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1. Introduction. Computing the Galois groups of polynomials with
integer coefficients is a classical problem in algebra and number theory.
Although a probabilistic argument shows that the Galois group of a random
irreducible polynomial of degree n is the full symmetric group Sn, there is
no algorithm to compute the Galois group of a specific polynomial. In 1897,
Hilbert proved the existence of extensions of Q with Galois group Sn for
any positive integer n. In 1930, Schur explicitly constructed such extensions.
More precisely, he proved that the Galois group of the splitting field of the
truncated exponential polynomial of degree n is the full symmetric group Sn
if n 6≡ 0 (mod 4), and the alternating group An otherwise.

There are some classical results for computing the Galois group Gf of
the splitting field of an irreducible polynomial f(x) ∈ Z[x] of degree n
over Q. For instance, if n is prime and f(x) has exactly two imaginary
roots then Gf ' Sn. The idea of these classical results is mainly based on
the Dedekind theorem which predicts the existence of a permutation in Gf

with a certain type depending on the factorization of f(x) modulo a prime
number. For polynomials with small degrees one can easily compute the
Galois groups using the Dedekind theorem and also using another method
based on the corresponding resolvent polynomials (this method is examined
for polynomials up to degree 7 in [11]). But, what if one takes a family of
polynomials with no restriction on their degrees?

The first interesting such family is the trinomials f(x) = xn + axs + b.
Osada ([7], [8]), Cohen, Movahhedi, Salinier (see for example [1], [2], [3],
[5], [6]) and others used another approach to this problem. The main idea
in this approach is to compute an explicit formula for the discriminant and
then find the inertia groups of primes dividing the discriminant. Then by
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using a theorem of Minkowski, which says that all non-trivial extensions
of Q are ramified, one finds that the subgroup generated by all the inertia
groups of primes of the splitting field N of f(x) sitting above the primes
dividing the discriminant of N—which is the same as the discriminant of
f(x) modulo a perfect square—equals the Galois group Gf . Furthermore,
Cohen, Movahhedi and Salinier were the first to notice that primitivity plays
an essential role in computing such Galois groups.

Although in the case of trinomials there is an explicit formula for the
discriminant by Swan [12], there is no explicit formula for the discriminant
of a general quadrinomial. After reviewing some basic lemmas in Section 2,
in the first part of Section 3 we first compute an explicit formula for the
discriminant of quadrinomials of the form

f(x) = xn + axn−1 + bxn−2 + c ∈ Z[x]

with a2 = 4b.
In the rest of Section 3 we use the factorization of the derivative polyno-

mial f ′(x) modulo different primes dividing the discriminant to obtain the
corresponding inertia groups, and finally we show that the Galois group Gf

of the irreducible polynomial f(x) = xn + axn−1 + bxn−2 ± 1 ∈ Z[x] with
a2 = 4b and gcd(n, a) = 1 equals Sn (Theorem 3.1). It is worth mention-
ing that determining the irreducibility of polynomials is another problem
of independent interest. In Section 3 we also provide an infinite family of
irreducible quadrinomials of the form f(x) = xn + axn−1 + bxn−2± 1 ∈ Z[x]
with a2 = 4b and gcd(n, a) = 1.

When n = ` is an odd prime, the Cauchy theorem implies the existence
of a cycle of length ` in Gf . So it is enough to find a transposition to have
the full symmetric group as the Galois group. In the last part of Section 3 we
find such a transposition to conclude that the Galois group of any irreducible
polynomial of the form f(x) = x` + ax`−1 + bx`−2 + c ∈ Z[x] with a2 = 4b is
S` provided that gcd(2a(`−2), c`) = 1 and (−1)`−24(a/2)`(`−2)`−2 + ``c is
not a perfect square, e.g. `c 6≡ 1 (mod 4) (see Theorem 3.2). We also provide
infinitely many examples of quadrinomials satisfying these hypotheses.

The way the derivative f ′(x) factors over the rationals is crucial to our
arguments. Proceeding backwards, by constructing polynomials from the
favorite derivative polynomials, in Section 4 we also extend our arguments
to show that the Galois group Gf of any irreducible polynomial with an
arbitrary number of terms of the form

f(x) = xn+k+1 −
(
k

1

)
(k + 1)xn+k +

(
k

2

)
(k + 1)2xn+k−1 − · · ·

+ (−1)k
(
k

k

)
(k + 1)kxn+1 + c ∈ Z[x]
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is Sn+k+1 if either c = ±1 and gcd(n+ k+ 1, nk) = 1, or n+ k+ 1 is prime,
gcd(c, (k+1)(n+1)k) and (−1)k(k+1)n+k+1(n+1)n+1kk+c(n+k+1)n+k+1

is not a perfect square (Theorems 4.2 and 4.3).

In the last section we consider the general irreducible quadrinomial of
the form f(x) = xn+axn−1+bxn−2+c ∈ Z[x] (not necessarily with a2 = 4b).
Although Gf seems to have several possibilities in the case a2 6= 4b, using the
formula for the discriminant we show that if n = ` is an odd prime of the form
4k+1 and the coefficients a, b and c are all odd, then Gf ' S` (Theorem 5.1).
An infinite family of such irreducible quadrinomials is indicated.

2. Some basic lemmas. In this section we gather some tools on per-
mutation and Galois groups. Throughout this section let f(x) be a monic
polynomial with integer coefficients of degree n, and let N be the splitting
field of f(x) with Galois group Gf over Q. A theorem of Minkowski says that
all non-trivial extensions of Q are ramified, and this implies the following
lemma:

Lemma 2.1. The Galois group Gf is generated by all inertia groups IP/p

over prime ideals P of N sitting above prime numbers p.

Therefore, to compute Gf it is enough to compute all inertia groups of
primes of N . But we know that these inertia groups are all trivial except
for the primes sitting above the ramified ones in N . On the other hand, the
ramified primes of Q in N are exactly the primes dividing the discriminant
dN of the field N , which satisfies the equality

(2.1) disc(f) = [ON : Z]2dN

where disc(f) is the discriminant of the polynomial f(x), and ON is the ring
of integers of N .

So to compute Gf one needs to determine the inertia groups of primes of
N sitting above the primes dividing dN . The following lemma is fundamental
for our purpose:

Lemma 2.2 ([7, Lemma 1]). Let p be a prime number and let P be a
prime ideal of N sitting above p. If f(x) ≡ (x − c)2h̄(x) (mod p) for some
c ∈ Z and a separable polynomial h̄(x) ∈ Fp[x] such that h̄(c) 6≡ 0 (mod p),
then the inertia group of IP/p is either trivial or a group generated by a
transposition.

Since the Galois group of f(x) as a subgroup of Sn is transitive, we will
use the following elementary lemma in the next section:

Lemma 2.3 ([10, Lemma 4.4.4]). Any transitive subgroup of Sn which is
generated by transpositions is the full group Sn.
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Furthermore, in case n = ` is prime, we will also use the following ele-
mentary lemma:

Lemma 2.4. Let ` be a prime number. Any permutation subgroup of S`
generated by a transposition and a cycle of length ` is the full group S`.

3. Galois groups of xn + axn−1 + bxn−2 + c with a2 = 4b. In this
section we first compute the discriminant of any polynomial of the form

f(x) = xn + axn−1 + bxn−2 + c ∈ Q[x]

with a2 = 4b. Its derivative

f ′(x) = xn−3(nx2 + a(n− 1)x+ b(n− 2))

has the following rational roots:

x1 = · · · = xn−3 = 0, xn−2 = −a/2, xn−1 = −a/2 + a/n.

To do this we first take the product of the values of f(x) over all roots
of f ′(x):

disc(f) = (−1)n(n−1)/2 Res(f, f ′)

= (−1)n(n−1)/2nnf(0)n−3f(−a/2)f(−a/2 + a/n)

= (−1)n(n−1)/2nncn−3c(an(1/n− 1/2)n−2(1/n)2 + c)

= (−1)n(n−1)/2nncn−2
(

(−1)n−24

(
a

2n

)n

(n− 2)n−2 + c

)
.

Therefore,

(3.1) disc(f) = (−1)n(n−1)/2cn−2
(
(−1)n−24(a/2)n(n− 2)n−2 + nnc

)
.

Let f(x) = xn + axn−1 + bxn−2 + c ∈ Z[x] be a quadrinomial such that
a2 = 4b. As already mentioned, its derivative has three distinct rational
roots {0,−a/2,−a/2 + a/n} where f(−a/2) = f(0) = c. Let p be a prime
number with p - nc and

p | disc(f) = (−1)n(n−1)/2cn−2
(
(−1)n−24(a/2)n(n− 2)n−2 + nnc

)
.

Hence f(x) has a multiple root α modulo p. Since this root has to be a root
of f ′(x) modulo p as well, one has

α ∈ {0,−a/2,−a/2 + a/n}.
But, since p - c, we have f(0) = f(−a/2) = c 6= 0 modulo p. Therefore, the
only multiple root of f(x) modulo p is α = −a/2 + a/n whose order is two.
Therefore,

f(x) ≡ (x− α)2h̄(x) (mod p)

with a separable polynomial h̄ ∈ Fp[x]. Now if c = ±1 and gcd(n, a) = 1,
using the discriminant formula we see that p - nc for any prime p dividing
disc(f). Hence by Lemma 2.2 we obtain the following theorem:
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Theorem 3.1. For any irreducible polynomial of the form

f(x) = xn + axn−1 + bxn−2 ± 1 ∈ Z[x]

with a2 = 4b and gcd(n, a) = 1, the Galois group Gf is Sn.

Let us now show the existence of an infinite family of quadrinomials
satisfying the hypothesis of Theorem 3.1. By a result of Heath-Brown [4]
there exists an odd prime p such that p is a primitive root modulo ` for
infinitely many odd primes `. For such a pair (p, `), if b is relatively prime to
` and divisible by p, then any quadrinomial of the form f(x) = x` +ax`−1 +
bx`−2−1 is irreducible and so Gf ' S`. To see the irreducibility, it is enough

to consider f(x) ≡ (x − 1)(x`−1 + x`−2 + · · · + 1) modulo p and note that
x`−1 + x`−2 + · · ·+ 1 is irreducible in Fp[x] if p is a primitive root modulo `
by Dedekind’s theorem together with [13, Theorem 2.13].

If n = ` is an odd prime, there exists an `-cycle in Gf by the Cauchy
theorem. So to show that Gf is S`, by Lemma 2.4 it is enough to find a
transposition in Gf . To do so, assume that

gcd(2a(`− 2), `c) = 1

and g(`) := (−1)`−24(a/2)`(`−2)`−2+``c is not a perfect square, e.g. `c 6≡ 1
(mod 4). Then c and g(`) are relatively prime, and there is a prime number
p dividing g(`) to an odd power. Hence, using the discriminant formula (3.1)
and equality (2.1), one has p | dN and p - `c where N is the splitting field
of f(x). Now we repeat the same argument as above to conclude that the
corresponding inertia group of p is either trivial or generated by a transpo-
sition. But, since p | dN , the prime p is ramified, and so the inertia group is
not trivial. This completes the proof of the following theorem:

Theorem 3.2. Let ` be a prime number, and assume gcd(2a(`− 2), `c)
= 1 and (−1)`−24(a/2)`(` − 2)`−2 + ``c is not a perfect square. Then, for
any irreducible polynomial of the form

f(x) = x` + ax`−1 + bx`−2 + c ∈ Z[x]

with a2 = 4b, the Galois group Gf is S`.

We finally mention an infinite family of polynomials satisfying the hy-
potheses of Theorem 3.2. Let f(x) = x` + ax`−1 + bx`−2 + c ∈ Z[x] be a
quadrinomial with ` prime, ` - a and a2 = 4b. Assume that c is a prime
greater than max{1 + |a| + |b|, 2a(` − 2)}. This implies that f(x) is irre-
ducible by [7, Lemma 9]. If we also suppose that `c 6≡ 1 (mod 4), then all
hypotheses of Theorem 3.2 hold and hence Gf ' S`.

4. The Galois groups of a family with an arbitrary number
of terms. In this section, we generalize the argument of Theorem 3.1 to
compute the Galois group of a family of polynomials with an arbitrary
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number of terms. The strategy is to construct a polynomial f(x) whose
derivative is of a certain form.

Remark 4.1. Let f(x) = xn + an−1x
n−1 + · · · + a0 ∈ Z[x] be an irre-

ducible polynomial whose derivative factors in C[x] as follows:

f ′(x) = nxn−1 + (n− 1)an−1x
n−2 + · · ·+ a1 = n(x− α1) · · · (x− αn−1).

By integrating, the coefficients of f(x) have the following form in terms of
its roots:

f(x) = xn − n
∑
αi

n− 1
xn−1 +

n
∑
αiαj

n− 2
xn−2 + · · ·+ (−1)nαi1 · · ·αin−1x+ a0.

So to have integer coefficients, it is enough to have, for all 1 ≤ l ≤ n− 1,

n− l
∣∣∣ ∑
1≤i1,...,ii−1≤n

αi1 · · ·αil .

We are now looking for a polynomial f(x) = xn+k+1 + an+kx
n+k + · · ·

+ a0 ∈ Z[x] whose derivative has the form

f ′(x) = xn(x− a)k−1
(
(n+ a)x− (n+ 1)a

)
.

Hence the coefficients of f(x) are of the form

±an+k−l = (k + 1)

(
k − 1

l

)
al + (k + 1)

(
k − 1

l − 1

)
al−1(a− k)

= (k + 1)al−1(a− k)

(
k

l

)
.

Letting a := k + 1 yields

f(x) = xn+k+1 −
(
k

1

)
(k + 1)xn+k +

(
k

2

)
(k + 1)2xn+k−1 − · · ·

+ (−1)k
(
k

k

)
(k + 1)kxn+1 + c = xn+1(x− k − 1)k + c.

We now apply the argument of Theorem 3.1 to this polynomial in the
case c = ±1 under the hypothesis gcd(n+ k + 1, nk) = 1, which guarantees
that f ′(x) is not the zero polynomial modulo p: the roots of f ′(x) are

0, k + 1, α :=
(n+ 1)(k + 1)

n+ k + 1
.

Since f(0) = f(k + 1) = ±1, the only multiple root of f(x) modulo a
prime p is α, of order two. Therefore, for any prime number p dividing
disc(f), we have f(x) ≡ (x − α)2h̄(x) (mod p) for a separable polynomial
h̄(x) ∈ Fp[x]. Lemma 2.2 now implies that the inertia group of a prime
of the splitting field of f(x) sitting above p is either trivial or generated
by a transposition. Combining this with Lemma 2.3 finally gives the main
theorem of this section:
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Theorem 4.2. The Galois group Gf of any irreducible polynomial

f(x) = xn+k+1−
(
k

1

)
(k+1)xn+k +

(
k

2

)
(k+1)2xn+k−1−· · ·±xn±1 ∈ Z[x]

with gcd(n+ k + 1, nk) = 1 is Sn+k+1.

For f(x) = xn+1(x− k − 1)k + c with n+ k + 1 prime, let

A :=
(
(−1)k(k + 1)n+k+1(n+ 1)n+1kk + c(n+ k + 1)n+k+1

)
.

Then

disc(f) = (n+ k + 1)n+k+1f(0)nf(k + 1)k−1f

(
(n+ 1)(k + 1)

n+ k + 1

)
= cn+k−1A.

Hence, we obtain the following theorem similar to Theorem 3.2:

Theorem 4.3. Let n + k + 1 be a prime number, and assume that
gcd(c, (k + 1)(n + 1)k) = 1 and A is not a perfect square. Then, for any
irreducible polynomial of the form

f(x) = xn+k+1 −
(
k

1

)
(k + 1)xn+k +

(
k

2

)
(k + 1)2xn+k−1 − · · ·

+ (−1)k
(
k

k

)
(k + 1)kxn+1 + c ∈ Z[x],

the Galois group Gf is Sn+k+1.

5. Galois groups of xn+axn−1+bxn−2+c with a2 6= 4b. The explicit
classification of the Galois groups of the quadrinomials f(x) = xn +axn−1 +
bxn−2 + c ∈ Z[x] with a2 6= 4b seems to be hard due to different possibilities
which can occur for the non-zero roots of f ′(x) = 0 modulo a prime p and
their lifts to Qp. However, assuming that the coefficients a, b and c satisfy a
certain congruence modulo 4 and n = ` is prime, we are able to show that
Gf is again S`. The argument is as follows:

Let ` be a prime with ` ≡ 1 (mod 4) and f(x) = x` + ax`−1 + bx`−2 + c.
Then f ′(x) = x`−3(`x2 +a(`−1)x+ b(`−2)) has three roots {0, δ1, δ2}, and

disc(f) = ``f(0)`−3f(δ1)f(δ2)

= ``c`−3(δ`1 + aδ`−11 + bδ`−21 + c)(δ`2 + aδ`−12 + bδ`−22 + c)

= ``c`−3
(
(δ1δ2)

` + a(δ1δ2)
`−1(δ1 + δ2) + b(δ1δ2)

`−2(δ21 + δ22)

+ c(δ`1 + δ`2) + a2(δ1δ2)
`−1 + b2(δ1δ2)

`−2 + c2

+ ab(δ1δ2)
`−2(δ1 + δ2) + ac(δ`−11 + δ`−12 ) + bc(δ`−21 + δ`−22 )

)
.
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Also note that δ1 + δ2 = −a(` − 1)/` ≡ 0 (mod 4), δ1δ2 = b(` − 2)/` ≡ −b
(mod 4), and

δm1 + δm2 ≡

{
0 (mod 4) if m is odd,

−2bm/2 (mod 4) if m is even.

For the last congruence it is enough to use the following recursive relation:

(δm1 + δm2 ) + (δ1δ2)(δ
m−2
1 + δm−22 ) = (δ1 + δ2)(δ

m−1
1 + δm−12 ).

Therefore,

disc(f) ≡ c`−3(a2b`−1 + c2 − 2acb(`−1)/2)) (mod 4).

Hence disc(f) ≡ 0 (mod 4) whenever a, b and c are all odd.
From now on we assume that a+ b+ c ≡ 1 (mod 4). So 2 divides f(−1)

exactly once, and the (Q2, x+1)-polygon (see [2, appendix]) of f(x) has two
sides: one horizontal side joining the point (0, 0) to (0, `−2), and another side
joining (0, `−2) to (1, `). The polynomial corresponding to the latter side is
of degree 1, and so is irreducible. Therefore, 2 = p2b in the ring of integers
of Q(α), where α is a root of f and p is a prime ideal. As a result, p = 2 is
ramified in the splitting field of f . On the other hand, f(x) ≡ (x− 1)2h̄(x)
(mod 2) for a separable h̄(x) ∈ Fp[x] with h̄(1) 6≡ 0 (mod 2). Hence by
Lemma 2.2 the inertia group of the prime ideal in the splitting field of f(x)
sitting above the prime 2 is a transposition. Finally, since by the Cauchy
theorem the Galois group Gf contains a cycle of length `, we obtain the
following result:

Theorem 5.1. The Galois group of any irreducible quadrinomial of the
form

x` + ax`−1 + bx`−2 + c ∈ Z[x]

with ` ≡ 1 (mod 4) an odd prime is S` if the coefficients a, b and c are all
odd integers and a+ b+ c ≡ 1 (mod 4).

It is worth mentioning that if a > b+ c+1, then by a result of Perron [9]
the quadrinomial x`+ax`−1+bx`−2+c ∈ Z[x] is irreducible. Hence assuming
that a, b and c are all odd integers with a > b + c + 1 and a + b + c ≡ 1
(mod 4), and that ` ≡ 1 (mod 4) is prime, we see that the Galois group of
x` + ax`−1 + bx`−2 + c ∈ Z[x] is S`.

Acknowledgments. The authors would like to thank the referee for
comments and corrections.
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