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1. Introduction. The goal of this paper is to prove the following.

Theorem 1.1. Let s be an integer such that 3s2−4s+4 is a square. Let
Ks be the splitting field of

Fs(t) = t4 + (4s3 − 4s2 + 8s− 4)t3 + (−6s2 − 6)t2 + 4t+ 1.

Then Gal(Ks/Q) is cyclic of order 4. If s2 + 2 is squarefree and s 6= 0,
then ±1 and the roots of Fs(t) generate either the unit group of the ring of
algebraic integers in Ks or a subgroup of index 5.

Computational evidence (see the end of Section 6) indicates that the
index 5 case does not occur, but we have not yet proved this.

Families of cyclic quartic fields with explicit units have been studied in
the past (for example, [4], [8], [9]), but it does not seem that this family has
been studied previously. In [1], families of cyclic cubic fields were constructed
and the method led naturally to studying integral points on a model of
the elliptic modular surface X(3). In the present case, we are led to study
integral points on a degree 4 cover of the surface X(2), but the Diophantine
properties are not as transparent. The family we study lives above a singular
fiber of X(2). It would be interesting to know if there are other families living
as curves on the surface.

2. The polynomials. As in [1], we start with the action of the Galois
group given by a linear fractional transformation, but this time we take the
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matrix to have order 4 in PGL2(Z). Let f, g be integers and let

M =

(
f −1

f2+g2

2 −g

)
.

Then

M2 =
f − g

2

(
f + g −2

f2 + g2 −g − f

)
, M3 =

(f − g)2

2

(
g −1

f2+g2

2 −f

)
.

The action of the Galois group is to be θ 7→ Mθ. We want θ to be a unit,
so we take it to have norm 1:

(2.1) θ · fθ − 1
f2+g2

2 θ − g
· (f + g)θ − 2

(f2 + g2)θ − g − f
· gθ − 1
f2+g2

2 θ − f
= 1.

If fg(f + g) 6= 0, this relation can be rearranged to say that θ is a root of

(2.2) t4 − (f2 + g2)3 + 4(f2 + g2) + 16fg

4fg(f + g)
t3

+
3((f2 + g2)2 + 4)

4fg
t2 − (f + g)4 − 4f2g2 + 4

2fg(f + g)
t+ 1 = 0.

Since this is symmetric in f and g, we make the substitutions s = f + g and
p = fg to obtain

t4 − (s2 − 2p)3 + 4s2 + 8p

4sp
t3 +

3((s2 − 2p)2 + 4)

4sp
t2 − s4 − 4p2 + 4

2sp
t+ 1.

Let L = − s4−4p2+4
4sp . The polynomial becomes

(2.3) t4 + (2s3 + Ls2 − 4ps+ 2Lp)t3 + (−3s2 − 3Ls+ 6p)t2 + 2Lt+ 1.

Therefore, if L ∈ Z, or if 2L ∈ Z and s is even, the roots of the polynomial
are units. Of course, since s = f +g and p = fg, there is the extra condition
that s2 − 4p is a square.

Remark. The divisibility condition 4sp | s4−4p2 + 4 that makes L inte-
gral is the same type of condition that appears in the cubic case, where the
paper [1] has the condition fg | f3+g3+1. These both seem to be analogues of
the condition r | 4n for the Richaud–Degert real quadratic fields Q(

√
n2 + r)

(see [12]).

Note that changing s to −s while holding p constant corresponds to
changing the signs of f and g. This has the effect of

L 7→ −L, t 7→ −t
in (2.3). Therefore, we can for simplicity assume that L > 0 (the case L = 0
cannot occur).
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The family considered in [4] (the “simplest quartic fields”) corresponds to
the matrix M with f = 1 and g = −1. However, the relation (2.1) becomes
trivial in this case and does not yield the polynomial defining the family.

3. The surface. When the analogous construction was done for the
cubic case in [1], the expression for one of the coefficients yielded an equation
for X(3). In the present case, we are looking for integral points (f, g, L) on
the surface

(3.1) X : (f + g)4 − 4f2g2 + 4 + 4Lfg(f + g) = 0.

This is a double cover of the surface

s4 − 4p2 + 4 + 4Lps = 0,

which can be transformed (see, for example, [3]) to

y2 = (x+ 4)(x− 4)(x+ L2).

Therefore, X is a degree 4 cover of the elliptic surface X(2), whose fibers
are Legendre elliptic curves. The bad fibers L = ±2 are the ones that play
a role in what follows.

A computer search produced several pairs (f, g) for which 2L is integral,
and almost all of them had L = ±2:

f g s p L Polynomial

1 −5 −4 −5 −2 t4 − 220t3 − 102t2 − 4t+ 1

5 −17 −12 −85 2 t4 − 7588t3 − 870t2 + 4t+ 1

5 −37 −32 −185 −77/2 t4 − 114395t3 − 7878t2 − 77t+ 1

17 −65 −48 −1105 −2 t4 − 433532t3 − 13830t2 − 4t+ 1

65 −241 −176 −15665 2 t4 − 21932420t3 − 185862t2 + 4t+ 1

As mentioned above, a simple transformation changes the examples with
L = −2 into examples with L = 2.

4. A family of fields. From now on, we make the assumption

L = 2.

Since s4 − 4p2 + 4Lps+ 4 = s4 − 4p2 + 8ps+ 4 = 0 is a quadratic in p, the
quadratic formula yields

p = s± 1
2(s2 + 2).

If p = s+ 1
2(s2 + 2), the polynomial in (2.3) becomes (t+ 1)4, so we always

take

(4.1) p = s− 1
2(s2 + 2).
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We now have the polynomial

(4.2) Fs(t) = t4 + (4s3 − 4s2 + 8s− 4)t3 + (−6s2 − 6)t2 + 4t+ 1,

with the side condition that

(4.3) 3s2 − 4s+ 4 is a square

(this is a rewriting of s2 − 4p). This condition immediately implies the fol-
lowing:

s is even, s2 + 2 ≡ 2 (mod 4), p is odd,

where the last part follows from (4.1). Since p is odd, we must have

f and g are odd.

The original parameters f and g are given by

(4.4) f, g =
s±
√

3s2 − 4s+ 4

2
.

The choice of which is f and which is g does not have much significance,
but it affects the choice of generator of the Galois group in the following.

For future reference, we note the following consequence of L = 2:

Lemma 4.1. If L = 2, then

s2 + 2

2
=

(
f + 1

2

)2

+

(
g + 1

2

)2

, (f − g)2 = 3s2 − 4s+ 4.

Proof. The right side of the first equation is
1
4(s2 − 2p+ 2s+ 2) = 1

4(2s2 + 4) = 1
2(s2 + 2),

where the first equality uses (4.1). The second equation follows from (4.4).

Suppose now that (4.3) holds. Then

v2 = 3s2 − 4s+ 4

for some v, which forces v = 2w and s = 2u for some u,w. This yields

(3u− 1)2 − 3w2 = −2.

This is a Pell equation: the solutions are given by

(4.5) (3u− 1)± w
√

3 = (−1)n+1(1 +
√

3)(2 +
√

3)n,

with n ∈ Z (the first choice of signs is arbitrary; the second sign is chosen
in order to make the right side congruent to −1 modulo

√
3).

This gives the following values of s:

4, −12, 48, −176, 660, −2460, 9184, −34272, . . . .

Every third value (4, −176, 9184, . . . ) has s2 + 2 divisible by 32. The other
values listed yield squarefree values of s2 + 2, although it is not known
whether the sequence yields infinitely many values of s such that s2 + 2 is
squarefree. Questions of this type seem similar to questions about squarefree
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Mersenne numbers, most of which are unsolved. For the first 100 values of
s (that is, for s arising from 1 ≤ n ≤ 100 in (4.5)), all values of s2 + 2
or (s2 + 2)/9 are squarefree.

Remark. We thank Szabolcs Tengely for the following observation.
When L = 2, equation (3.1) for X factors as

((f + 1)2 + (g + 1)2)(f2 + 4fg − 2f + g2 − 2g + 2) = 0.

For the second factor, we have

f2 + 4fg − 2f + g2 − 2g + 2 = −1
3((3g − 1)2 − 3(f + 2g − 1)2 − 4).

As above, we now have a Pell equation whose solution recovers the values
of s = f + g given above.

The discriminant of the polynomial Fs(t) in (4.2) is

(4.6) 256(3s2 − 4s+ 4)3(s2 + 2)3.

Since 3s2 − 4s + 4 is a square, the discriminant is a square times s2 + 2.
But s2 + 2 is never a square, so ks = Q(

√
s2 + 2) ⊆ Ks. Therefore, once we

show that the Galois group is cyclic, we know that ks is the unique quadratic
subfield.

We first show that Fs is irreducible, then identify the Galois action.

Lemma 4.2. Let |s| ≥ 3. The roots of Fs(t) satisfy

r1 = −4s3 + 4s2 − 8s+ 4− 3
2s
−1 − 3

2s
−2 + θ1s

−4 with 1 ≤ θ1 ≤ 2,

r2 = 1+
√
3

2 s−1 + 3+
√
3

6 s−2 −
√
3
9 s
−3 + θ2s

−4 with −3
2 ≤ θ2 ≤ −

1
2 ,

r3 = 1
2s
−1 + 1

2s
−2 − θ3s−4 with 0 ≤ θ3 ≤ 1,

r4 = 1−
√
3

2 s−1 + 3−
√
3

6 s−2 + 1
3
√
3
s−3 + θ4s

−4 with −1
2 ≤ θ4 ≤

1
2 .

Proof. Let r1 = −4s3 + 4s2 − 8s+ 4− 3
2s
−1 − 3

2s
−2. Substitute r1 + s−4

into Fs(t). The result is a degree 21 polynomial P1(s) divided by s16. The real
roots of P1(s) all have absolute value less than 2.1, and P1(s) has a positive
top coefficient. Since P1(s) is positive for large s and does not change sign
in the interval (2.1,∞), we see that P1(s) > 0 for s ≥ 3. Similarly, P1(s) < 0
when s ≤ −3.

Now substitute r1 + 2s−4 into Fs(t). The result is a degree 21 polyno-
mial Q1(s) divided by s16. The real roots of Q1(s) all have absolute value less
than 1, and Q1(s) has a negative top coefficient. It follows that Q1(s) < 0
for s ≥ 1 and Q1(s) > 0 when s ≤ −1.

Fix s with s ≥ 3. Then Fs(r1 + s−4) > 0 > Fs(r1 + 2s−4). Therefore,
there is a zero r1 of Fs(t) that satisfies the stated conditions. The case
where s ≤ −3 is similar.

The proofs for r2, r3, r4 are similar.
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These expansions of r1 and r3 were found by letting s = 10100 and finding
the roots of Fs(t) numerically. The coefficients of the expansions were then
easy to deduce from the decimal expansions of the roots. For r2 and r4, the
expansions of r2+r4 and (r2−r4)/

√
3 had simple forms, and the above were

obtained from these.

If we take f = (s +
√

3s2 − 4s+ 4)/2 and g = (s −
√

3s2 − 4s+ 4)/2,
then the linear fractional transformation M maps rj to rj+1. Given the
approximation to r1, we could obtain the other approximations from the
action of M , but estimating the error terms would be harder.

Lemma 4.3. Let s ∈ Z. Then Fs(t) is irreducible in Q[t].

Proof. The only possible rational roots of Fs are ±1. But Fs(±1) 6= 0
when s ∈ Z. Therefore, Fs does not have a linear factor, so, if it factors,
it must have two quadratic factors, and they must have integer coefficients.
This means that r2 + rj ∈ Z for some j.

Let |s| ≥ 10, say. The cases with |s| < 10 can be checked individually.
From Lemma 4.2, we see that r2 + r1 is not an integer, so r2, r1 cannot be
the roots of a quadratic factor. Also, 0 < |r2 + r3| < 1 and 0 < |r2 + r4| < 1,
so these sums cannot be integers. Therefore, Fs cannot factor into quadratic
factors.

Lemma 4.4. Let Ks be the splitting field of Fs and assume 3s2−4s+4 is
a square. Then Gal(Ks/Q) is cyclic, and the linear fractional transformation
M gives the Galois action on the roots of Fs(t).

Proof. Since 3s2 − 4s + 4 is a square, the parameters f and g exist
(see (4.4)). Let θ be a root of Fs. Then θ satisfies (2.1). Let θ′ = Mθ,
the result of applying the linear fractional transformation M to θ. Since M
cyclically permutes the factors in (2.1), we see that θ′ also satisfies this
equation, and therefore Fs(θ

′) = 0. Therefore, Q(r1) contains all the roots
of Fs. Since Fs is irreducible, it follows that the Galois group of Fs is cyclic
of order 4 and is generated by M .

5. The discriminant

Proposition 5.1. Suppose that s2 + 2 is squarefree and 3s2 − 4s+ 4 is
a square. Then the discriminant of Ks is 28(s2 + 2)3.

Proof. The discriminant of the polynomial Fs(t) is

28(s2 + 2)3(3s2 − 4s+ 4)3 = 28(s2 + 2)3(f − g)6,

where we have used Lemma 4.1 to obtain the second expression. We need
to show that the factor (f − g)6 can be removed. Let q be an odd prime
dividing f − g.
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Since −4spL = s4 − 4p2 + 4, we cannot have f ≡ g ≡ 0 (mod q).
If fg(f + g) 6≡ 0 (mod q) (equivalently, f 6≡ 0 (mod q)), then (2.2)

becomes
Fs(t) ≡ (t− 1/f)3(t− f3) (mod q).

Also, Lemma 4.1 implies that

0 ≡ (f − g)2 = 3s2 − 4s+ 4 = 3(f + g)2 − 4(f + g) + 4 (mod q)(5.1)

≡ 12f2 − 8f + 4 (mod q).

We claim that the roots 1/f and f3 of Fs(t) (modulo q) are distinct. Suppose
1/f ≡ f3 (mod q). The resultant of f4 − 1 and 12f2 − 8f + 4 is 213 · 3, so
we must have q = 3.

Equation (5.1) now tells us that 0 ≡ 12f2 − 8f + 4 (mod 3), so f ≡ −1
(mod 3). Since f ≡ g, we also have g ≡ −1 (mod 3). Lemma 4.1 implies
that s2 + 2 ≡ 0 (mod 9), contradicting the assumption that s2 + 2 is square-
free.

Therefore, 1/f 6≡ f3 (mod q).
Let q be a prime of Ks dividing q and let I be the inertia subgroup of

Gal(Ks/Q) for q. If q divides the discriminant of K, then σ2 ∈ I, where σ
generates Gal(Ks/Q). Let rj ≡ f3 (mod q). Then the other three roots
are congruent to 1/f modulo q. But σ2 ∈ I means that f3 ≡ rj ≡ σ2(rj)
≡ 1/f (mod q), contradicting the fact that f 6≡ 1/f3 (mod q). Therefore, q
does not divide the discriminant of Ks, so f − g contributes no odd prime
factors to the discriminant of Ks.

We have proved that the discriminant D of Ks divides a power of 2
times (s2 + 2)3.

The subfield ks = Q(
√
s2 + 2) ⊂ Ks has conductor 4(s2 +2), since s2 +2

is squarefree and congruent to 2 modulo 4. Let χ be a Dirichlet character of
order 4 attached to Ks. Then χ2 is the quadratic character attached to ks.
Since χ2 has conductor 4(s2 + 2), it follows that χ and χ−1 have conductor
divisible by 4(s2 + 2). The conductor-discriminant formula implies that D
is divisible by 43(s2 + 2)3. We have therefore proved that D is a power of 2
times ((s2 + 2)/2)3.

Since 2 ramifies in ks/Q and Ks/Q is cyclic, 2 is totally ramified in Ks/Q.
This means that χ is the product of a character of conductor 16 and a char-
acter of odd conductor. The conductor-discriminant formula implies that 211

is the exact power of 2 dividing D. Since (s2 + 2)3 contributes 23, this com-
pletes the proof.

Remark. In order to determine the ramification and discriminant of Ks,
we could consider the extension Ks(i)/Q(i). Order the roots r1, r2, r3, r4 so
that Mrj = rj+1. Let

ρ = r1 + r2i− r3 − r4i.
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Computationally, it appears that

(5.2) ρ4 = −26i(f + gi)8π3π,

where π = (f + 1)/2 − i(g + 1)/2. This would suffice to remove the factor
(3s2 − 4s+ 4)3, since 4

√
ρ generates the extension K(i)/Q(i), and since the

odd parts of the discriminants of Ks(i)/Q(i) and Ks/Q are equal. However,
the verification of (5.2) seems to be potentially quite involved, which is why
we had the incentive to find the above proof.

6. Fundamental units. The purpose of this section is to prove that ±1
and the roots of Fs(t) generate the units of Ks. Throughout this section, we
assume that 3s2 − 4s+ 4 is a square.

Lemma 6.1. Let s 6= 0 and suppose s2 + 2 is squarefree. Then

ε = −r1r3 = s2 + 1 + |s|
√
s2 + 2

is the fundamental unit of the ring of integers of Q(
√
s2 + 2).

Proof. Since s2 + 2 6≡ 1 (mod 4), the fundamental unit is in Z[
√
s2 + 2]

(that is, there is no 2 in the denominator). If ε0 = a + b
√
s2 + 2 is the

fundamental unit, so a, b > 0, then ε20 > s2 + 1 + s
√
s2 + 2 = ε. Since ε is a

power of ε0, we must have ε = ε0.
From Lemma 4.2, we see that r1r3 ≈ −2s2. In particular, 1 < −r1r3 < ε2,

so r1r3 = −ε.
Note. We did not need to know the ordering of the rj under the Galois

group to obtain this result, since −r1r3 is the only combination with the
same approximate size as ε. In fact, once we know this, if σ is a generator of
Gal(Ks/Q) then σ2 maps r1 to r3, and hence σ or σ−1 permutes the roots
r1, r2, r3, r4 cyclically (that is, rj 7→ rj+1). Of course, we know that M = σ
or σ−1, depending on the choice of signs in (4.4).

Proposition 6.2. Let K be a totally real number field with Gal(K/Q)
cyclic of order 4. Let RK and DK be the regulator and discriminant of K.
Let k be the quadratic subfield of K, and let ε and dk be the fundamental
unit and discriminant of k. Then

1

4
log2

(
DK

16d2k

)
≤ RK

log ε
.

If dk > 150, then
1

4
log2

(
DK

4.84d2k

)
<

RK
log ε

.

Proof. This result is implicit in [2], [4], and [14], for example. However,
since it does not seem to be explicit in the literature, we include the proof
for the convenience of the reader.
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The result is easily verified for Q(ζ16)
+, the maximal real subfield of the

16th cyclotomic field. In all other cases, an odd prime ramifies in K/Q, so
we may assume that K/k ramifies at some prime of k that divides an odd
prime of Z.

Let EK and Ek be the units of K and k, and let σ generate Gal(K/Q).
Then EK/Ek is a Z[i]-module, where i acts as σ. We claim that this module
is torsion-free. If α ∈ Z[i] maps u ∈ EK into Ek, then so does Norm(α), so
it suffices to show that the Z-torsion is trivial.

If u ∈ EK and un ∈ Ek, then (σ2u)n = un, so σ2u = ±u, since k is real.
Therefore, σ2(u2) = u2, so u2 ∈ Ek. Consequently, k(u)/k ramifies at most
at the primes above 2, hence is trivial since K/k is assumed to ramify at an
odd prime. Therefore, u ∈ Ek, so EK/Ek is torsion-free.

Since EK/Ek has Z-rank 2, it has Z[i]-rank 1, so there is a unit η that

generates it as a Z[i]-module. Let η1+σ
2

= δ ∈ Ek, and let η′ = σ(η). Then
{±1, ε, η, η′} generates EK as a Z-module.

A calculation shows that the regulator of K is

RK = 2 log(ε)

((
log |η| − 1

2
log |δ|

)2

+

(
log |η′|+ 1

2
log |δ|

)2)
.

The different of K/k divides η−σ2(η) = η−δ/η, so the discriminant of K/k
divides

NormK/k(η − δ/η) = −(η − δ/η)2.

Since DK = d2k Normk/Q(DK/k), we find that

DK/d
2
k divides (η − δ/η)2(η′ ± 1/(δη′))2 ≤ (x+ 1/x)2(y + 1/y)2,

where x = Max(|η|/|δ|1/2, |δ|1/2/|η|) and y = Max(|η′| |δ|1/2, 1/|δ|1/2|η′|).
The conductor-discriminant formula implies d3k |DK . If 1 ≤ x, y ≤

√
10,

then

dk ≤ (x+ 1/x)2(y + 1/y)2 < 150.

Therefore, if dk > 150 then at least one of x, y is larger than
√

10. If x >
√

10,
then x+ 1/x < 1.1x. If 1 ≤ x ≤

√
10, then x+ 1/x ≤ 2x. Therefore,

(x+ 1/x)(y + 1/y) < 2.2xy,

so

log(DK/d
2
k) ≤ log (x+ 1/x)2(y + 1/y)2 < 2(log 2.2 + log x+ log y)

≤ 2(log 2.2 +
√

2 (log2 x+ log2 y)1/2) (Cauchy–Schwarz)

= 2(log 2.2 + (RK/log ε)1/2).

This yields the last statement of the proposition. Note that by increasing
the lower bound for dk, we could replace 4.84 by any number larger than 4.
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If we do not require dk > 150, then a slightly simpler argument works
(we thank Stéphane Louboutin for pointing this out): We have x, y ≥ 1,
so x+ 1/x ≤ x+ 1 ≤ 2x and similarly for y. Therefore,

(x+ 1/x)(y + 1/y) ≤ 4xy.

The above argument yields

1

4
log2

(
DK

16d2k

)
≤ RK

log ε
.

This inequality suffices for our purposes.

Lemma 6.3. Assume s2 +2 is squarefree. Let EKs be the units of Ks and
let U be the subgroup generated by ±1 and r1, r2, r3, r4. Then [EKs : U ] 6=
2, 3, 4, 6, 7, 8.

Proof. For ease of notation, denote E = EKs . Let Ek be the units
of Q(

√
s2 + 2). By Lemma 6.1, Ek ⊂ U . Let E = E/Ek and U = U/Ek.

Then [E : U ] = [E : U ]. As in the proof of Proposition 6.2, E ' Z[i]. The
subgroup U is an ideal of Z[i] under this isomorphism.

If [E : U ] = 2, then there exists η that generates E as a Z[i]-module and
such that (1 + i)η ≡ r1 (mod Ek). This means that there exists δ ∈ Ek such
that η1+σ = r1δ. Since σ2 fixes δ, we have

±1 = η1+σ+σ
2+σ3

= r1r3δ
2 = −εδ2.

But ε is the fundamental unit of Q(
√
s2 + 2), so this is impossible.

Now suppose [E : U ] = 4. The only ideal of index 4 in Z[i] is (2), so there
exists η ∈ E such that η2 = r1δ with δ ∈ Eks . Taking norms to ks yields
N(η)2 = −εδ2. This is impossible because ε is the fundamental unit of ks.

If [E : U ] = 8, then there exists η such that η2(1+σ) = r1δ with δ ∈ Eks .
Taking norms from Ks to ks, we find

1 = (η1+σ+σ
2+σ3

)2 = r1+σ
2

1 δ1+σ
2

= −εδ2,
which is impossible.

Finally, every ideal in Z[i] has index that is a norm from Z[i] to Z. Since
3, 6, 7 are not norms, [E : U ] 6= 3, 6, 7.

We can now show that either ±1 and r1, r2, r3, r4 generate the units of Ks

or they generate a subgroup of index 5. We assume that |s| ≥ 105. The cases
where |s| < 105 can be checked individually.

Let R be the regulator of Ks and let R′ be the regulator for the group U
in Lemma 6.3. Then R′/R = [E : U ]. We have

R′ = ±det

log |r1| log |r2| log |r3|
log |r2| log |r3| log |r4|
log |r3| log |r4| log |r1|

 .
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This equals (see [15, Lemma 5.26(c)])

1
4(log |r1|+ i log |r2| − log |r3| − i log |r4|)

× (log |r1| − log |r2|+ log |r3| − log |r4|)
× (log |r1| − i log |r2| − log |r3|+ i log |r4|)

= 1
4(log2 |r1/r3|+ log2 |r2/r4|)(2 log ε).

Lemma 4.2 implies that

(6.1) R′/log ε ≤ 1
2(log2(9s4) + log2 4) < 9 log2 |s|

when |s| ≥ 105. Also,

log2
(
DKs

16d2ks

)
= log2(s2 + 2) ≥ 4 log2 |s|

when |s| ≥ 1. Proposition 6.2 implies that

log2 |s| ≤ R′/[E : U ]

log ε
<

9

[E : U ]
log2 |s|.

Therefore,
[E : U ] < 9.

By Lemma 6.3, [E : U ] 6= 2, 3, 4, 6, 7, 8, so [E : U ] = 1 or 5. This completes
the proof of Theorem 1.1.

When s ≡ 4, 5 (mod 9), we have s2 + 2 ≡ 0 (mod 9), so s2 + 2 is not
squarefree. However, if (s2 + 2)/9 is squarefree, then the effect on DKs is
small enough that the above proof shows that we still obtain either the full
group of units or a subgroup of index 5, except when s = 4 (where the index
[EKs : U ] equals 40). Computational evidence suggests that the index 5 case
does not occur.

Since the units of Ks are fairly small, we expect the class numbers to be
large. Table 1 lists the class groups for the first few values of s (for the class
groups, a × b means Z/aZ × Z/bZ). These calculations, and others in this
paper, were done using GP/PARI [13].

For all of the examples in the table, −1 and the roots of the polynomial
Fs(t) generate the full group of units for the ring of algebraic integers of
the corresponding field, except for s = 4, where they generate a subgroup of
index 40. In this case, s2+2 = 18 is not squarefree, and the unit 17+4

√
18 =

(s2 + 1) + s
√
s2 + 2 is the fourth power of the fundamental unit 1 +

√
2 of

the quadratic subfield.
The growth of the class number can be made explicit. Since Ks/ks is

ramified at 2, the class number of ks divides the class number of Ks (see [15,
Prop. 4.11]). Since the class number of Q(

√
s2 + 2) goes to ∞ as s → ∞

(this can be made explicit with at most one possible exception; see [12]), the
class number of Ks also goes to ∞. However, the potential effect of Siegel
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Table 1

s Class group of Ks

4 1

−12 4

48 4× 4× 4

−176 60× 5

660 260× 20× 5

−2460 81120× 4× 2× 2

9184 115500× 28

−34272 25104840× 30× 3

127908 924437696× 4× 4× 4

−477356 1332657200× 20× 2× 2

1781520 28009347406480× 2

−6648720 25020857770200× 20× 4× 2

24813364 3937737813077376× 4× 2

−92604732 21266991873333180× 20× 4× 4

345605568 4788485135078294496× 12× 6

zeroes for quadratic fields can be overcome since we have a quartic field, so
we obtain a result with no exceptions.

Proposition 6.4. Assume s2 + 2 is squarefree and 3s2 − 4s + 4 is a
square. Let h be the class number of Ks and let h2 be the class number of ks.
If |s| ≥ 105, then

h

h2
≥ 1

450

s2 + 2

log2(|s|) log2(8(s2 + 2)/π)
.

Proof. Let χ be a quartic Dirichlet character associated with Ks. Then

8hR√
DKs

= L(1, χ)L(1, χ2)L(1, χ3).

We have

L(1, χ2) =
2h2 log ε√

dks
.

Louboutin [11] has shown that for a non-quadratic primitive Dirichlet char-
acter χ of conductor c ≥ 90000,

|L(1, χ)| ≥ 1

10 log(c/π)
.

Therefore,

h ≥ 1

400

(
DKs

dks

)1/2 log ε

R

1

log2(c/π)
,
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where c = 8(s2 + 2). By (6.1), R/log ε ≤ R′/log ε ≤ 9 log2 |s|. Putting these
together, we obtain the result.

It follows that h > 1 when |s| ≥ 105. Since we have computed the class
number of Ks for |s| < 105, we deduce as a corollary that Ks has class
number 1 only for s = 4.

Stéphane Louboutin pointed out to us the following: Let χ be an even
Dirichlet character of conductor f > 1. Then there is the upper bound
(see [10])

|L(1, χ)| ≤ 1
2(c+ log f),

where c = 2 + γ − log(4π) ≈ 0.04619 . . . (and γ is the Euler–Mascheroni
constant). LetK be a totally real quartic field of conductor fK corresponding
to the quartic character χK , and let k be its quadratic subfield. Then

hK/hk =
fK

4R/log ε
|L(1, χK)|2 ≤

(
c+ log fK

2 log(fK/16)

)2

fK ,

where we have used Proposition 6.2 to boundR/log ε. Therefore, hK/hk<fK
when fK > 256ec ≈ 268.01, and a quick search using GP/PARI [13] shows
that hK < fK also when fK ≤ 268. Since fK = 8(s2 + 2) in the situation of
Proposition 6.4, we see that the lower bound estimate given there is, up to
log factors, the correct order of magnitude.

7. Back to cubics. The construction of Fs(t) was inspired by the cubic
case. See [1], which starts with the element(

f −h
(f2 + g2 − fg)/h −g

)
∈ PGL2(Q),

where f, g, h can be taken to be distinct integers with h 6= 0. Assume that
the associated linear transformation gives the action of a Galois group on a
number θ, and assume that θ has norm 1 to Q. Then we obtain the equation

θ · fθ − h
θ(f2 + g2 − fg)/h− g

· gθ − h
θ(f2 + g2 − fg)/h− f

= 1,

which can be rearranged to say that θ is a root of

t3 +
3(f2 + g2 − fg)− λh(f + g)

h2
t2 + λt− 1,

where λ = (f3 + g3 + h3)/(fgh). If h = 1 and λ ∈ Z, we have a polynomial
with integral coefficients. Therefore, we want integral points (x, y, 1) on the
elliptic surface x3+y3+1 = λxy, which is the elliptic modular surface X(3).

Following the lead of the quartic case, we look at the singular fiber λ = 3.
If f is an integer, we need g to be a root of

X3 − 3fX + f3 + 1 = (X + f + 1)(X2 − (f + 1)X + f2 − f + 1).
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When f 6= 1, the second factor is irreducible over Q, so we must have
g = −f − 1. This yields the family of polynomials

Gf (t) = t3 + (9f2 + 9f + 6)t2 + 3t− 1,

which could be regarded as the analogue of our family of quartic polynomials.
This cubic family appears in [7].

Let r be a root of the polynomial x3+(3f+3)x2+3fx−1. As pointed out
in [7], −r2−r is a root of Gf (t). This can easily be verified by representing r
by the matrix

A =

0 0 1

1 0 −3f − 3

0 1 −3f

 ,

then computing the characteristic polynomial of −A2 − A. The fields ob-
tained from the polynomials Gf (t) are some of Shanks’s “simplest cubic
fields.” However, −1 and the roots of Gf (t) generate a subgroup of index 3
in the group of units generated by the roots of x3 + (3f + 3)x2 + 3fx− 1.

In the cubic case, there are also many families of polynomials corre-
sponding to curves on the surface X(3) that do not lie in the singular fiber
λ = 3 (see [1]). It would be interesting to find similar families in the quartic
case.
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