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1. Introduction. This paper is a continuation of [7]. In [7] we used the
following notations and definitions:
A,B, C, . . . denote (usually infinite) sets of positive integers, and their

counting functions are denoted by A(x), B(x), C(x), . . . , so that e.g.

A(x) = |{a : a ≤ x, a ∈ A}|.
The set of positive integers is denoted by N.

In [7] we defined both additive and multiplicative decompositions of se-
quences of nonnegative integers, and we presented a short survey of the
papers [3–5, 8–16] on decomposition problems. Here we only recall the def-
initions related to multiplicative decompositions.

Definition 1.1. A finite or infinite set A of positive integers is said to
be multiplicatively reducible or briefly m-reducible if it has a multiplicative
decomposition

(1.1) A = B · C with |B|, |C| ≥ 2.

If there are no sets B, C with these properties thenA is said to be m-primitive
or m-irreducible.

Definition 1.2. Two sets A,B of positive integers are called asymptot-
ically equal if there is a number K such that A ∩ [K,∞) = B ∩ [K,∞); we
then write A ∼ B.

Definition 1.3. An infinite set A of positive integers is said to be
totally m-primitive if every set A′ of positive integers with A′ ∼ A is
m-primitive.
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In [7] we started out with the following problem:

Problem 1. Is it true that the set

M′ = {0, 1, 4, 9, . . . , x2, . . .}+ {1} = {1, 2, 5, 10, . . . , x2 + 1, . . .}
of shifted squares is m-primitive?

(Note that the setM+ = {1, 4, 9, . . . , x2, . . .} has a trivial multiplicative
decompositionM+ =M+ ·M+, thus to formulate a nontrivial problem on
m-decomposability of sets related to squares, we have to consider the set
M′ of shifted squares.)

In [7] we proved that the answer to Problem 1 is affirmative in a much
stronger form: if the counting function of a subset of M′ increases faster
than log x, then the subset must be totally m-primitive:

Theorem A. If

R = {r1, r2, . . .} ⊂ M′, r1 < r2 < · · · ,
and

lim sup
x→∞

R(x)

log x
=∞,

then R is totally m-primitive.

Next we proved that Theorem A is nearly sharp:

Theorem B. There is an m-reducible subset R ⊂M′ and a number x0
such that for x > x0 we have

R(x) >
1

log 51
log x.

Finally, we considered the case of general quadratic polynomials:

Theorem C. Let f be a polynomial of degree 2 with integer coefficients
and positive leading coefficient, and set

Mf = {f(x) : x ∈ Z} ∩ N.
Then Mf is totally m-primitive if and only if f is not of the form f(x) =
a(bx+ c)2 with integers a, b, c, where a, b > 0.

In this paper our goal is to study the analogous problems for polynomials
of degree greater than 2.

2. Infinite sets of shifted kth powers are totally m-primitive.
For integer k > 2 write

Mk = {0, 1, 2k, 3k, . . . , xk, . . .}
and

(2.1) M′k =Mk + {1} = {1, 2, 2k + 1, 3k + 1, . . . , xk + 1, . . .}.
First we will study
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Problem 2. Is it true that for k ≥ 2 the set M′k of shifted kth powers
defined in (2.1) is totally m-primitive?

Note that in the special case k = 2 we proved in [7] that the answer to
this question is affirmative in a much sharper form (see Theorem A in the
Introduction). Here we will prove that for k > 2 an even stronger statement
holds:

Theorem 2.1. If k > 2,

(2.2) R = {r1, r2, . . .} ⊂ M′k, r1 < r2 < · · · ,
and

(2.3) R is infinite,

then R is totally m-primitive.

(So for k > 2, Theorem B has no analogue: there are no exceptional
subsets of M′k.)

Proof. Assume that, contrary to the statement, there are R′ ⊂ N, n0,
B ⊂ N and C ⊂ N such that

R′ ∩ [n0,∞) = R∩ [n0,∞),(2.4)

|B|, |C| ≥ 2,(2.5)

R′ = B · C.(2.6)

By (2.3) and (2.4),

(2.7) R′ is infinite.

It follows trivially from (2.6) and (2.7) that either B or C is infinite; we may
assume that

(2.8) C is infinite.

Let B = {b1, b2, . . .} with b1 < b2 < · · · (by (2.5), B has at least two
elements). Write C′ = C ∩ [n0,∞); by (2.8),

(2.9) C′ is infinite.

Now consider any c ∈ C′. Then

(2.10) n0 ≤ b1n0 ≤ b1c < b2c,

and by (2.4), (2.6) and (2.10) we have

(2.11) b1c ∈ R′ ∩ [n0,∞) and b2c ∈ R′ ∩ [n0,∞).

It follows from (2.2), (2.4) and (2.11) that

(2.12) b1c ∈M′k and b2c ∈M′k,
thus there are x = x(c), y = y(c) ∈ N with

b2c = xk + 1, b1c = yk + 1,
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whence

0 = b1(b2c)− b2(b1c) = b1(x
k + 1)− b2(yk + 1),

so that

(2.13) b1x
k − b2yk = b2 − b1.

Clearly, if c and c′ are different elements of C′, then x = x(c′) and y = y(c′)
are different solutions of (2.13). Thus by (2.9),

(2.14) (2.13) has infinitely many solutions.

Now we need the following lemma, which is a simple consequence of a
classical theorem of Baker [1] concerning Thue equations.

Lemma 2.1. Let A,B,C, k be integers with ABC 6= 0 and k ≥ 3. Then
for all integer solutions x, y of the equation

(2.15) Axk +Byk = C

we have max(|x|, |y|) < c1, where c1 = c1(A,B,C, k) is a constant depending
only on A,B,C, k.

We may apply Lemma 2.1 with A = b1, B = −b2, C = b2− b1 since then
by 0 < b1 < b2 and k ≥ 3 the conditions in the lemma hold. Then we see
that (2.13) may have only finitely many solutions, which contradicts (2.14)
and completes the proof of Theorem 2.1.

3. General polynomials of degree greater than 2. In this section
we will prove the analogue of Theorem C for polynomials of degree greater
than 2:

Theorem 3.1. Let f ∈ Z[x] with deg(f) ≥ 3 and positive leading coef-
ficient, and set

A := {f(x) : x ∈ Z} ∩ N.

Then A is not totally m-primitive if and only if f(x) is of the form f(x) =
a(bx + c)k with a, b, c, k ∈ Z, where a, b > 0 and k ≥ 3. Further, if f(x) is
of this form, then A can be written as A = AB with B = {1, (b+ 1)k}.

Proof. We will need a result of [7, Lemma 2.1] on the number of solutions
of general Pell-type equations up to N :

Lemma 3.1. Let f(z) = uz2 +vz+w with u, v, w ∈ Z, u(v2−4uw) 6= 0,
and let n, ` be distinct positive integers. Then there exists an effectively
computable constant c2 = c2(u, v, w, n, `) such that

|{(x, y) ∈ Z2 : nf(x) = `f(y) with max(|x|, |y|) < N}| < c2 logN

for any integer N ≥ 2.
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We will also need a result about equations of type f(x) = g(y). In fact,
we need the special case when g(y) = tf(y). Our next statement, which is
new and may be of independent interest, concerns this situation.

Proposition 3.1. Let f ∈ Z[x] with deg(f) ≥ 3 and t ∈ Q with t 6= ±1.
Suppose that the equation f(x) = tf(y) has infinitely many solutions in
integers x, y. Then f(x) = a(g(x))m with some a ∈ Z and g(x) ∈ Z[x] with
deg(g) = 1 or 2.

To prove the proposition, we need a deep result of Bilu and Tichy [2].
To formulate it, we introduce some notation.

Let α, β be nonzero rational numbers, let µ, ν, q > 0 and r ≥ 0 be inte-
gers, and let v(x) ∈ Q[x] be a nonzero polynomial (which can be constant).
Write Dµ(x, δ) for the µth Dickson polynomial, defined by

Dµ(x, δ) =

bµ/2c∑
i=0

dµ,ix
µ−2i with dµ,i =

µ

µ− i

(
µ− i
i

)
(−δ)i.

We will say that two polynomials F (x) and G(x) form a standard pair
over Q if one of the ordered pairs (F (x), G(x)) or (G(x), F (x)) appears in
Table 1.

Table 1. Standard pairs

Kind (F (x), G(x)) or (G(x), F (x)) Parameter restrictions

(i) (xq, αxrv(x)q) 0 ≤ r < q, (r, q) = 1,

r + deg v(x) > 0

(ii) (x2, (αx2 + β)v(x)2) -

(iii) (Dµ(x, αν), Dν(x, αµ)) (µ, ν) = 1

(iv) (α−µ/2Dµ(x, α),−β−ν/2Dν(x, β)) (µ, ν) = 2

(v) ((αx2 − 1)3, 3x4 − 4x3) -

Now we state a special case of the main result of [2].

Lemma 3.2. Let f(x), g(x) ∈ Q[x] be nonconstant polynomials such that
the equation f(x) = g(y) has infinitely many solutions in rational integers
x, y. Then f = ϕ◦F ◦λ and g = ϕ◦G◦κ, where λ(x), κ(x) ∈ Q[x] are linear
polynomials, ϕ(x) ∈ Q[x], and F (x), G(x) form a standard pair over Q.

Now we are ready to prove the proposition:

Proof of Proposition 3.1. By Lemma 3.2, we see that in our case in any
standard pair F,G corresponding to a case with infinitely many solutions
we have deg(F ) = deg(G). Hence in Table 1 we obtain the following possi-
bilities:
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(i) r = 0, q = 1 and deg v(x) = 1, thus {F (x), G(x)} = {x, ux + w} with
some u,w ∈ Q,

(ii) deg v(x) = 0, thus {F (x), G(x)} = {x2, ux2 + w} with some u,w ∈ Q,
(iii) µ = ν = 1, thus F (x) = G(x) = x,
(iv) µ = ν = 2, thus {F (x), G(x)} = {x2 + u, x2 + w} with some u,w ∈ Q,
(v) impossible.

In cases (i) and (iii) by Lemma 3.2 we find that f(x) = φ(x) and tf(x) =
φ(ax+ b) with some rational polynomial φ and a, b ∈ Q. This yields

(3.1) tφ(x) = φ(ax+ b).

In case (ii) Lemma 3.2 implies that f(x) = φ((k1x + `1)
2) and tf(x) =

φ(u(k2x + `2)
2 + w), or vice versa, with some rational polynomial φ and

k1, k2, `1, `2 ∈ Q. Hence we see that f(k0x+ `0) = φ(x2) and tf(k0x+ `0) =
φ(ax2 + dx + b), or vice versa, with some a, d, b, k0, `0 ∈ Q, ak0 6= 0. This
shows that

(3.2) tεφ(x2) = φ(ax2 + dx+ b)

with ε = ±1. Now the substitution x→ −x yields

φ(ax2 + dx+ b) = φ(ax2 − dx+ b).

Write φ(x) = anx
n + · · ·+ a1x+ a0 with an 6= 0. Comparing the coefficients

of x2n−1 in the above equality, we obtain

nana
n−1dx2n−1 = −nanan−1dx2n−1,

whence d = 0 (as nana 6= 0). Now comparing the coefficients in (3.2), we
see that tεφ(x) = φ(ax + b) is also valid. After applying the substitution
x → (1/a)x − b/a and redefining a as 1/a and b as −b/a if ε = −1, we
deduce that (3.1) also holds in this case.

In case (iv) Lemma 3.2 implies that f(x) = φ0((k1x + `1)
2 + u) and

tf(x) = φ0((k2x + `2)
2 + w), or vice versa, with some rational polynomial

φ0 and k1, k2, `1, `2 ∈ Q. If we set φ(x) = φ0(x + u), this implies f(x) =
φ((k1x+ `1)

2) and tf(x) = φ((k2x+ `2)
2 +w− u), or vice versa. Hence just

as in case (ii), φ(x) satisfies (3.1) again.

Now suppose that φ(x) ∈ Q[x] satisfies (3.1). Then the set of roots
of φ is closed under the transformation z → az + b and also under z →
(z − b)/a. As t 6= ±1, we have |a| 6= 1. We may assume that |a| > 1; the
other case is similar. Suppose that φ has two distinct roots. Write z1, z2 for
the roots of φ which are farthest apart (i.e. with |z1 − z2| maximal). Then
|(az1 + b)− (az2 + b)| > |z1 − z2| yields a contradiction. That is, φ has only
one (possibly multiple) root (given by z0 = b/(1−a)). This means that φ(x)
is of the form φ(x) = c(x − z0)n. Hence in view of the above analysis, the
statement immediately follows.
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Now we can complete the proof of Theorem 3.1.

Since the second part of the statement can be readily checked, we only
deal with the first part.

So suppose that A is not totally m-primitive. Then there is a set A′ ⊂ N
with A ∼ A′ such that A′ can be written as A′ = BC, where B, C ⊂ N with
|B|, |C| ≥ 2.

Let b1, b2 ∈ B be the two smallest elements of B. Then, for all d ∈ C,
(3.3) b1d = f(x) and b2d = f(y)

for some x, y ∈ Z, which depend on d. This implies that the equation
f(x) = tf(y) has infinitely many solutions in integers x, y, where t = b1/b2.
Proposition 3.1 shows that either f(x) = a(bx + c)k with a, b, c ∈ Z, or
f(x) = a(g(x))m where g(x) ∈ Z[x] with deg(g) = 2 and k = 2m. Since
in the first case we are done, we may assume that the second case holds.
Further, we may suppose that the discriminant of g(x) is not zero, as oth-
erwise the situation reduces to the case with deg(g) = 1. Then by (3.3) we
get b2(g(x))m = b1(g(y))m. This shows that b2/b1 is a full mth power in Q,
and we obtain

(3.4) b∗2g(x) = b∗1g(y)

with some positive integers b∗1, b
∗
2. Write g(x) = g2x

2 + g1x + g0; the min-
imality of b1, b2 implies that max{b1, b2} can be effectively bounded from
above in terms of a, g2, g1, g0, k. Furthermore, by Lemma 3.1, equation (3.4)
has only O(logN) solutions in (x, y) with max(|x|, |y|) < N for any N > 1.
(Here and later on in the proof, the implied constant in O(·) depends on
a, g2, g1, g0, k.) Hence from

|x| = O(d1/k) and |y| = O(d1/k)

we have

|{d ∈ C : d ≤ N}| ≤ |{d ∈ C : d ≤ Nk}| < O(logN) for any N > 1.

By interchanging the roles of B and C, we similarly have

|{d ∈ B : d ≤ N}| < O(logN) for any N > 1.

Hence

|{t ∈ BC : t ≤ N}| < O((logN)2) for any N > 1.

However,

|{a ∈ A′ : a ≤ N}| > O(N1/k) for all N .

This contradiction completes the proof.

4. Problems and remarks. First we point out that some of our results
can be extended to rings of integers of algebraic number fields.
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Remark 1. Theorem 2.1 can be extended to number fields. We do not
work out the details here, only indicate the main points. Let K be an alge-
braic number field, and write OK for its ring of integers. Then the sets

Aβ := {αk + β : α ∈ OK}
are totally m-decomposable for any k ≥ 3 and β ∈ OK \ {0}. (By this we
mean that if A′β ⊂ OK and the symmetric difference of Aβ and A′β is finite,

then A′β = BC with B, C ⊂ OK implies that either one of B, C has only one
element, or one of these sets is {0, ε}, where ε is a unit in OK .) Indeed,
Lemma 2.1 essentially remains valid also in this generality: see Győry and
Papp [6], and [15, Chapter 5] for related results. (Of course, in this case
one has to bound the size of the solutions x, y, and the bound will depend
on certain parameters of K as well. However, the essential fact from our
viewpoint is that (2.15) has only finitely many solutions also in x, y ∈ OK ,
for any A,B,C ∈ OK \ {0}.) Thus the arguments of Theorem 2.1 can easily
be extended to this more general situation. In fact, a special case remains:

A′β = BC with B = {0, γ}, |C| =∞,
where γ ∈ OK \ {0} is not a unit. However, in this case γ should divide
all elements of A′β, in particular (α1γ)k + β and (α2γ + 1)k + β for some
α1, α2 ∈ OK , whence γ |β and γ |β + 1 in OK . This implies that γ is a unit
in OK , which is excluded, and the argument is complete. Note that for any
unit ε ∈ OK we can write

A′β := Aβ ∪ {0} = {0, ε} · (ε−1A′β),

so this decomposition is trivial and must be excluded.
Next we propose a problem which seems to be difficult.

Problem 1′. Are there k, ` ∈ N with k, ` > 1 such that the set
{xky` + 1 : (x, y) ∈ N2} is m-reducible? If yes, for what pairs k, ` ∈ N
is this set m-reducible? More generally, for f(x, y) ∈ Z[x, y], when is
{f(x, y) > 0 : (x, y) ∈ Z2} m-reducible?

Remark 2. If k = 1 or ` = 1 then the set {xky` + 1 : (x, y) ∈ N2} is
m-reducible:

{xy` + 1 : (x, y) ∈ N2} = {xky + 1 : (x, y) ∈ N2}
= {2, 3, 4, . . . } = {1, 2, 3, 4, . . . } · {2, 3, 4, . . . }.

On the other hand, it follows from Theorems A and 2.1 that if d = (k, `) > 1
then {xky`+1 : (x, y) ∈ N2} is totally m-primitive since it is a “large” subset
of {zd+1 : z ∈ N}. This seems to suggest that the answer to the first question
is, perhaps, “no”:

Conjecture 1. If k, ` ∈ N, k > 1 and ` > 1 then {xky`+1 : (x, y) ∈ N2}
is totally m-primitive.
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Here the difficulty is that in general the problem reduces to a diophantine
equation in four variables, and we know much less on such equations than
on equations in two variables. However, one might wish to prove at least
nontrivial partial results:

Problem 2′. Is it true that if ` ∈ N is odd and > 1 then the set
{x2y` + 1 : (x, y) ∈ N2} is totally m-primitive? (Note that by Remark 2
this is true if ` is even.) Can one decide this at least for ` = 3?
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Institute of Mathematics
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