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Summary. We prove some general theorems for preserving Dependent Choice when tak-
ing symmetric extensions, some of which are unwritten folklore results. We apply these to
various constructions to obtain various simple consistency proofs.

1. Introduction. Dependent Choice is one of the best known weak ver-
sions of the axiom of choice, and perhaps the most natural version of the
axiom of choice. Indeed, Dependent Choice—or DC—is sometimes mistaken
for countable choice, and while it is strong enough to provide us with the
basis of analysis (Baire Category Theorem, well-behaved theory of Borel sets
and measure, etc.), it is also consistent with assumptions such as “all sets of
reals are regular” for many versions of regularity (e.g., Lebesgue measurabil-
ity).

Therefore, in many constructions of models without the axiom of choice,
it is often desirable to preserve DC. We sometimes have to work quite hard
for that, and sometimes it is quite easy to obtain. The purpose of this note is
to provide some straightforward conditions which allow for the preservation
of DC, as well as its stronger versions DC<κ for some infinite cardinal κ.

The arguments shown here should be considered folklore, even if no ex-
plicit formulation or proof has appeared in print at this level of generality (1).
They have been used by different people over the years, even if applied to
specific constructions each time.
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(1) With the exception of the author putting into print the folklore Lemma 3.1 in [12].
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2. Preliminaries. Our notation is mostly standard, and follows Jech [10]
for the most part. We use DCλ to denote the statement “Every λ-closed
tree has a chain of length λ or a maximal element”, for the case λ = ω
we just write DC, and if λ is a limit cardinal, DC<λ is the abbreviation of
∀κ < λ,DCκ. Similarly, ACλ will denote the statement “Every family of λ
non-empty sets admits a choice function” and AC<λ abbreviates ∀κ < λ,ACκ
(we will not use AC to mean ACω, though, as AC denotes the axiom of choice).

Much has been written on DC, for example, if λ is singular then DC<λ
implies DCλ; see [10, Chapter 8] for details and more.

Theorem 2.1 (folklore). For a regular cardinal λ, DCλ holds if and only
if every λ+-closed forcing is λ+-distributive.

Sketch of proof. Assuming DCλ the standard proof in ZFC translates
immediately. In the other direction, if DCλ fails, there is a tree which is
λ-closed, but has no λ-chains and thus it is vacuously λ+-closed; however
forcing with the tree adds a λ-sequence, so it is a witness to the failure of
distributivity.

We will say that a class A is κ-closed if A<κ ⊆ A. Of course this depends
on the universe, and when that is not clear from context we will explicitly
state what is the universe relative to which the closure is taken.

2.1. Some forcing shorthands. We will define and manipulate names
in a fairly explicit manner. This means that we cannot make the usual sim-
plifying assumptions that let us choose arbitrary names with this and that
kind of properties. To that end, we define a few shorthand notations.

We say that a name ẏ appears in a name ẋ if there is an ordered pair
〈p, ẏ〉 in ẋ. We similarly say a condition p appears in ẋ if there is an ordered
pair 〈p, ẏ〉 in ẋ.

If {ẏi | i ∈ I} is a collection of names, we define {ẏi | i ∈ I}• to be the
obvious way of turning it into a name, namely, {〈1, ẏi〉 | i ∈ I}. This extends
to other very canonical definitions, e.g. 〈ẋ, ẏ〉• is the simplest way of creating
the name of an ordered pair with ẋ and ẏ. With this notation, by the way,
x̌ = {y̌ | y ∈ x}•.

Additionally, if ẋ is a name, and p is a condition, we write ẋ�p for the
name {〈q, ẏ〉 | q ≤ p, ẏ appears in ẋ, q  ẏ ∈ ẋ}. It is easy to verify that
p  ẋ = ẋ�p, and if q ⊥ p, then q  ẋ�p = ∅.

2.2. Symmetric extensions. If P is a forcing, and π is an automor-
phism of P, then π extends to P-names recursively:

πẋ = {〈πp, πẏ〉 | 〈p, ẏ〉 ∈ ẋ}.
This action also respects the forcing relation, as shown in the following
lemma.
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Lemma (the symmetry lemma). Suppose that p ∈ P is a condition, ẋ
is a P-name, ϕ(ẋ) is a formula in the language of forcing, and π is an
automorphism of P, then

p  ϕ(ẋ) ⇐⇒ πp  ϕ(πẋ).

Fix an automorphism group G ≤ Aut(P). We say that F is a normal
filter of subgroups of G if it is a filter on the lattice of subgroups which
is closed under conjugations. Namely, F is closed under supergroups (with
respect to G ) and intersections, and if π ∈ G and H ∈ F , then πHπ−1 ∈ F
as well. If P is a forcing, G is an automorphism group of P, and F is a normal
filter of subgroups of G , we say that 〈P,G ,F 〉 is a symmetric system (2).

We say that a P-name is F -symmetric if symG (ẋ) = {π ∈G |πẋ= ẋ}∈F ,
and if this property holds hereditarily for names which appear in ẋ, we say
that ẋ is hereditarily F -symmetric. The class of hereditarily F -symmetric
names is denoted by HSF . We will omit the subscripts when it is clear what
the symmetric system is, which will be most of the time.

Theorem. Suppose that 〈P,G ,F 〉 is a symmetric system, and let G be
a V -generic filter. Then M = HSG = {ẋG | ẋ ∈ HS} is a transitive class of
V [G] such that V ⊆M ⊆ V [G], and M is a class model of ZF.

The modelM in the above theorem is called a symmetric extension of V .
Finally, we have a symmetric forcing relation, HS, which is the relativization
of the forcing to the symmetric extension, and which satisfies the same basic
properties as .

Definition 2.2. If 〈P,G ,F 〉 is a symmetric system, we say that a condi-
tion p ∈ P is tenacious if {π ∈ G | πp = p} ∈ F . We say that P is tenacious
if there is a dense subset of tenacious conditions.

It turns out that this concept is somewhat redundant, and if 〈P,G ,F 〉 is a
symmetric system, then we can define a forcing P∗ ⊆ P such that 〈P∗,G ,F 〉
is equivalent to 〈P,G ,F 〉 and it is not only tenacious, but in fact every
condition is tenacious, as was shown in [13, §12]. So when it is useful, we
may assume P is tenacious without loss of generality.

3. Dependent Choice in symmetric extensions. In [12] we proved
the following folklore lemma.

Lemma 3.1 ([12, Lemma 2.1]). Assume ZFC holds. Suppose that 〈P,G ,F 〉
is a symmetric system such that P is λ-closed and F is λ-complete. Then
HS DC<λ.

(2) In many cases, it is enough to consider a normal filter base of subgroups, rather
than a filter of subgroups, and we will not bother to make the distinction.
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The proof is simple enough to merit repeating. But to simplify general-
izations and variations, we will first extract the following lemma from the
standard proof.

Lemma 3.2. Suppose M is a λ-closed inner model of N . If N |= DC<λ,
then M |= DC<λ.

Proof. Suppose that N satisfies DC<λ, and let T ∈ M be a κ-closed
tree without maximal element, for some κ < λ. By λ-closure of M , T is
also κ-closed in N , and therefore has a branch there, and this branch is a
function from κ to T , so it is in M , as wanted.

Proof of Lemma 3.1. Let G be a V -generic filter, and let M be HSG. It
is enough, by the previous lemma, to prove thatMκ ⊆M for all κ < λ. And
indeed, if f : κ→M for some κ < λ, let ḟ be a name for f such that all the
names appearing in ḟ are of the form 〈α̌, ẏ〉• where ẏ ∈ HS.

Let p be any condition such that p  “ḟ is a function”, set p0 = p, and
recursively extend pα to pα+1 such that pα+1 decides the value of ḟ(α̌), going
through limit steps using the fact that P is λ-closed. Finally, for all α < κ
there is a name ẏα ∈ HS such that pκ  ḟ(α̌) = ẏα; define

ġ = {〈α̌, ẏα〉• | α < κ}•.

Let H =
⋂
α<κ sym(ẏα). By λ-closure of F , H ∈ F . It is easy to verify

that H is a subgroup of sym(ġ), so ġ ∈ HS and pκ  ġ = ḟ . This means that
there is a dense open set of conditions q ≤ p such that for some ġ ∈ HS,
q  ġ = ḟ , so by genericity, ḟG = f ∈ M as wanted. Now by the previous
lemma, M |= DCκ for all κ < λ.

Lemma 3.3. We can replace “P is λ-closed” by “P has the λ-c.c.” in
Lemma 3.1 (3).

Sketch of proof. We again appeal to the argument that M is λ-closed
in V [G]. Suppose that ḟ is a P-name for a function f : κ→M .

For every α < κ, let Dα be a maximal antichain of conditions p such
that for some ẏp ∈ HS, p  ḟ(α̌) = ẏp. We can now define ẏα to be the
name obtained by

⋃
p∈Dα ẏp�p. Without loss of generality we may assume

that each condition is tenacious, so by intersecting, we can assume that
π ∈ sym(ẏp) means that πp = p. In particular, by λ-completeness of F ,⋂
p∈Dα sym(ẏp) ∈ F and it is easy to see that this intersection is a subgroup

of sym(ẏα). Therefore, ẏα ∈ HS.
It follows that

⋂
α<κ sym(ẏα) ∈ F and therefore ġ = {〈α̌, ẏα〉• | α < κ}•

is such that ġ ∈ HS. Since  ḟ = ġ, it follows that f ∈M .

(3) Amitayu Banerjee has let us know that he has independently made a similar
observation.
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This shows that if F is σ-closed, then both c.c.c. and σ-closed forcings
would preserve DC. Philipp Schlicht raised a natural question: will properness
suffice?

Lemma 3.4. If P is proper and F is σ-complete, then DC is preserved.

Sketch of proof. Let G be a V -generic filter, and M the symmetric ex-
tension given by HSG. Suppose that f : ω → M is a function, and let ḟ be
a name for it, and let p be some condition which forces that ḟ is a function
into HS.

Let N be a countable elementary submodel of H(θ) for a sufficiently
large θ, with 〈P,G ,F 〉, ḟ , p ∈ N . By elementarity, N contains “enough”
names from HS to compute all the possible values of ḟ ; as there are only
countably many of those, we can intersect the relevant groups and remain
in F to fix all the necessary names. Next, find anN -generic condition extend-
ing p, and use it to define a name for a function in HS which the N -generic
condition will force to be equal to f . By density, this must have happened
in V [G], so f ∈M .

The keen eyed reader might have noticed at this point that all these proofs
have the same flavor: the symmetric extension is closed under <κ-sequences
in the full extension. Does that provide us with a full characterization of
symmetric extensions which satisfy DC<κ?

The answer is negative, as was to be expected. Let 〈P,G ,F 〉 be any sym-
metric system which preserves DC<κ, and consider the product of 〈P,G ,F 〉
with the symmetric system 〈Add(ω, 1),Aut(Add(ω, 1)), {Aut(Add(ω, 1))}〉.
Namely, we take the product of P with adding a single Cohen real, the full
automorphism group, and the trivial filter of subgroups. It is not hard to
see that only P-names can be symmetric in this extension, so the symmetric
extension is the same as that given just by 〈P,G ,F 〉; but the full generic
extension contains a Cohen real, therefore σ-closure is violated.

But is this the only trivial obstruction? The following theorem shows that
morally, the answer is yes. We will need the axiom SVC, “Small Violation of
Choice”, formulated by Andreas Blass [5]. The axiom can be stated as “the
axiom of choice can be forced with a set-forcing”. In particular, symmetric
extensions satisfy SVC, at least under the assumption that the ground model
did.

Theorem 3.5. Suppose that M |= DC<κ + SVC. Then M is κ-closed in
a model of ZFC.

Proof. Without loss of generality we can assume that κ is the least such
that DCκ fails. From [10, Theorem 8.1] it follows that κ is regular. Recall
that SVC can be restated as “there exists a set X such that forcing a well-
ordering of X forces the axiom of choice”. Since DC<κ holds, we can force
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a well-ordering of X of type κ by initial segments. By DC<κ this forcing is
κ-closed and does not add <κ-sequences. Therefore M is a κ-closed inner
model of a model of ZFC.

SVC should not be necessary, but it is somewhat necessary. On the one
hand, it is easy to construct a class-symmetric extension which is κ-closed,
but does not satisfy SVC (e.g. the class extensions given in [12]). On the other
hand, if it is consistent (modulo large cardinal hypotheses) with ZF + DC
that all successor cardinals have cofinality ω1, or in a generalized Morris-style
model satisfying DC (see [14] for details) (4), then such a model cannot be
extended to a model of ZFC without adding ordinals. In particular, this
model is not ℵ1-closed in a model of ZFC.

Finally, we remark that it is quite easy to verify that a σ-closed forcing
must preserve DC. In a more general way, we can prove that a proper forcing
cannot violate DC. For a complete discussion of properness in ZF, see the
author’s work with David Asperó [2].

4. Some applications

4.1. Failure of GCH at limit cardinals below a supercompact
cardinal. Arthur Apter [1] proved the following theorem:

Theorem ([1, Theorem 3]). Assume V |= “ZFC+GCH+κ is supercom-
pact”. Then there is a symmetric extension in which ACω fails, κ is a regular
limit cardinal and supercompact, and GCH holds at a limit cardinal δ if and
only if δ > κ.

Of course, there are some concessions to be made. Supercompactness
here is meant in the sense of ultrafilters, which is weaker than the sense of
embedding (e.g. ω1 can be supercompact in the sense used by Apter, but it
cannot be the critical point of an elementary embedding). In addition GCH
is weakened to mean that there is no injection from δ++ into P(δ)—because
of the classical theorem that GCH (in its standard formulations) implies the
axiom of choice.

At the end Apter asks whether or not this result can be improved by hav-
ing some weak form of the axiom of choice hold. Amitayu Banerjee pointed
out that Lemma 3.3 gives a simple answer based on Apter’s original con-
struction.

Theorem 4.1. Assume V |= “ZFC + GCH + κ is supercompact”. Then
there is a symmetric extension in which DC<κ holds, κ is a regular limit
cardinal and supercompact, and GCH holds for a limit cardinal δ if and only
if δ > κ.

(4) Neither statement is known to be consistent with ZF + DC. We conjecture the
latter is consistent.
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Proof. Apter’s proof begins by preparing V so that κ is indestructibly
supercompact and there is a club C ⊆ κ such that minC = ω, the successor
points are inaccessible, and for all δ ∈ C, 2δ = 2δ

+
= δ++.

Let 〈κi | i < κ〉 be a continuous enumeration of C. Then P is the Easton
support product of Col(κ++

i , <κi+1). We take G to be the Easton support
product of the automorphism groups of each collapse, and F is the filter
generated by the groups of the form

fix(α) =
{
π ∈

∏
i∈C

Aut(Col(κ++
i , <κi+1))

∣∣∣ π�α = id
}
.

Namely, the filter is generated by groups which concentrate on only applying
permutations above some fixed initial segment. Let G be a V -generic filter
for P and let M denote the symmetric extension.

Clearly, F is κ-complete, and the Easton product is κ-c.c., so Lemma 3.3
implies DC<κ, and by [7, Lemma 3.3], κ remains supercompact. Since GCH
held in V above κ, and P ⊆ Vκ, it follows that for any limit cardinal δ > κ,
there is no injection from δ++ into P(δ), since there is no such injection in
V [G], which agrees with V on cardinals above κ.

It remains to show that if δ ≤ κ is a limit cardinal, then δ++ can be
injected into P(δ). For this note that VM

κ = V
V [G]
κ , so it is enough to prove

this in V [G].
First, note that if δ < κ is a limit cardinal in M then there is some

limit ordinal i < κ such that δ = κi. Next, note that the Easton product
above i is δ++-closed, so it neither adds subsets to δ nor collapses δ++; and
the product up to i is δ+-c.c., so it does not collapse δ++ either.

Finally, the same holds for κ itself, although inM there is no well-ordering
of P(κ), so we have to settle for the fact that κ++ injects into P(κ) by the
same arguments as above.

4.2. Sets of reals and Dependent Choice. In recent times, there is
a renewed interest in many “irregularity properties” of sets of reals consis-
tent with the failure of the axiom of choice already at that level—namely,
the existence of Luzin sets, Hamel bases, etc., in models where R cannot
be well-ordered. The natural question after each positive answer is whether
or not DC can be added. Perhaps unsurprisingly, the answer is almost al-
ways positive. Much of this work has been done by Brendle, Castiblanco,
Schindler, Wu, and Yu [6]. We will prove a simpler result of the same flavor,
using simplified arguments. For simplicity, all the results in this part assume
V = L.

Recall that a Luzin set is an uncountable set of reals whose intersection
with every nowhere dense set is countable. It is a classical theorem that the
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Continuum Hypothesis implies the existence of a Luzin set; moreover, forcing
with Add(ω, ω1) (5) adds a Luzin set.

Take P = Add(ω, ω1) with the permutation group of ω1 acting on P by
πp(πα, n) = p(α, n), and let F be generated by fix(α) for α < ω1, where
fix(α) is {π | π�α = id}. This symmetric system satisfies Lemma 3.3, and
therefore DC holds in the extension.

Moreover, by a standard argument, the set A of Cohen generics is in the
model, but its enumeration is not. In particular, R cannot be well-ordered
there. Finally, A is of course uncountable. And given any nowhere dense
set F , let x be a code for F (6); by c.c.c. there is a countable part of P
where x was added; but then any a ∈ A outside that part is Cohen generic
over L[x], and is therefore not in F . So A ∩ F is countable.

Replacing the Cohen reals by Sacks reals, and the finite support product
by a countable support product, we lose the c.c.c. property, but the forcing
is still proper, as shown by Baumgartner in [3]. By Lemma 3.4 it is enough
to obtain DC (7). In this model we also find that every real was added
by a countable part of the product, although in this case this is due to
homogeneity rather than the chain condition. In [6], the construction goes
on to force a Burstin set, which is a Hamel basis with the additional property
of being a Bernstein set. This second forcing is σ-closed, so it preserves DC.

This last part raises an interesting question. In [4] the authors show that
in Cohen’s model there is a Hamel basis for R over Q. Cohen’s model is
famous for having a Dedekind-finite set of reals, and therefore DC fails quite
badly. However, it is also very different from Feferman’s construction of a
model satisfying V = L(R) where the Boolean Prime Ideal theorem fails, in
that the set of Cohen reals is in Cohen’s model but not in Feferman’s model.
This is important because the proof in [4] relies on this very fact. In [6] the
construction goes through L(R), where the set of Sacks reals is not present.

Question 4.2. Let M be the symmetric extension obtained by forcing
with a countable support product of Sacks reals of length ω1 as described
above. Is there a Hamel basis for R over Q in M?

4.3. Generic structures. Wilfrid Hodges’ influential paper [8] presents
six constructions of rings that have seemingly impossible properties, prov-
ing once more the necessity of the axiom of choice in the study of algebraic
structures. His constructions rely on Lemma 3 called “Removal of subsets”,
which allows the transfer of a countable structure with certain properties to

(5) Or more generally, Add(ω, 2ℵ0).
(6) Since DC holds, every Borel set has a code.
(7) One can also note that the product of ℵ2 copies of Sacks reals, over a model

of CH, will satisfy ℵ2-c.c., so by taking a suitable construction just Lemma 3.3 provides
us with DCω1 .
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a model of ZF where the structure has only “a few subsets”. The lemma is
proved in [9, Lemma 3.7]. The proof goes through a more general construc-
tion, and then focuses on the case where κ = ω; however, by replacing ω by κ
(and finite by <κ) in the definitions relevant for the Removal of subsets, one
immediately gets the consistency of DC<κ with the modified lemma.

We extend this type of lemma to allow for DC<κ to hold, if one assumes a
little more. For the remainder of this section, L is a fixed first-order language,
and κ is a fixed regular cardinal.

For an L-structure M , we say that X ⊆ Mn is κ-supported if there
exists Y ⊆M such that |Y | < κ, and π is any automorphism which fixes Y
pointwise, then X = {π~x | ~x ∈ X}. Similarly, a sequence of relations is
κ-supported if it is uniformly κ-supported.

Finally, we say thatM is κ-homogeneous if whenever A ⊆M and |A| < κ,
if B ⊆M is such that f : A→ B is an isomorphism of L-substructures ofM ,
then f can be extended to an automorphism of M . It is well-known that
if M is κ-homogeneous, and A ≡N B for some N ∈ [M ]<κ, then there is an
automorphism mapping A to B which fixes N pointwise.

Theorem 4.3. Suppose that M is a κ-homogeneous L-structure. There
exists a symmetric extension W ⊆ V [G] in which there is an L-structure
such that A ∼= M in V [G], but in W the only subsets of A are those which
are κ-supported.

Proof. Let P = Add(κ,M×κ). We define G to be Aut(M)oSκ, the wreath
product of the automorphism group of M with the permutation group of κ,
which is itself a permutation group of M ×κ. A permutation π ∈ G is made
from an automorphism π∗ ∈ Aut(M), and for each m ∈ M a permutation
of κ, denoted by πm, and π(m,α) = (π∗(m), πm(α)). We define the action
of G on P in the standard way,

πp(π∗(m), πm(α), β) = p(m,α, β).

Finally, for N ⊆M and E ⊆ κ we define

fix(N,E) = {π ∈ G | π∗�N = id ∧∀n ∈ N, πn�E = id},

and F is the filter generated by {fix(N,E) | N ∈ [M ]<κ, E ∈ [κ]<κ}.
Indeed, it is not hard to see that the conditions of Lemma 3.1 and DC<κ

must hold in the symmetric extension given by this symmetric system. Let G
be a V -generic filter for P, and let W denote the symmetric extension.

For m ∈ M and α < κ let ẋm,α be the name {〈p, β̌〉 | p(m,α, β) = 1},
ȧm be the name {ẋm,α | α < κ}• and Ȧ = {ȧm | m ∈ M}•. Standard
arguments show that for all π ∈ G , πẋm,α = ẋπ∗(m),πm(α) and πȧm = ȧπ∗(m),
and so πȦ = Ȧ. Therefore all these names are symmetric.
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Moreover, since the M -part of π ∈ G is an automorphism, if R is a
symbol in L, then {ȧ~m | ~m ∈ RM}• is symmetric, where ~m = 〈mi | i < α〉
and ȧ~m = 〈ȧmi | i < α〉•. In particular, in W there is a natural way of
interpreting A as an L-structure, and clearly in V [G] we have A ∼= M by
m 7→ am.

It remains to show that if B ⊆ A is in W , then B is [M ]<κ-supported.
Let Ḃ be a name for B in HS and fix(N,E) ⊆ sym(Ḃ). If p  “Ḃ is not
κ-suppported”, then in particular N itself is not a support for B; then
there is an automorphism π∗ which fixes N pointwise and moves an ele-
ment B outside of B itself. The problem is that this automorphism might
be generic.

However, let am ∈B and am′ /∈B be such that there is an automor-
phism σ∗ such that σ∗(am) = am′ . In particular, m and m′ have the same
type over N . Since this statement is absolute to V , we can therefore assume
without loss of generality that σ∗ ∈ V , and there is a suitable π ∈ G for
which π∗ = σ∗.

Moreover, we can assume that πa and πb are such that πp is compatible
with p, simply by ensuring the domains on the a and b coordinates of p
become disjoint. Therefore, πp  ȧm′ ∈ Ḃ; but since p and πp are compatible,
this is impossible.

We draw some easy corollaries. The first is that κ-amorphous sets are
consistent with DC<κ, where a set is κ-amorphous if it cannot be written as
a union of two subsets neither of which is of size <κ.

Corollary 4.4. It is consistent with DC<κ that there exists a set whose
cardinality is not <κ, but every subset is either of size <κ or its complement
is of size <κ.

The next corollary was proved by the author in [11].

Corollary 4.5. It is consistent with DC<κ that there is a vector space
over any fixed field which is not generated by <κ vectors, but any proper
subspace has dimension <κ.

Taking a countable field and κ = ω1 we obtain the following corollary.

Corollary 4.6. It is consistent with DC that there is an uncountable
Abelian group such that all of its proper subgroups are countable.

Remark 4.7. The reason we used Add(κ,M × κ) and not Add(κ,M)
is that we needed to create a better set-theoretic indiscernibility between
the am’s. If one repeats the proof using only Add(κ,M), then one discovers
that sets such as {am | 0 ∈ am} enter the model, and they have nothing to do
with being supported. However, doing that does offer one advantage of ob-
taining failures as subsets of the reals. So for example, one could Add(ω,M)
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or use a countable support product of Sacks reals, and obtain the generic
structure as a structure on a set of reals.
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