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1. Introduction. The Prime Number Theorem implies that the average
value of

(1.1) dn = pn+1 − pn
is (1 + o(1)) logN if n ∈ [N, 2N ], for example, where P = {pi}∞i=1 is the set
of primes. This motivates the investigation of the sequence {dn/log pn}∞n=1

or {dn/log n}∞n=1 (which is asymptotically the same). Erdős formulated the
conjecture that the set of its limit points is

(1.2) J =

{
dn

log n

}′
= [0,∞].

He writes in [Erd 1955]: “It seems certain that dn/log n is everywhere dense
in (0,∞)” (after mentioning the conjecture lim infn→∞ dn/log n = 0). The
fact that ∞ ∈ J was proved already in 1931 by Westzynthius [Wes 1931].

In 2005 Goldston, Yıldırım and the author [GPY 2006], [GPY 2009]
showed 0 ∈ J , which is the hitherto only concrete known element of J . On
the other hand, already 60 years ago Ricci [Ric 1954] and Erdős [Erd 1955]
proved (simultaneously and independently) that J has a positive Lebesgue
measure. A partial result towards the full conjecture (1.2) was shown by the
author in [Pin 2016]: there exists an ineffective constant c such that

(1.3) [0, c] ⊂ J.
W. Banks, T. Freiberg and J. Maynard [BFM 2016] have recently proved

that for any sequence of k = 9 nonnegative real numbers β1 ≤ · · · ≤ βk we
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have

(1.4) {βj − βi : 1 ≤ i < j ≤ k} ∩ J 6= ∅.
As a corollary they found that if λ denotes the Lebesgue measure, then

(1.5) λ([0, T ] ∩ J) ≥ (1 + o(1))T/8.

2. Generalization and improvement. The purpose of this note is to
generalize this result for the case when dn is normalized by a rather general
function f(n)→∞, that is, to consider instead of J the more general case
of the set of limit points

(2.1) Jf =

{
dn
f(n)

}′
where we require f to belong to the class F below.

Definition. A function f(n)↗∞ belongs to F if for any ε > 0,

(2.2) (1− ε)f(N) ≤ f(n) ≤ (1 + ε)f(N) for n ∈ [N, 2N ], N > N0,

and further

(2.3) f(n)� log n log2 n log4 n

(log3 n)2

where logν n denotes the ν-times iterated logarithm.

The first condition means that f(n) is slowly oscillating, while the second
one that it does not grow more quickly than the Erdős–Rankin function,
which until the recent dramatic new developments by Maynard [May 2016],
Ford–Green–Konyagin–Tao [FGKT 2016], and Ford–Green–Konyagin–May-
nard–Tao [FG+ 2018] described the largest known gap between consecutive
primes. The improvement means that it is sufficient to work with k = 5
values of βi in (1.4) instead of k = 9 values. As an immediate corollary
we obtain a lower bound (1 + o(1))T/4 instead of (1.5) for the Lebesgue
measure of the more general set [0, T ] ∩ Jf .

Theorem 1. If f ∈ F , then for any sequence of k = 5 nonnegative real
numbers β1 ≤ · · · ≤ βk we have

(2.4) {βj − βi : 1 ≤ i < j ≤ k} ∩ Jf 6= ∅.
Corollary 2. If f ∈ F , then

(2.5) λ([0, T ] ∩ Jf ) ≥ (1 + o(1))T/4.

Remark. The author is aware that the same assertion appeared in a
preprint of Jacques Benatar (arXiv:1505.03104v1) about five months earlier
than the arXiv preprint of the author. However his work, containing several
important true assertions, seems to be incorrect at this point, namely in
the proof of his Proposition 1.2. In his crucial inequality (5.3), in the lower
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estimate of the quantity on the LHS there seems to be an incorrect extra
condition h 6= h′ for the summation in the second factor on the RHS which
appears with the negative exponent −1. If this condition is removed, then
the corresponding factor will be larger than the quantity in the second line
of his (5.2), its reciprocal smaller and therefore the lower bound for the LHS
smaller, i.e. weaker. This unfortunately destroys the proof of Proposition 5.2
which should prove Proposition 1.2 about the measure of the limit points of
the normalized prime gaps dealt with in the present work.

In an earlier work [Pin 2016] we showed that for any f ∈ F there exists
an ineffective constant cf such that [0, cf ] ⊂ Jf . We further remark that
since βi can be arbitrarily large, Theorem 1 includes the improvement of
the Erdős–Rankin function given in (2.3) proved recently in [May 2016] and
[FGKT 2016]. (We note that the proof uses some refinement of the argument
of [May 2016], so it does not represent an independent new proof.)

In connection with the original Erdős conjecture for general f ∈ F we
remark that it was proved in [Pin 2014ar] that the conjecture is in some
sense valid for almost all functions f ∈ F . More precisely, it was shown in
[Pin 2014ar] that if {fn}∞n=1 ⊂ F with limx→∞ fn+1(x)/fn(x) =∞, then

(2.6) Jfn = [0,∞]

apart from at most 98 exceptional functions fn.

3. Proof. The generalization to f ∈ F instead of the single f = log n
runs completely analogously to the proofs in [Pin 2014ar]. Therefore we will
only describe how to improve k = 9 to k = 5 in Theorem 1.

This result will follow from the following improvement of Theorem 4.3
of their work. Let Z be given by (4.8) of [BFM 2016].

Theorem 3. Let m, k and ε = ε(k) be fixed. If k is a sufficiently large
multiple of 4m+ 1 and ε is sufficiently small, then there is some N(m, k, ε)
such that the following holds for N ≥ N(m, k, ε) with

(3.1) w = ε logN, W =
∏

p≤w, p-Z

p.

Let H = {h1, . . . , hk} be an admissible k-tuple (that is, it does not cover all
residue classes modulo p for any prime p) such that

(3.2) 0 ≤ h1 < · · · < hk ≤ N

and

(3.3) p
∣∣ ∏
1≤i<j≤k

(hj − hi) ⇒ p ≤ w.



416 J. Pintz

Let H = H1 ∪ · · · ∪H4m+1 be a partition of H into 4m+ 1 sets of equal size
and let b be an integer with

(3.4)
( k∏
i=1

(b+ hi),W
)

= 1.

Then there is some n ∈ (N, 2N ] with n ≡ b (mod W ) and some set of
distinct indices {i1, . . . , im+1} ⊆ {1, . . . , 4m+ 1} such that

(3.5)
∣∣Hi(n) ∩ P

∣∣ ≥ 1 for all i ∈ {i1, . . . , im+1}.
Remark. The original analogous statement (4.20) of [BFM 2016] should

have been stated with≥ 1 instead of = 1 (oral communication of James May-
nard). This form is enough to imply their Corollary 1.2 or our Corollary 2.

The needed change in the deduction of Theorem 4.3 is the following.
First, using 4m+ 1 | k we write

(3.6) H = H1 ∪ · · · ∪ H4m+1

as a partition of H into 4m+ 1 sets each of size k/(4m+ 1). Instead of the
quantity S in [BFM 2016] we introduce, with a new parameter α = α(m),
the new quantity S(α), where α will be chosen relatively small (we will see
that α(m) = 1/(5m) is a good choice, for example). Thus, with a further
parameter β, let

(3.7)

S(α, β) =
∑

N<n≤2N

( k∑
i=1

1P(n+hi)−βm−α
4m+1∑
j=1

∑
h,h′∈Hj
h6=h′

1P(n+h)1P(n+h′)
)

×
( ∑

d1,...,dk
di|n+hi ∀i

λd1,...,dk

)2
where under the summation sign we consider unordered pairs h, h′ ∈ Hj .
Let

(3.8) β = β(α) = max
`∈Z+

(
`− α

(
`

2

))
.

Then for any given n the contribution of any set Hj to S(α, β) = S(α) is at
most β, so if we have for every n ∈ (N, 2N ] at most m sets of the form Hj
with

(3.9)
∑
h∈Hj

1P(n+ h) > 0,

then

(3.10) S(α) ≤ 0.
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In contrast to the choice % ∈ (0, 1) and δ% log k = 2m in [BFM 2016], we
will now choose δ% log k much larger:

(3.11) δ% log k = u :=
4m+ 1

4α
, α =

1

5m
, % ∈ (0, 1).

This implies, by an easy calculation,

(3.12) β =
5m+ 1

2
.

Using the same argument for the estimation of the negative double sum as
in [BFM 2016] we obtain a choice of a function F such that

S(α) ≥ N

W
B−kIk(F )

( k∑
i=1

u

k
(1 +O(γ))− βm(3.13)

− 4α
4m+1∑
j=1

∑
h,h′∈Hj
h6=h′

u2

k2
(1 +O(δ + γ))

)

=
N

W
B−kIk(F )

(
u(1 +O(γ))− (5m+ 1)m

2

− 4(4m+ 1)

5m

(
k/(4m+ 1)

2

)
u2

k2
(1 +O(δ + γ))

)
.

By the above choice of the parameters in (3.11) we will deduce from
(3.13) with γ = (log k)−1/2 that

S(α)WBk

NIk(F )
≥ 5m(4m+ 1)(1 +O(γ))

4
− (5m+ 1)m

2
(3.14)

− 5m(4m+ 1)(1 +O(δ + γ))

8

=
m(1 +O(m(δ + γ)))

8
> 0,

which contradicts (3.10).
In order to see the validity of the last inequality in (3.14) we can choose

(3.15) m < (log k)1/4 ⇔ δ � m2

log k
� 1√

log k
,

which implies that the quantities mγ and mδ can be chosen arbitrarily small
if k is sufficiently large.

This contradiction proves Theorem 3, and consequently our Theorem 1.
Corollary 2 follows from it in the same way as Corollary 1.2 from Theorem
1.1 in [BFM 2016].
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