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On a kind of character sums
and their recurrence properties
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Wenpeng Zhang and Xiao Wang (Xi’an)

1. Introduction. For any integer q ≥ 3, let χ denote any Dirichlet
character modulo q. Then the generalized Gauss sum G(m, k, χ; q) is defined
as

G(m, k, χ; q) =

q∑
a=1

χ(a)e

(
mak

q

)
, where e(y) = e2πiy.

If k = m = 1, then G(m, k, χ; q) = τ(χ) reduces to the classical Gauss
sum; see [1] for its definition and various elementary properties.

Many scholars have studied the arithmetical properties of G(m, k, χ; q)
and obtained a series of interesting conclusions (see [2–9]). For example,
according to A. Weil’s classical results [5], one can obtain the upper bound

|G(m, k, χ; p)| ≤ (k + 1)
√
p.

W. Zhang and H. Liu [9] obtained an exact computational formula for∑
χ mod p

∣∣∣∣p−1∑
a=1

χ(a)e

(
a3

p

)∣∣∣∣4, where p ≡ 1 mod 3.

In this paper, for any positive integers k and h, we consider the compu-
tation of the character sums, with an odd prime p,

(1) Ak(h, χ1, . . . , χk; p) =

p−1∑
a1=1

p−1∑
a2=1

· · ·
p−1∑
ak=1

ah1+a
h
2+···+ahk≡0mod p

χ1(a1)χ2(a2) · · ·χk(ak),

where χi (i = 1, . . . , k) are all the Dirichlet characters modulo p.
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It seems that such character sums have not been studied yet. They are
closely related to Jacobi sums. In fact, if (h, p− 1) = 1, then there exists a
unique integer h with 1 ≤ h ≤ p − 1 such that hh ≡ 1 mod (p − 1). Thus,
from the properties of the reduced residue system modulo p we have

Ak(h, χ1, . . . , χk; p) =

p−1∑
a1=1

· · ·
p−1∑
ak=1

ah1+···+ahk≡0mod p

χ1(a1) · · ·χk(ak)

=

p−1∑
a1=1

· · ·
p−1∑
ak=1

a1+···+ak≡0mod p

χh1(a1) · · ·χhk(ak).

So, obviously (1) becomes the standard Jacobi sum.
We will use the properties of generalized Gauss sums to derive some

results for (1). Under some conditions on p and the characters χi (i =
1, . . . , k), we will give an exact computational formula for Ak(3, χ2, . . . , χ2; p)
where χ2 =

(∗
p

)
denotes the Legendre symbol modulo p. Throughout, we let

Ak(3, χ2, . . . , χ2; p) ≡ Ak(p) for convenience. Our main purpose is to prove
that Ak(p) satisfies an interesting third order linear recurrence formula.

We will use the analytic method and the properties of the classical Gauss
sums to prove the following main results.

Theorem 1. Let p be an odd prime with 3 - (p−1). Then for any positive
integer k, we have

Ak(p) =

{
0 if k = 2h+ 1,

(−1)h(p−1)/2 · (p− 1) · ph−1 if k = 2h.

Theorem 2. Let p be a prime with p ≡ 1 mod 6, and ψ be any third
order character modulo p. Then

A2(p) = 3τ2(χ2) ·
p− 1

p
,

A4(p) = 19p(p− 1) + 4τ(χ2) ·
p− 1

p
·
(
τ3(χ2ψ) + τ3

(
χ2ψ

))
.

For any integer h ≥ 3, we have the recurrence formula

A2h(p) = 9τ2(χ2)A2h−2(p) +
[
6τ(χ2)

(
τ3(χ2ψ) + τ3

(
χ2ψ

))
−12p2

]
·A2h−4(p)

+
[
τ6(χ2ψ)+τ6

(
χ2ψ

)
−4τ3(χ2)

(
τ3(χ2ψ)+τ3

(
χ2ψ

))
+6τ2(χ2)p

2
]
·A2h−6(p),

where A0(p) = (p− 1)/p.

Theorem 3. Let p be a prime with p ≡ 1 mod 6. If 2 is a cubic residue
modulo p, then

A2(p) = (−1)(p−1)/2 · 3(p− 1), A4(p) = 27(p− 1)(p− 4b2).
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For any integer h ≥ 3, we have the recurrence formula

A2h(p) = (−1)(p−1)/29p ·A2h−2(p)− 162pb2 ·A2h−4(p)

+ (−1)(p−1)/2729pb4 ·A2h−6(p),

where b is uniquely determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.

From Theorem 3 we can also deduce the following three corollaries:

Corollary 1. Let p be a prime with p ≡ 1 mod 6. If 2 is a cubic
residue modulo p, then

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

a3+b3+c3≡1mod p

(
a

p

)(
b

p

)(
c

p

)
= (−1)(p−1)/2 · 27 · (p− 4b2).

Corollary 2. Let p be a prime with p ≡ 1 mod 6. If 2 is a cubic
residue modulo p, then

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a3+b3+c3+d3+e3≡1mod p

(
a

p

)(
b

p

)(
c

p

)(
d

p

)(
e

p

)
= 243 · (p2 − 6pb2 + 3b4).

Corollary 3. Let p be a prime with p ≡ 1 mod 6. If 2 is a cubic
residue modulo p, then for any positive integer h ≥ 4,

Ah(p) ≡ 0 mod 3hp.

Some notes. Firstly, in Theorem 2 we only consider the case of A2h(p),
because for any integer h ≥ 0, it is easy to prove that A2h+1(p) = 0.

Secondly, if 2 is not a cubic residue modulo p, then the computations
are more complicated. In this case we cannot give an exact computational
formula for

(
τ3(χ2ψ)+τ3

(
χ2ψ

))
. According to Theorem 2 it is easy to prove

that τ(χ2)
(
τ3(χ2ψ) + τ3

(
χ2ψ

))
is an integer divisible by p. To calculate its

exact value is an interesting open problem.

As applications of our results, we can derive a formula for the number
N(h, k, p) of solutions of the congruence equation

xh1 + · · ·+ xhk ≡ 0 mod p,

where all xi (i = 1, . . . , k) are quadratic residues (or quadratic non-residues)
modulo p. For example, if p is a prime with p ≡ 1 mod 12 and h = 3, then

N(h, k, p) = N(3, 2, p) =
1

4

p−1∑
a=1

p−1∑
b=1

a3+b3≡0mod p

(
1 +

(
a

p

))(
1 +

(
b

p

))
=

3

2
(p− 1).
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If p is an odd prime with 3 - (p− 1) and h = 1, then

N(1, 3, p) =
1

8

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

a+b+c≡0mod p

(
1 +

(
a

p

))(
1 +

(
b

p

))(
1 +

(
c

p

))

=
1

8
(p− 1)

(
p− 2− 3(−1)(p−1)/2

)
.

2. Some lemmas. In this section, we will deduce several simple lem-
mas, which are necessary in the proofs of our main results. We make use of
elementary number theory and the properties of the classical Gauss sums
and Dirichlet characters, which can be found in [1], [3] and [8].

Lemma 1. Let p be a prime with p ≡ 1 mod 3, and C = τ(χ2). For any

integer m with (m, p) = 1, write U(m, p) =
∑p−1

a=1

(
a
p

)
e
(
ma3

p

)
. Then

U6(m, p) = 9C2U4(m, p) +
[
6C
(
τ3(χ2ψ) + τ3

(
χ2ψ

))
− 12p2

]
· U2(m, p)

+ 6C2p2 + τ6(χ2ψ) + τ6
(
χ2ψ

)
− 4C3

[
τ3(χ2ψ) + τ3

(
χ2ψ

)]
,

where
(∗
p

)
= χ2 denotes the Legendre symbol modulo p.

Proof. From the properties of third order characters ψ modulo p and
Gauss sums we have

U(m, p) =

p−1∑
a=1

χ2(a
3)e(

ma3

p
) =

p−1∑
a=1

χ2(a)
(
1 + ψ(a) + ψ(a)

)
e

(
ma

p

)
(2)

= χ2(m)τ(χ2) + χ2(m)ψ(m)τ(χ2ψ) + χ2(m)ψ(m)τ
(
χ2ψ

)
.

Noting that ψ2 = ψ, χ2
2 = χ0, C

2 = τ2(χ2) = χ2(−1)p and τ(χ2ψ)τ
(
χ2ψ

)
=

χ2(−1)p = C2, from (2) we have

(3) U2(m, p) =
(
χ2(m)τ(χ2) + χ2(m)ψ(m)τ(χ2ψ) + χ2(m)ψ(m)τ

(
χ2ψ

))2
= τ2(χ2) + 2τ(χ2)

(
ψ(m)τ(χ2ψ) + ψ(m)τ

(
χ2ψ

))
+ ψ(m)τ2(χ2ψ) + 2χ2(−1)p+ ψ(m)τ2

(
χ2ψ

)
= 3C2 + 2C

(
ψ(m)τ(χ2ψ) + ψ(m)τ

(
χ2ψ

))
+ ψ(m)τ2(χ2ψ) + ψ(m)τ2

(
χ2ψ

)
= 3C2 + ψ(m)

(
2Cτ(χ2ψ) + τ2

(
χ2ψ

))
+ ψ(m)

(
2Cτ

(
χ2ψ

)
+ τ2(χ2ψ)

)
.

By the identity (x+ y)3 = x3 + 3x2y + 3xy2 + y3, from (3) we have

U6(m, p)− 9C2U4(m, p) + 27C4U2(m, p)− 27C6 = (U2(m, p)− 3C2)3

=
[
ψ(m)

(
2Cτ(χ2ψ) + τ2

(
χ2ψ

))
+ ψ(m)

(
2Cτ

(
χ2ψ

)
+ τ2(χ2ψ)

)]3
=
(
2Cτ(χ2ψ) + τ2

(
χ2ψ

))3
+
(
2Cτ

(
χ2ψ

)
+ τ2(χ2ψ)

)3
+ 3
(
2Cτ(χ2ψ) + τ2

(
χ2ψ

))(
2Cτ

(
χ2ψ

)
+ τ2(χ2ψ)

)
(U2(m, p)− 3C2)
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= 14C3
[
τ3(χ2ψ) + τ3

(
χ2ψ

)]
+ τ6(χ2ψ) + τ6

(
χ2ψ

)
+ 24C2p2

+ 3
[
5p2 + 2C

(
τ3(χ2ψ) + τ3

(
χ2ψ

))]
· (U2(n, p)− 3C2),

so

U6(m, p) = 9C2U4(m, p) +
[
6C
(
τ3(χ2ψ) + τ3

(
χ2ψ

))
− 12p2

]
· U2(m, p)

+ 6C2p2 + τ6(χ2ψ) + τ6
(
χ2ψ

)
− 4C3

[
τ3(χ2ψ) + τ3

(
χ2ψ

)]
.

This proves Lemma 1.

Lemma 2. Let p be a prime with p ≡ 1 mod 3. Then

p−1∑
m=1

U2(m, p) = 3

(
−1

p

)
· p(p− 1),

p−1∑
m=1

U4(m, p) = 19p2(p− 1) + 4C(p− 1)
(
τ3(χ2ψ) + τ3

(
χ2ψ

))
.

Proof. From the orthogonality of characters modulo p and (3) we have

p−1∑
m=1

U2(m, p) =

p−1∑
m=1

3C2 +

p−1∑
m=1

ψ(m)
(
2Cτ(χ2ψ) + τ2

(
χ2ψ

))
+

p−1∑
m=1

ψ(m)
(
2Cτ

(
χ2ψ

)
+ τ2(χ2ψ)

)
= 3C2(p− 1) = 3

(
−1

p

)
p(p− 1).

Similarly, noting that C4 = p2, from (3) we also have

p−1∑
m=1

U4(m, p)

=

p−1∑
m=1

9p2 +

p−1∑
m=1

2
(
2Cτ(χ2ψ) + τ2

(
χ2ψ

))
·
(
2Cτ

(
χ2ψ

)
+ τ2(χ2ψ)

)
= 9p2(p− 1) + 4C(p− 1)

(
τ3(χ2ψ) + τ3

(
χ2ψ

))
+ 10p2(p− 1)

= 19p2(p− 1) + 4C(p− 1)
(
τ3(χ2ψ) + τ3

(
χ2ψ

))
.

This proves Lemma 2.

Lemma 3. Let p be a prime with p ≡ 1 mod 3, and ψ be any third order
character modulo p. Then

τ3(ψ) + τ3(ψ) = dp,

where d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.

Proof. See [3] or [7, Lemma 3].
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Lemma 4. Let p be a prime with p ≡ 1 mod 6, and ψ be any third order
character modulo p. If 2 is a cubic residue modulo p, then

τ3(χ2ψ) + τ3
(
χ2ψ

)
=
τ3(χ2)

p
· (d2 − 2p),

where d is as in Lemma 3.

Proof. The prime p can be uniquely expressed as p = x2 + 3y2 and
x ≡ −1 mod 3 (see [2, Theorem 3.3]). If 2 is a cubic residue modulo p, then
from the result of Gauss (see [3, p. 120]) we know that 3 | y. Let

G(k) =

p−1∑
a=0

e

(
ak

p

)
.

Then from the important work of B. C. Berndt and R. J. Evans [3] we have

(4) G(6) = G(3) +
G(2)

p
· (G2(3)− p).

On the other hand, from the properties of Gauss sums,

G(6) = 1 +

p−1∑
a=1

(
1 +

(
a

p

))
e

(
a3

p

)
= G(3) +

p−1∑
a=1

(
a

p

)
e

(
a3

p

)
(5)

= G(3) +

p−1∑
a=1

χ2(a)
(
1 + ψ(a) + ψ(a)

)
e

(
a

p

)
= G(3) + τ(χ2) + τ(χ2ψ) + τ

(
χ2ψ

)
,

G(3) = 1 +

p−1∑
a=1

(1 + ψ(a) + ψ(a))e

(
a

p

)
= τ(ψ) + τ(ψ).(6)

Noting that G(2) = τ(χ2) and τ(ψ)τ(ψ) = p, from (4)–(6) we immedi-
ately deduce that

(7) τ(χ2ψ) + τ
(
χ2ψ

)
=
τ(χ2)

p
·G2(3)− 2τ(χ2)

=
τ(χ2)

p
· (τ(ψ) + τ(ψ))2 − 2τ(χ2) =

τ(χ2)

p
· (τ2(ψ) + τ2(ψ)).

Since τ(χ2ψ)τ
(
χ2ψ

)
= τ2(χ2), from (7) and Lemma 3 we get

(8) τ3(χ2ψ) + τ3
(
χ2ψ

)
+ 3τ(χ2ψ)τ

(
χ2ψ

)
·
(
τ(χ2ψ) + τ

(
χ2ψ

))
= τ3(χ2ψ) + τ3

(
χ2ψ

)
+ 3τ2(χ2) ·

(
τ(χ2ψ) + τ

(
χ2ψ

))
=
τ3(χ2)

p3
·
[
τ6(ψ) + 3τ2(ψ)τ2(ψ)(τ2(ψ) + τ2(ψ)) + τ6(ψ)

]
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=
τ3(χ2)

p3
·
[
τ6(ψ) + 3p2(τ2(ψ) + τ2(ψ)) + τ6(ψ)

]
=
τ3(χ2)

p3
·
[
(τ3(ψ) + τ3(ψ))2 − 2p3 + 3p2(τ2(ψ) + τ2(ψ))

]
=
τ3(χ2)

p3
·
[
d2p2 − 2p3 + 3p2(τ2(ψ) + τ2(ψ))

]
.

Combining (7) and (8) we deduce that

τ3(χ2ψ) + τ3
(
χ2ψ

)
=
τ3(χ2)

p
· (d2 − 2p) +

3τ3(χ2)

p
· (τ2(ψ) + τ2(ψ))

− 3τ2(χ2) ·
(
τ(χ2ψ) + τ

(
χ2ψ

))
=
τ3(χ2)

p
· (d2 − 2p).

This proves Lemma 4.

3. Proofs of the theorems. We start with the proof of Theorem 1.
Providing that 3 - (p − 1), we have (3, p − 1) = 1. As a runs through a
reduced residue system modulo p, a3 runs through a reduced residue system
modulo p as well. So for any integer m with (m, p) = 1, from the properties
of Gauss sums we have

U(m, p) =

p−1∑
a=1

(
a

p

)
e

(
ma3

p

)
=

p−1∑
a=1

(
a3

p

)
e

(
ma3

p

)
(9)

=

p−1∑
a=1

(
a

p

)
e

(
ma

p

)
=

(
m

p

)
τ(χ2).

Combining (9) and the properties of trigonometric sums we get

Ak(p) =

p−1∑
a1=1

· · ·
p−1∑
ak=1

a31+···+a3k≡0mod p

(
a1 · · · ak

p

)
=

1

p

p−1∑
m=0

(p−1∑
a=1

(
a

p

)
e

(
ma3

p

))k

=
1

p

p−1∑
m=1

Uk(m, p) =
1

p
τk(χ2)

p−1∑
m=1

(
m

p

)k
=

{
0 if k = 2h+ 1,

(−1)h(p−1)/2 · (p− 1) · ph−1 if k = 2h.

This proves Theorem 1.
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Now we prove Theorem 2. By the method of proving Theorem 1 we have

(10) Ak(p) =
1

p

p−1∑
m=0

(p−1∑
a=1

(
a

p

)
e

(
ma3

p

))k
=

1

p

p−1∑
m=1

Uk(m, p).

From (10) and Lemma 2 we get

A2(p) =
1

p

p−1∑
m=1

U2(m, p) = 3

(
−1

p

)
· (p− 1),(11)

A4(p) =
1

p

p−1∑
m=1

U4(m, p)(12)

= 19p(p− 1) +
4(p− 1)τ(χ2)

p
·
(
τ3(χ2ψ) + τ3

(
χ2ψ

))
.

If h ≥ 3, then from (10) and Lemma 1 we obtain

(13) A2h(p) =
1

p

p−1∑
m=1

U2h(m, p) =
1

p

p−1∑
m=1

U2h−6(m, p) · U6(m, p)

=
9C2

p

p−1∑
m=1

U2h−2(m, p)

+
[
6C
(
τ3(χ2ψ) + τ3

(
χ2ψ

))
− 12p2

]1
p

p−1∑
m=1

U2h−4(m, p)

+
[
6C2p2 + τ6(χ2ψ) + τ6

(
χ2ψ

)
− 4C3

(
τ3(χ2ψ) + τ3

(
χ2ψ

))]
× 1

p

p−1∑
m=1

U2h−6(m, p)

= 9 ·
(
−1

p

)
p ·A2h−2(p) +

[
6τ(χ2)

(
τ3(χ2ψ) + τ3

(
χ2ψ

))
− 12p2

]
·A2h−4(p)

+
[
6C2p2 + τ6(χ2ψ) + τ6

(
χ2ψ

)
− 4C3

(
τ3(χ2ψ) + τ3

(
χ2ψ

))]
·A2h−6(p),

where A0(p) = (p− 1)/p.

Now Theorem 2 follows from (11)–(13).

Noting that τ2(χ2) =
(−1
p

)
p = (−1)(p−1)/2p, τ(χ2ψ)τ

(
χ2ψ

)
= τ2(χ2)

and

τ6(χ2ψ) + τ6
(
χ2ψ

)
=
(
τ3(χ2ψ) + τ3

(
χ2ψ

))2 − 2p2τ2(χ2),

from Theorem 2 and Lemma 4 we immediately deduce the formulas

A2(p) = (−1)(p−1)/2 · 3(p− 1), A4(p) = 27(p− 1)(p− 4b2),

and for any integer h ≥ 3 we have the recurrence formula
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A2h(p) = (−1)(p−1)/29p ·A2h−2(p)− 162pb2 ·A2h−4(p)

+ (−1)(p−1)/2729pb4 ·A2h−6(p).

This proves Theorem 3.
Since p ≡ 1 mod 6 and A2h+1 = 0, Corollary 3 follows from Theorem 3

by induction.
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