and (1.3) lie Weil’s bounds
on exponential sums [Wei48].

In Section 2, we state the precise version of Weil’s bounds which we
will use, and in Section 3 we quote auxiliary results on automata, mainly
from [DDM15, DM12, Mül17]. In Section 4, we prove a general statement
(Proposition 13) linking generic sums over automatic sequences to differen-
tiated sums over intervals. In Section 5, we prove Theorem 2 in a particular
case, and in Section 6 we deduce the general case.

2. Weil bounds. We begin by recalling from [CFH+14] a convention
regarding eq(f(n)). Write in reduced form f(X) = P (X)/Q(X) with P,Q
∈ Z[X]. Given a prime power pν with Q 6≡ 0 (mod pν), reduce P/Q ≡
P1/Q1 (mod pν). For n ∈ Z, we define a function of the pair (f, n) by

epν (f ;n) =

{
e(P1(n)Q1(n)/p

ν), (Q1(n), p) = 1,

0, otherwise.

We will denote this epν (f(n)) by the slight abuse of notation. We extend
this definition to arbitrary moduli q ≥ 1 with (q,Q) = 1 by the Chinese
remainder theorem,

(2.1) eq(f(n)) :=
∏
pν‖q

epν

(
f(n)

q/pν

)
.

The purpose of this section is to justify the following bound on particular
exponential sums.
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Lemma 4. Let x, s ≥ 1, y ≥ 0, q ≥ 2, (a, r) ∈ Z2, and let f ∈ Q[X] of
degree at most d be well-defined modulo q. Then

(2.2)
∑

y<n≤y+x
n≡a (mod s)

eq(f(n+ r)− f(n))�ε,d q
ε
( ∏
p‖q, p-rs
p 6∈Qf

p
)−1/2(x

s
+ q

)
.

If f(X) = u
vX

2 with (uq, v) = 1, then

(2.3)
∑

y<n≤y+x
n≡a (mod s)

eq(f(n+ r)− f(n))� min

(
x

s
+ 1,

∥∥∥∥2uvrsq

∥∥∥∥−1
R/Z

)
.

The bound claimed in (2.2) corresponds to square-root cancellation in
the part of the modulus which is squarefree, has no factor in Qf and is
coprime to rs. We have assumed squarefreeness because it usually suffices in
applications, and greatly simplifies the argument; the contribution of higher
powers of primes could be studied in specific cases by elementary arguments
(see [IK04, Lemmas 12.2 and 12.3]).

Remark. When q is prime, [FKM+17, Theorem 1.1] may be used to
obtain an o(x) bound whenever x/q1/2 →∞.

The proof of Lemma 4 is based on the following Weil bound, which is a
slightly weaker form of [CFH+14, Proposition 4.6].

Lemma 5 (Weil [Wei48], [CFH+14, Proposition 4.6]). Let q ≥ 1 be
squarefree, and let f ∈ Q(X) of degree ≤ d be well-defined modulo q. Then∑

n (mod q)

eq(f(n))�ε,d q
1/2+ε(q, f ′)1/2.

To deal with the factor (q, f ′), we will use the following lemma.

Lemma 6. Let f ∈ Q(X), which is not a polynomial of degree ≤ 2.
Let q ≥ 2 be squarefree and such that for all p | q, p 6∈ Qf , we have Q 6≡
0 (mod p). Then

(q, f ′(X + r)− f ′(X) + `)�A (q, r)
∏
p|q, p-r
p∈Qf

p (r, ` ∈ Z).

Proof. Write f = P/Q in reduced form with P,Q ∈ Z[X]. It will suffice
to prove that (p, f ′(X + r)− f ′(X)+ `) = 1 when p is large enough in terms
of the degrees of P and Q, p 6∈ Qf , p - 2r. Suppose this is not the case. Then
by [CFH+14, Lemma 4.5(i)], we have (p, f(X + r) − f(X) + `X − c) = p
for some class c (mod p). Adding to f an appropriate quadratic polynomial,
we may suppose (p, f(X + r) − f(X)) = p. Write P/Q = P1/Q1 (mod p)



Exponential sums with automatic sequences 87

with P1, Q1 coprime. Then we deduce
P1(a)Q1(a+ r) ≡ Q1(a)P1(a+ r) (mod p).

By coprimality, for all a (mod p), Q1(a) ≡ 0 implies Q1(a+ r) ≡ 0. Iterating
yields Q1(a) ≡ 0 for all a (mod p). If p is large enough in terms of degQ, we
would obtainQ1 ≡ 0, which is a contradiction. We deduceQ1(a) 6= 0 (mod p)
for all a, so that P1(X)/Q1(X) takes a constant value and has no poles. If p
is large enough in terms of degP and degQ, we conclude that P1/Q1 is a
constant polynomial, which again contradicts the hypothesis p 6∈ Qf .

Proof of Lemma 4. Wemay assume x ≥ s. As (2.3) is a simple bound for a
geometric sum, we focus on proving (2.2). After changing indices, the LHS is∑

(y−a)/s<m≤(y+x−a)/s

eq(f(a+ms+ r)− f(a+ms)).

We cover the summation interval by at most 1 + x/sq intervals of length q,
and detect the size conditions on m by additive characters. We obtain∑
(y−a)/s<m≤(y+x−a)/s

eq(f(a+ms+r)−f(a+ms))�
x

sq
|S0(q)|+

∑
1≤|`|≤q/2

|S`(q)|
`

,

where
S`(q) =

∑
m (mod q)

eq
(
f(a+ms+ r)− f(a+ms) + `m

)
.

Let q1 be the largest divisor of q which is squarefree, coprime to rs and q/q1,
and has no prime factor in Qf :

q1 =
∏

p‖q, p-rs
p 6∈Qf

p.

By the Chinese remainder theorem, we may write S`(q) = T1T2, where

T1 =
∑

m (mod q1)

eq1
(
(q/q1)

−1(f(a+ms+ r)− f(a+ms) + `m)
)
,

T2 =
∑

m (mod q/q1)

eq/q1
(
q−11 (f(a+ms+ r)− f(a+ms) + `m)

)
.

On T2 we use the trivial bound |T2| ≤ q/q1. Concerning T1, by Lemma 5
applied with f(X) replaced by f(a+ sX + r)− f(a+ sX) + `X, we get

T1 �ε q
1/2+ε
1 (q1, `+ sf ′(a+ sX + r)− sf ′(a+ sX))1/2.

Let v ∈ Z be such that sv ≡ 1 (mod q). We apply Lemma 6 with r ← rv
and f(X)← f(a+ sX). We obtain (q1, `+ sf

′(a+ sX+ r)− sf ′(a+ sX)) =

O(1), therefore |T1| = O(q
1/2+ε
1 ), and so

|S`(q)| � q1+εq
−1/2
1 .

This leads to the desired conclusion.
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3. Auxiliary results on automata. In this section we quote a few
results from the literature which we will use in our proof of Theorem 2.

From now on, we let (an) denote a fixed automatic sequence corre-
sponding to a strongly connected automaton A = (Q′, Σ, δ′, q′0, Q0), where
δ′(q′0, 0) = q′0. We follow the arguments and notations of [Mül17] and con-
sider a naturally induced transducer TA = (Q,Σ, δ, q0, ∆, λ), where Q ⊂
(Q′)n0 , π1(q0) = q′0, δ is a transition function which is synchronizing (2) and
λ : Q×Σ → ∆ ⊂ Sn0 is an output function which “attaches” a permutation
to each transition in the naturally induced transducer.

A transducer can be viewed as a mean to define functions: on the input
word w = w1w2 . . . wr the transducer enters successively the states q0 =
δ(q0, ε), δ(q0, w1), . . . , δ(q0, w1w2 . . . wr) and produces the outputs

λ(q0, w1), λ(δ(q0, w1), w2), . . . , λ(δ(q0, w1w2 . . . wr−1), wr).

The function T (w) is then defined as

T (w) :=

r−1∏
j=0

λ(δ(q0, w1w2 . . . wj), wj+1).

We also define the slightly more general form

T (q,w) :=
r−1∏
j=0

λ(δ(q, w1w2 . . . wj), wj+1).

Proposition 2.5 of [Mül17] shows how the original automaton and the
naturally induced transducer are related:

an = τ(δ′(q′0, (n)k)) = τ
(
π1(T (q0, (n)k) · δ(q0, (n)k))

)
.(3.1)

The following theorem highlights an important closure property of nat-
urally induced transducers.

Theorem 7 ([Mül17, Theorem 2.7]). Let A be a strongly connected au-
tomaton. There exists a minimal d ∈ N, m0 ∈ N, a naturally induced trans-
ducer TA and a subgroup G of ∆ such that:

• For all q ∈ Q, w ∈ (Σd)∗ we have T (q,w) ∈ G.
• For all g ∈ G, q, q ∈ Q and n ≥ m0 we have

{T (q,w) : w ∈ Σnd, δ(q,w) = q} = G.

The integers d = d(A) and m0 = m0(A) only depend on A, but not on its
initial state q′0.

(2) This means that there exists a synchronizing word w0, i.e., δ(q0,w0) = δ(q,w0)
for all q ∈ Q.
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Finally, [Mül17, Corollary 2.26] shows that there is A = (Q′, Σ, q′0, δ
′, τ)

generating (an) such that d(A) = 1 and we consider a naturally induced
transducer which fulfills Theorem 7.

One crucial idea in [Mül17] was that the functions T and δ corresponding
to a naturally induced transducer behave “independently” of each other.
Thus, we start by giving an important property of synchronizing automata.

Lemma 8 (see [DDM15, Lemma 2.2]). Let A be a synchronizing DFAO
with synchronizing word w ∈ Σm0. There exists η > 0 depending only on m0

and k such that the number of integers n ∈ (y, y + x] such that

δ(q, (n)k) 6= δ(q, (n)λk)

is bounded by O(xk−ηλ) uniformly for λ < blogk(x)c and y ≥ 0. Here, (n)λk
denotes the digital representation of n truncated at the λth digit, in other
words (n)λk = (m)k where m ∈ [0, kλ) ∩ N and m ≡ n (mod kλ).

The next result is the carry property for automatic sequences, or more
precisely T .

Definition 9. A function f : N → Ud has the carry property if there
exists η > 0 such that uniformly for λ, α, ρ ∈ N with ρ < λ, the number of
integers 0 ≤ ` < kλ such that there exists (n1, n2) ∈ {0, . . . , kα − 1}2 with

f(`kα + n1 + n2)
Hf(`kα + n1) 6= fα+ρ(`k

α + n1 + n2)
Hfα+ρ(`k

α + n1)

(3.2)

is at most O(kλ−ηρ) where the implied constant may depend only on k and f .

Lemma 10 ([Mül17, Lemma 4.9]). The carry property holds, uniformly
in r, for f(n) = D(T (n+ r)) where D is a unitary and irreducible represen-
tation of G, η is given by [DDM15, Lemma 2.2], and the implied constant
does not depend on r.

To use the carry property efficiently, we need the following lemma which
is a generalization of van der Corput’s inequality.

Lemma 11 (see [DM12, Lemma 5]). Let y ≥ 0 and x ≥ 1, and let
Z(n) ∈ Cm×m be given for all n ∈ (y, y + x]. Then for any real R ≥ 1
and any integer k ≥ 1,

(3.3)
∥∥∥ ∑
y<n≤y+x

Z(n)
∥∥∥2
F

≤ x+ k(R− 1) + 1

R

∑
|r|<R

(
1− |r|

R

) ∑
y<n,n+kr≤y+x

tr(Z(n+ kr)HZ(n)),

where tr(Z) denotes the trace of Z, and ‖Z‖F the Frobenius norm of Z.
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We now quote some results from representation theory. Let G be a finite
group. A representation D is a continuous homomorphism D : G → Um,
where Um denotes the group of unitarym×m matrices over C. The represen-
tation D is called irreducible if there exists no non-trivial subspace V ⊂ Um
such that D(g)V ⊆ V for all g ∈ G. It is well-known that there are only
finitely many equivalence classes of irreducible unitary representations of G
(see for example [Ser77, Part I, Section 2.5]). The Peter–Weyl theorem (see
for example [KN74, Chapter 4, Theorem 1.2]) states that the entry functions
of irreducible representations (suitably renormalized) form an orthonormal
basis of L2(G). Thus we can express any function f : G → C by the entry
functions:

Lemma 12. Let G be a finite group. There exists M0 ∈ N and M0 irre-
ducible unitary representations (D(`))0≤`<M0 of G, not necessarily distinct,
and written as matrices D(`) = (d

(`)
i,j )i,j, such that for any f : G → C there

exist coefficients (c`) and indices (i`), (j`) with

f(g) =
∑

0≤`<M0

c`d
(`)
i`j`

(g)

for all g ∈ G and
∑
|c`| � ‖f‖1.

4. Van der Corput differentiation. The following proposition re-
duces the study of automatic sequences with strongly connected underlying
automaton to bounds on correlation sums.

Proposition 13. Let g : N>0 → C be a function with |g(n)| ≤ 1, let
x ≥ 1 and y ≥ 0 be real numbers, and let (an) be an automatic sequence in
base k, with strongly connected underlying automaton A. Set

(4.1) U(x, y;h; q, a) :=
∑

y<n≤y+x
n≡a (mod q)

g(n)g(n+ h).

Then for some η > 0 depending on A, and all λ1, λ2 ∈ N, with M := kλ1,
R := kλ2 satisfying RM2 ≤ x/10, we have∣∣∣ ∑
y<n≤y+x

ang(n)
∣∣∣

�A xM−η +
∑

0≤m<M

(
x

RM

∑
0≤r<R

∑
0≤m′<RM2

m′≡m (modM)

|U(x, y; rM ;RM2,m′)|
)1/2

.

Remark. It was proved by Sarnak that his Möbius randomness con-
jecture for all deterministic flows would follow from the Chowla conjecture
(see [Sar12, Tao12]) concerning correlations of the Möbius function. Propo-
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sition 13 could be interpreted as a quantified version of this phenomenon for
automatic sequences; we see that in this case, binary correlations provide
sufficient information. Note however that the moduli q = RM2 of the arith-
metic progressions involved in our statement are rather large compared with
the shifts h = rM .

We prove Proposition 13 in the remainder of this section.

4.1. Naturally induced transducer. We use the concept of natu-
rally induced transducer to rewrite the sequence (an). We (still) consider
a naturally induced transducer which fulfills Theorem 7. By (3.1), we can
rewrite an = τ(π1(T (q0, (n)k) · δ(q0, (n)k))). Therefore,

an =
∑
q∈Q

∑
σ∈G

τ(π1(σ · q))1[T (q0,(n)k)=σ] 1[δ(q0,(n)k)=q] .

Let
I = Z ∩ (y, y + x]

with y ∈ N≥0 and x ∈ N>0. The above allows us to rewrite

S0(I) :=
∑

y<n≤y+x
ang(n) =

∑
q∈Q

∑
σ∈G

τ(π1(σ · q))S1(I;σ, q),(4.2)

where

S1(I;σ, q) :=
∑

y<n≤y+x
1[T (q0,(n)k)=σ] 1[δ(q0,(n)k)=q] g(n).

This implies

|S0(I)| �A
∑
q∈Q

∑
σ∈G
|S1(I;σ, q)|.

4.2. Van der Corput differencing and the carry property. Let 1 ≤
M ≤ x, M = kλ1 be a power of k, to be determined later. We use the fact
that it is usually sufficient to read the last few digits of (n)k to determine
δ(q, (n)k) (see Lemma 8). This allows us to rewrite

S1(I;σ, q) =
∑

y<n≤y+x
1[T (q0,(n)k)=σ] 1[δ(q0,(n)k)=q] g(n)(4.3)

=
∑

0≤m<M
1[δ(q0,(m)k)=q] S2(I;m,σ) +O(xM−η),

where η > 0 only depends on the length of the synchronizing word w0 of the
naturally induced transducer TA, and

S2(I;m,σ) :=
∑

y<n≤y+x
n≡m (modM)

1[T (q0,(n)k)=σ] g(n).
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We use ideas of representation theory to deal with 1[T (q0,(n)k)=σ]. By Lem-
ma 12, we can write

1[T (q0,(n)k)=σ] =
∑

0≤`<M0

c`d
(m`)
i`j`

(T (q0, (n)k))

for some irreducible unitary representations D(m′). This gives∑
y<n≤y+x

n≡m (modM)

1[T (q0,(n)k)=σ] g(n) =
∑

0≤`<M0

c`
∑

y<n≤y+x
n≡m (modM)

d
(m`)
i`j`

(T (q0, (n)k))g(n)

and∣∣∣ ∑
y<n≤y+x

n≡m (modM)

d
(m`)
i`j`

(T (q0, (n)k))g(n)
∣∣∣ ≤ ∥∥∥ ∑

y<n≤y+x
n≡m (modM)

D(m`)(T (q0, (n)k))g(n)
∥∥∥
F
,

where we let ‖ · ‖F denote the Frobenius norm.
Thus, we find

|S2(I;m,σ)| ≤
∑

0≤`<M0

|c`| ‖S3(I;m,D(m`))‖F ,

where

S3(I;m,D) :=
∑

y<n≤y+x
n≡m (modM)

D(T (q0, (n)k))g(n).

This gives in total

|S0(I)| �A max
D

∑
0≤m<M

‖S3(I;m,D)‖F +O(xM−η).(4.4)

We use Lemma 11 for the sequence

Z(n) = D(T (q0, (nM +m)k))g(nM +m)

to get

‖S3(I;m,D)‖2F

≤ xM−1 +M(R− 1) + 1

R

∑
|r|<R

(
1− |r|

R

)
tr(S4(Jr;m,D, r)),

where Jr := {n : y < n, n+ rM ≤ y + x} and

S4(J ;m,D, r)

:=
∑
n∈J

n≡m (modM)

(
D(T (q0, (n+ rM)k))

HD(T (q0, (n)k))
)
g(n)g(n+ rM).
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We choose R = kλ2 and λ2 ∈ N subject to RM2 < x/10, which gives

‖S3(I;m,D)‖2F �
x

RM

∑
0≤r<R

‖S4(I;m,D, r)‖F +O(Rx/M),(4.5)

where the error term is due to the replacement of Jr by I.
Letting temporarily a = y+1, we rewrite n = n1RM + n2M +m+ a to

find

D(T (q0, (n+ rM)k))
HD(T (q0, (n)k))

= D
(
T (q0, (n1RM + (n2M +m+ a) + rM)k)

)H
×D

(
T (q0, (n1RM + (n2M +m+ a))k)

)
.

We apply Lemma 10 with α = λ1 + λ2, ρ = λ1 and ` = n1. This gives

D(T (q0, (n+ rM)k))
HD(T (q0, (n)k))

= D
(
T2λ1+λ2(q0, (n1RM + (n2M +m+ a) + rM)k)

)H
×D

(
T2λ1+λ2(q0, (n1RM + (n2M +m+ a))k)

)
= D(T2λ1+λ2(q0, (n+ rM)))HD(T2λ1+λ2(q0, (n)k)),

for all but O(xR−1M−1−η) values of n1 ∈ [0, x/RM), and therefore for all
but O(xM−1−η) values of n ∈ I (for fixed m).

Thus, we find

(4.6) S4(I;m,D, r)

=
∑

0≤m′<RM2

m′≡m (modM)

D(T2λ1+λ2(q0,m
′ + rM))HD(T2λ1+λ2(q0,m

′))S5(I;m′, r)

+O(xM−1−η),

where

(4.7) S5(I;m′, r) :=
∑

y<n≤y+x
n≡m′ (modRM2)

g(n)g(n+ rM).

Note that the trivial estimate S5 = O(x/(RM2)) gives back the trivial esti-
mate S0 � x, so a non-trivial bound on S5 gives a non-trivial bound on S0.

Combining (4.5) and (4.6) gives

‖S3(I;m,D)‖2F �
x

RM

∑
0≤r<R

‖S4(I;m,D, r)‖F +O(x)

�A
x

RM

∑
0≤r<R

∑
0≤m′<RM2

m′≡m (modM)

|S5(I;m′, r)|+O(x2M−2−η).

This together with the definition (4.1) finishes the proof of Proposition 13.
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5. Proof of Theorem 2 in the strongly connected case. From
Proposition 13, we will deduce Theorem 2 in the following special case.

Proposition 14. Theorem 2 holds for sequences (an) whose underlying
automata are strongly connected.

The proof is split in two cases, according to whether or not the rational
fraction f is a quadratic polynomial.

5.1. The non-quadratic case. We assume first that f is not a quadratic
polynomial. Let R =M = kλ, and

q1 =
∏

p‖q, p-k
p 6∈Qf

p.

We also assume that x ≥ qq
−1/2
1 without loss of generality, since otherwise

the right-hand side of (1.2) is larger than the trivial bound O(x) for the left-
hand side. Recall the definition (4.1). We use Lemma 4 with g(n) = eq(f(n))
and our choice of R and M to find that∑

0≤r<kλ

∑
0≤m′<k3λ

m′≡m (mod kλ)

|U(x, y; rM ;RM2,m′)|

�ε

∑
0≤r<kλ

k2λqε
(
x

k3λ
+ q

) ∏
p|q, p-rk
p/∈Tf

p−1/2

� k2λ
(
x

k3λ
+ q

)
q
−1/2
1 qε

∑
0≤r<kλ

(r, q)1/2.

Thus, Proposition 13 implies that for some η > 0 depending on A,∣∣∣∑
n∈I

aneq(f(n))
∣∣∣�A,ε x( kλ

q
1/2
1

+
qk4λ

xq
1/2
1

)1/2

qε/2 +O(xk−λη/2)

uniformly in λ such that k3λ < x/10. We choose λ such that

kλ �k min((q
1/2
1 q−1x)1/8, (q1)

1/4).

This gives

(5.1)
|S0(I)| �A,k,ε,d xqε

(
1

q
1/4
1

+

(
q

q
1/2
1 x

)1/8)1/2

+ x

(
1

q
1/4
1

+

(
q

q
1/2
1 x

)1/8)η
,

and implies our claimed bound (1.2) for c = min(η/16, 1/32).

5.2. The quadratic case. Here again we assume that g(n) = eq(f(n)).
If f is quadratic, then for the purpose of bounding (4.1) we may assume
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f(X) = u
vX

2 with v 6= 0 and (qu, v) = 1. Let s = RM2, where R and M are
powers of k satisfying 1 ≤ RM < x/10. By Lemma 4, we have

|U(x, y; rM ;RM2,m′)| � min

(
x

RM2
,

∥∥∥∥2uvrRM2

q

∥∥∥∥−1).
Assume now that (RM)2 < q/(4u), which does not contradict the hypothe-
ses R,M ≥ 1 if we let q be large enough in terms of u. Then

2uvrRM2

q
≡ 2urRM2

qv
− 2uqrRM2

v
(mod 1).

By our hypothesis (RM)2 < q/(4|u|), as soon as v - 2rRM2 we obtain∥∥∥2uvrRM2

q

∥∥∥ ≥ 1

v
−
∣∣∣2urRM2

qv

∣∣∣ ≥ 1

2v
�f 1.

If, on the other hand, v | 2rRM2, then∥∥∥∥2uvrRM2

q

∥∥∥∥ =

∣∣∣∣2urRM2

qv

∣∣∣∣ = 2|u|rRM2

q|v|
since the latter is less than 1/2, again by our hypothesis (RM)2 < q/(4|u|).
In any case,

|U(x, y; rM ;RM2,m′)| � min

(
x

RM2
,

q

rRM2

)
,

and therefore ∑
0≤m′<RM2

m′≡m (modM)

|U(x, y; rM ;RM2,m′)| � min

(
x

M
,
q

rM

)
.

We sum the previous bound over r < R. We obtain∑
r<R

∑
0≤m′<RM2

m′≡m (modM)

|U(x, y; rM ;RM2,m′)| � x

M
+
∑

1≤r<R

q

rM

� x+ q logR

M
.

We now pick R �k min(x/M2,
√
q/M), and find by Proposition 13 that∣∣∣∑

n∈I
aneq(f(n))

∣∣∣�A,k,ε,d (xq)ε(x(x+ q)

(
M2

x
+

M

q1/2

))1/2

+ xM−η/2.

If x ≤ q, we pickM �k (x/
√
q)1/(1+2η), and if x > q, we pickM �k q1/(2+4η).

In any case we get ∣∣∣∑
n∈I

aneq(f(n))
∣∣∣� x1+ε

(
1

q
+

q

x2

)c
with c = η/(2 + 4η), and our claimed bound follows.
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6. Proof for non-strongly connected automata. We will deduce
the full generality of Theorem 2 from Proposition 14 and the following fact.

Proposition 15. Let g : N → C be a function with |g(n)| ≤ 1, and
assume that for every strongly connected automatic sequence b = (bn), there
is a non-decreasing function E(b, ·) : R+ → R+ such that

(6.1)
∣∣∣ ∑
y<n≤y+x

bng(n+ r)
∣∣∣ ≤ E(b, x) (r ∈ Z, y ≥ 0, x ≥ 1).

Then with any automatic sequence (an), not necessarily strongly connected,
we may associate a finite set {b(j) = (b

(j)
n )}Jj=1 of strongly connected auto-

matic sequences and a positive number δ > 0 such that for all y ≥ 0, x ≥ 1
and σ ∈ N with K := kσ ∈ [1, x], we have

(6.2)
∣∣∣ ∑
y<n≤y+x

ang(n)
∣∣∣� x1−δKδ + xK−1max

j
E(b(j),K).

Remark. It is important to note the requirement that the hypothesized
upper bound (6.1) is uniform with respect to r.

Proof of Proposition 15. Let A = (Q,Σ, δ, q0, τ) be the automaton un-
derlying (an), and define

R := {r ∈ N : δ(q, (r)k) belongs to a final component of A for any q ∈ Q}.

Then we have the uniform bound

(6.3) |(y, y + x] ∩ NrR| � x1−δ (y ≥ 0, x ≥ 1)

for some δ > 0 depending on A. We let {(b(j)n )}Jj=1 be the finite set of all
automatic sequences associated with final components of A (as described in
[Mül17, Proposition 2.25]), with the same output function τ .

We consider some fixed y ≥ 0 and x ≥ 1. In proving (6.2), we may assume
that x is large enough in terms of A. Let σ ∈ N with 1 ≤ K := kσ ≤ x. We
split the sum on the left-hand side of (6.2) into congruence classes moduloK,
getting ∑

y≤n<y+x
ang(n) =

∑
r≥0

∑
0≤n<K

y≤rK+n<y+x

arK+ng(rK + n).

Note that the sum over n is void unless r ∈ (y/K− 1, (y+x)/K). From this
fact, the bound (6.3) and our hypothesis ‖g‖∞ ≤ 1, we obtain∑

r≥0

∑
0≤n<K

y≤rK+n<y+x

arK+ng(rK + n) =
∑
r≥0
r∈R

∑
0≤n<K

y≤rK+n<y+x

arK+ng(rK + n)

+O(x1−δKδ).
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For r ∈ R, our automaton reads numbers from left to right, so that arK+n =

b
(j)
n for some j (depending on r); we recall that there are only finitely many
possibilities for j. Therefore,∣∣∣∑

r≥0
r∈R

∑
0≤n<K

y≤rK+n<y+x

arK+ng(rK + n)
∣∣∣

≤
∑

y/K−1<r<(y+x)/K

max
j

∣∣∣ ∑
0≤n<K

y≤rK+n<y+x

b(j)n g(rK + n)
∣∣∣.

In the inner sum, the size conditions on n describe an interval of length K,
for all but at most two values of r. Gathering the above and using our
hypothesis (6.1), we find∣∣∣ ∑

y≤n<y+x
ang(n)

∣∣∣� ∑
y/K−1≤r<(y+x)/K

max
j
E(b(j),K) + x1−δKδ

� xK−1max
j
E(b(j),K) + x1−δKδ.

Proof of Theorem 2. We prove (1.2); the argument for (1.3) is similar and
slightly simpler. Proposition 14 shows that (1.2) holds when (an) is associ-
ated with a strongly connected automaton. Note that the upper bound (1.2)
only depends on the degree of f (while (1.3) only depends on the leading
coefficient of f). Moreover, if r ∈ Z and f̃(X) := f(X + r), then Q

f̃
= Qf .

We deduce that (1.2) also holds, with the same implied constant, for the
quantity ∑

n∈I
aneq(f(n+ r))

uniformly in r ∈ Z, when the automaton underlying (an) is strongly con-
nected. The hypothesis (6.1) is therefore satisfied with

E((an), x) = BA,εx
1+ε

(
1

q1
+

q2

q1x2

)c
,

where c > 0 depends on A, and BA,ε depends at most on A and ε.
Assume now that (an) is not associated with a strongly connected au-

tomaton. For any K ∈ [1, x] which is a power of x, we obtain by Proposi-
tion 15 the bound∣∣∣ ∑

y<n≤y+x
aneq(f(n))

∣∣∣� x1−δKδ + xKε

(
1

q1
+

q2

q1K2

)c1
for some c1 > 0 depending on A. We optimize by letting

K �k min(x, (xq2q−11 )1/3).

The claimed bound (1.2) follows with c replaced by min(c1/3, δ/3).
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