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Exact Wiener–Ikehara theorems

by

Wen-Bin Zhang∗ (Urbana, IL, and Guangzhou)

1. Introduction. The Wiener–Ikehara (henceforth, W-I) theorem is
one of a few most famous theorems in tauberian theory [Bor]. It is the
ultimate result of seeking a proof of the prime number theorem with as
little assumed about the Riemann zeta function as possible [Ike31, Kor1]. In
its long history the theorem has many different generalizations [Kor1]. Its
most well-known form is as follows.

Theorem (W-I). Let F (x) be a real-valued function with support in
[0, ∞) which is nondecreasing and continuous from the right. Suppose that
the Laplace–Stieltjes transform

F(s) :=

∞�

0

e−sx dF (x)

is convergent for <s = σ > 1. If, for some constant c, the analytic function

G(s) :=
F(s+ 1)

s+ 1
− c

s
, σ > 0,

has an extension G(it) such that G(σ + it) converges to G(it) as σ → 0+
uniformly or in L1 on every finite interval [−T, T ] then

lim
x→∞

e−xF (x) = c.

Generalizations of the W-I theorem are usually devoted either to relaxing
the “tauberian conditions” or to estimating the “error term” F (x)−cex; see,
e.g. [GrVa, ReRo].
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In [Zha14], it is shown that the tauberian condition that G(σ + it) con-
verges to G(it) as σ → 0+ uniformly or in L1 on every finite interval [−T, T ]
can be replaced by an “if and only if” condition that there exists λ0 ≥ 0
such that, for every λ > λ0,

2λ�

−2λ

1

2

(
1− |t|

2λ

)
eity
(
G(σ + it)−G(σ′ + it)

)
dt

approaches zero as σ, σ′ → 0+ uniformly for y ≥ y0(λ).
We notice that, in applications, when F (x) is a summatory function of

a number-theoretic function, such as
∑

n≤x Λ(n), the theorem is a kind of
mean-value theorem like those, say, in probabilistic number theory. If the
remaining tauberian condition that F (x) is nondecreasing can be removed
then the method of W-I theorem may also be used in the mean-value prob-
lem. This is the main motivation of this new paper.

Here we show further that the remaining tauberian condition can be re-
placed by an “if and only if” condition that F (log u) is a linearly slowly de-
creasing function of u (see Definition 1). A slowly decreasing function (hence,
also a nondecreasing function) is linearly slowly decreasing. Also, summatory
functions of many number-theoretic functions, such as the Möbius function
µ(n), are linearly slowly decreasing but not nondecreasing. The new form
of the W-I theorem makes it possible to apply the W-I theorem to, but
not only, the mean-value problem for those functions. In fact, we prove an
exact Wiener–Ikehara theorem which works for a much larger class of lin-
early slowly decreasing functions. Also, our theorem holds for poles of higher
orders.

Let a real-valued function f(x) be defined on [a,∞), a > 0, and let α be
a nonnegative real number.

Definition 1. f(x) is said to be linearly slowly decreasing (henceforth,
l.s.d.) with index α if

lim inf
x→∞, y/x→1+

(x logα x)−1(f(y)− f(x)) ≥ 0.

In other words, for a l.s.d. function f(x) with index α, given ε > 0, there
exist a sufficiently large number x(ε) > a and a sufficiently small number
η(ε) > 0 such that

(f(y)− f(x))/(x logα x) > −ε
for all (x, y) satisfying x ≥ x(ε) and x < y ≤ x(1 + η(ε)).

We note that if f(x) is l.s.d. with index α then it is also l.s.d. with any
index β > α.

For brevity, in the following discussion, if the index α is zero or the index
is not emphasized, f(x) is sometimes simply called a l.s.d. function.
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Consider the W-I theorem in Laplace transform form. Let F (x) be a
real-valued Lebesgue measurable function with support in [0,∞). Assume
that

∞�

0

e−σx|F (x)| dx <∞ for all σ > 1.

Set

(1.1)

∞�

0

e−sxF (x) dx =
L

(s− 1)α+1
+G(s)

with real constants L and α ≥ 0 for σ > 1.

Let

∆λ(t) :=
1

2

(
1− |t|

2λ

)+

, t ∈ R,

with λ > 0. It has support [−2λ, 2λ]. Also, let ∆∗mλ (t) denote the m-fold
convolution of ∆λ(t) with itself for m ∈ N. Note that ∆∗mλ (t) has a compact
support too.

Theorem 1 (Exact Wiener–Ikehara Theorem). (1) If F (log u) is a l.s.d.
function of u with index α and there exist a constant λ0 ≥ 0 and a positive
integer m ≥ 1 + [α]/2 such that the function G(s) defined by (1.1) satisfies
(i) the limit

(1.2) lim
σ→1+

∞�

−∞
∆∗mλ (t)eityG(σ + it) dt

exists for every λ > λ0 and every y ≥ y0(λ) and (ii) we have

(1.3)
1

yα
lim
σ→1+

∞�

−∞
∆∗mλ (t)eityG(σ + it) dt = oλ(1) as y →∞

then

(1.4) F (x) =
Lexxα

Γ (α+ 1)
(1 + o(1)) as x→∞,

where Γ is the Euler gamma function.

(2) Conversely, if (1.4) holds as x → ∞ then (i) F (log u) is a l.s.d.
function of u with index α and (ii) for every λ > 0 and each integer m ≥
1 + [α]/2 the limit (1.2) exists for every y > 0 and (1.3) is satisfied as
y →∞.

Remark 1. For limx→∞ e
−xx−αF (x) = L/Γ (α+ 1) to be true we must

assume that (1.3) is satisfied for all λ > λ0 as shown by an example with
α = 0 in [Zha14].
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Remark 2. If, for every λ > λ0, there exists a sequence σn(λ) → 1+
such that (1.2) exists and (1.3) holds with σ = σn(λ) then the conclusion of
the theorem is still true. This can be seen in the following proof.

The function f(x) = x + Ax1−ε cosx where A > 0, 0 < ε < 1 is
not nondecreasing. It satisfies

	∞
0 e−sxf(ex) dx = (s − 1)−1 + G(s) with

G(s) = A
	∞
1 u−s−ε cosu du and limx→∞ e

−xf(ex) = 1. By Theorem 1, f(x)
is linearly slowly decreasing (with index α = 0), as shown in a direct way in
Section 2. Also, by the Riemann–Lebesgue lemma, G(s) satisfies (1.2) and
(1.3) with m = 1.

Combined with the Riemann–Lebesgue lemma, Theorem 1 yields an
equivalent form.

Theorem 2 (Exact Wiener–Ikehara Theorem). (1.4) holds if F (log u)
is a l.s.d. function of u with index α and there exist a constant λ0 ≥ 0 and
a positive integer m ≥ 1 + [α]/2 such that, for each λ > λ0,

(1.5)
1

yα

∞�

−∞
∆∗mλ (t)eity(G(σ + it)−G(σ′ + it)) dt

approaches zero as σ, σ′ → 1+ uniformly for y ≥ y0(λ) (> 0).
Conversely, if (1.4) holds then (i) F (log u) is l.s.d. with index α and

(ii) for all λ > 0 and integers m ≥ 1 + [α]/2, (1.5) approaches zero as
σ, σ′ → 1+ uniformly for y > 0.

Remark 3. In particular, limx→∞ e
−xF (x) dx=L if and only if F (log u)

is linearly slowly decreasing with index 0 and
∞�

−∞
∆λ(t)eity(G(σ + it)−G(σ′ + it)) dt

approaches zero as σ, σ′ → 1+ uniformly for y ≥ y0(λ) (> 0).

Corollary 1. If F (log u) is l.s.d. with index α and there exists λ0 ≥ 0
such that for all λ > λ0,

lim
σ, σ′→1+

2λ�

−2λ
|G(σ + it)−G(σ′ + it)| dt = 0

then (1.4) holds.

The classical W-I theorem is a special case of Corollary 1 with index 0.

Corollary 2. If F (log u) is linearly slowly decreasing with index γ +
n− 1, where 0 ≤ γ < 1, n ∈ N, and

∞�

0

e−sxF (x) dx =
φ(s)

(s− 1)γ+n
+ ψ(s) for <s = σ > 1,
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where φ(s) and ψ(s) are analytic on {σ ≥ 1} and φ(1) 6= 0, then

F (x) =
φ(1)exxγ+n−1

Γ (γ + n)
(1 + o(1)) as x→∞.

This is an extension of Theorem 7.7 of [BaDi] dealing with nondecreasing
functions.

We also prove Wiener–Ikehara upper and lower bound theorems with
looser conditions.

Definition 2. f(x) is said to be linearly bounded below decreasing with
index α if

(1.6) lim inf
x→∞, y/x→1+

(x logα x)−1(f(y)− f(x)) > −∞.

In other words, for a linearly bounded below decreasing function f(x)
with index α, there exist positive constants A, x0 and η such that

(x logα x)−1(f(y)− f(x)) > −A
for all (x, y) satisfying x ≥ x0 and x < y ≤ x(1 + η).

Recall that ∆∗mλ (t) is the m-fold convolution of ∆λ(t) with itself. The
Fourier transform of ∆∗mλ (t) is the mth power of the Fourier transform kλ(x)
of ∆λ(t), i.e.,

(1.7)

∞�

−∞
∆∗mλ (t)eitx dt = kmλ (x) =

(
λ

(
sinλx

λx

)2)m
.

Moreover,
∞�

−∞
kmλ (x) dx = λm−1Cm

with constant

Cm =

∞�

−∞

(
sinx

x

)2m

dx;

in particular, C1 = π. Also,

(1.8)
�

|x|≥δ

kmλ (x) dx ≤ 2

(2m− 1)λmδ2m−1
for δ > 0.

Theorem 3 (W-I Upper Bound). If F (log u) is linearly bounded below
decreasing with index α and if there exist a positive integer m ≥ 1 + [α]/2
and positive constants λ, y0,K,Cm such that

(1.9) lim sup
σ→1+

∞�

−∞
∆∗mλ (t)eityG(σ + it) dt < Kλm−1Cmy

α

for each y ≥ y0 then F (x)(exxα)−1 ≤ C for some constant C > 0.



362 W.-B. Zhang

Conversely, if F (x)(exxα)−1 ≤ C for some constant C > 0 then, for
every λ > 0 and every m ≥ 1 + [α]/2, (1.9) holds with some constants K
and Cm uniformly for y ≥ y0(λ) (> 0).

Remark 4. Since F (x) is real-valued, from (1.1) we see that G(σ) is
real-valued for real σ > 1. By the reflection principle, G(s̄) = G(s) for
complex s. Moreover, ∆∗mλ (t) is an even function of real t. Hence the left-
hand side of (1.9) (and also (1.11)) is real-valued.

We now investigate the existence of a positive lower bound for F (x)/
(exxα). Let F (x) be nonnegative and satisfy the convention

(1.10) lim
σ→1+

(σ − 1)α+1
∞�

0

e−σxF (x) dx = L

with the constant L in (1.1).

Theorem 4 (W-I Lower Bound). If F (x)(exxα)−1 ≥ c for all x ≥ x0
(> 0) and some constant c > 0 then, for every λ > 0 and every integer
m ≥ 1 + [α]/2, there exists a constant γ > 0 such that

(1.11) lim inf
σ→1+

∞�

−∞
∆∗mλ (t)eityG(σ + it) dt ≥

(
−L

Γ (α+ 1)
+ γ

)
λm−1Cmy

α

for y ≥ y0(λ).
Conversely, assume that there exist positive constants λ, γ, y0 and an

integer m ≥ 1 + [α]/2 such that (1.11) holds for all y ≥ y0. If F (log u) is
nondecreasing or linearly bounded below decreasing with index β < α and if
F (x)(exxα)−1 ≤ C for some constant C > 0 then F (x)(exxα)−1 ≥ c for all
x ≥ x0 (> 0) with some constant c > 0.

Remark 5. The condition (1.10) alone implies neither an upper bound
nor a positive lower bound for F (x)(exxα)−1. In case α = 0, this is shown
by the example given in [DiZh].

Remark 6. Note that, for a positive lower bound, we assume that
F (log u) is nondecreasing or linearly bounded below decreasing with index
β < α. This is much stronger than being linearly bounded below decreasing
with index α.

As a preliminary application of the exact Wiener–Ikehara theorem, in
Section 5 we sketch a direct proof of the proposition M(x) :=

∑
n≤x µ(n) =

o(x), where µ is the Möbius function, without appealing to N(x) + M(x)
as usual. Also, we show the nonequivalence of M(x) = o(x) and ψ(x)� x,
where ψ(x) is the Chebyshev function.

2. Linearly slowly decreasing functions. In this section, we compare
the definition of l.s.d. functions with the well-known definition of slowly
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decreasing functions and set up some basic properties of l.s.d. functions.
Readers who want to look quickly at the proofs of the theorems may go
directly to Lemma 1 and leave the rest of the section for a second read.

Note that the sum of two l.s.d. functions with the same index on the
same interval [a,∞) is l.s.d. with that index. Also, the product of a l.s.d.
function with a nonnegative constant is l.s.d. with the same index again.

Definition (Schmidt [Sch25a]). A function f(x) is said to be slowly
decreasing if

lim inf
x→∞, y/x→1+

(f(y)− f(x)) ≥ 0.

Since Schmidt’s significant works [Sch25a, Sch25b], slowly decreasing
functions have been used extensively in tauberian theory; see, e.g., Wiener
[Wie32] and Hardy [Har49], and also [Kor1].

Nondecreasing functions are slowly decreasing and slowly decreasing
functions are linearly slowly decreasing with index 0. The function f(x) =
x+Ax1−ε cosx for x > 0, where A > 0, 0 < ε < 1, is l.s.d. with index 0 but
neither nondecreasing nor slowly decreasing. Actually,

f(y)− f(x) ≥ −A(λ1−ε + 1)x1−ε

for x < y ≤ λx with λ > 1 and hence

lim inf
x→∞, y/x→1+

x−1(f(y)− f(x)) ≥ 0.

Therefore f(x) is l.s.d. On the other hand, for xn = 2nπ, yn = xn + π,

f(yn)− f(xn) = π −A(xn + π)1−ε −Ax1−εn

and hence

lim inf
x→∞, y/x→1+

(f(y)− f(x)) = −∞.

Therefore, f(x) is not slowly decreasing.
As a less elementary example of l.s.d. functions, consider a real-valued

function f(ni) defined on Beurling numbers N = {ni} [BaDi, Beu] (see also
Section 5). If |f(ni)| ≤ 1 for all ni ∈ N and N has a density A > 0, i.e.,
N(x) :=

∑
ni≤x 1 ∼ Ax, then the summatory function F (x) =

∑
ni≤x f(ni)

is l.s.d. with index 0. In this case, since |f(ni)| ≤ 1 and N(x) ∼ Ax, we see
that

F (y)− F (x) =
∑

x<ni≤y
f(ni) ≥ −(N(y)−N(x)) = −A(y − x) + o(y)

and hence lim infx→∞, y/x→1+ x
−1(F (y) − F (x)) ≥ 0. In particular, the

summatory function M(x) :=
∑

ni≤x µ(ni) of the Möbius function µ(ni)
on N [Zha87] is l.s.d. On the other hand, in the particular case of ratio-
nal integers N, if p is a rational prime then M(p) − M(p−) = −1 and
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lim infx→∞, y/x→1+(M(y) −M(x)) ≤ −1, i.e., M(x) is not slowly decreas-
ing.

We note that a function f(x) is l.s.d. with index α if and only if

(2.1) lim inf
x→∞, y−x→0+

e−xx−α(f(ey)− f(ex)) ≥ 0.

In applications of the Wiener–Ikehara theorem in the form of Laplace
transforms, given f(x), we investigate F (x) := f(ex), i.e. F (log x) = f(x).
For instance, in the well-known Wiener–Ikehara proof of the prime number
theorem, we investigate ψ(ex).

Proposition 1. (1) f(u) := F (log u) is a l.s.d. function of u with in-
dex α if and only if

lim inf
x→∞, y−x→0+

e−xx−α(F (y)− F (x)) ≥ 0.

Hence if F (x) is l.s.d. then f(u) := F (log u) is l.s.d. with the same index.
(2) f(u) := F (log u) is a slowly decreasing function of u if and only if

lim inf
x→∞, y−x→0+

(F (y)− F (x)) ≥ 0.

Hence if F (x) is slowly decreasing then f(u) := F (log u) is slowly decreasing
(hence, l.s.d.).

The proof is straightforward.

The converses of the “hence” parts of Proposition 1 are usually not
true. The function F (x) := x(1 + cosx) is not l.s.d. with index 0 while
f(u) = F (log u) is. Actually, for xn = 2nπ, yn = xn + π,

x−1n (F (yn)− F (xn)) = −2

and hence lim inf x−1(F (y)− F (x)) ≤ −2. On the other hand,

f(u)− f(v) = (log u)(1 + cos(log u))− (log v)(1 + cos(log v))

=

(
log

u

v

)
(1 + cos(log u))− 2(log v) sin

log uv

2
sin

log u/v

2

and so v−1(f(u)− f(v))→ 0 as v →∞, u/v → 1+.
We then set up some basic properties of linearly bounded below decreas-

ing functions. A function f(x) is linearly bounded below decreasing with
index α if and only if

(2.2) lim inf
x→∞, y−x→0+

(exxα)−1(f(ey)− f(ex)) > −∞.

If F (x) is linearly bounded below decreasing with index α then f(u) :=
F (log u) is linearly bounded below decreasing with the same index.

Also, a l.s.d. function with index α is linearly bounded below decreasing
with the same index.
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Lemma 1. If F (log u) is linearly bounded below decreasing with index α
then

(2.3) lim inf
x→∞

F (x)(exxα)−1 ≥ −c

for some positive constant c.

Proof. We have

(exxα)−1(F (y)− F (x)) ≥ −A

for x ≥ x0 and 0 < y − x < 2δ with some δ > 0. In particular, fixing δ > 0,
we get

e−(x0+nδ)(x0 +nδ)−α
(
F (x0 + (n+ 1)δ)−F (x0 +nδ)

)
≥ −A, n = 0, 1, . . . .

Hence

e−(x0+(n+1)δ)(x0 + (n+ 1)δ)−αF (x0 + (n+ 1)δ)

≥
(
e−(x0+nδ)(x0 + nδ)−αF (x0 + nδ)−A

)
e−δ
(

x0 + nδ

x0 + (n+ 1)δ

)α
= e−(x0+nδ)(x0 + nδ)−αF (x0 + nδ)e−δ

(
x0 + nδ

x0 + (n+ 1)δ

)α
−Ae−δ

(
x0 + nδ

x0 + (n+ 1)δ

)α
.

Then, by induction,

e−(x0+nδ)(x0 + nδ)−αF (x0 + nδ)

≥ e−(x0+nδ)(x0 + nδ)−αF (x0)−A
n∑
k=1

e−kδ
(
x0 + (n− k)δ

x0 + nδ

)α
.

Therefore

lim inf
n→∞

e−(x0+nδ)(x0 + nδ)−αF (x0 + nδ) ≥ −Ae−δ/(1− e−δ).

In general, if x0 + nδ ≤ x < x0 + (n+ 1)δ then

e−(x0+nδ)(x0 + nδ)−α
(
F (x)− F (x0 + nδ)

)
≥ −A

and hence

e−xx−αF (x)

≥
(
e−(x0+nδ)(x0 + nδ)−αF (x0 + nδ)−A

)
e−(x−(x0+nδ))

(
x0 + nδ

x

)α
.

It follows that

lim inf
x→∞

e−xx−αF (x) ≥ −Ae−δ/(1− e−δ)−A = −A(1− e−δ)−1.
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3. Proof of Theorem 1. For α > 0 and σ > 1, we first have

(3.1)
1

(s− 1)α
=

1

Γ (α)

∞�

0

e−(s−1)xxα−1 dx.

This equality can be seen by contour integration.

Lemma 2. For α ≥ 0,m ∈ N with m ≥ 1 + [α]/2,

(3.2) y−α
∞�

0

xαkmλ (y − x) dx = λm−1Cm(1 + oλ(1)),

where oλ(1)→ 0 as y →∞.

Proof. Since 2m−α > 1 the integral on the left-hand side is convergent.

Let α = γ + n− 1 with 0 ≤ γ < 1 and n ∈ N. To prove (3.2), we apply
induction on n. Let f(y;m, γ + n − 1) denote the integral on the left-hand
side. By changing variable,

f(y;m, γ + n− 1) =

y�

−∞
(y − u)γ+n−1kmλ (u) du.

Then, by l’Hôpital’s rule,

lim
y→∞

f(y;m, γ + n− 1)

yγ+n−1
= lim

y→∞

f(y;m, γ + n− 2)

yγ+n−2
.

Hence it suffices to show that, for 0 ≤ γ < 1,

(3.3) lim
y→∞

f(y;m, γ)

yγ
= λm−1Cm,

i.e.,

lim
y→∞

y−γ
∞�

0

xγkmλ (y − x) dx = λm−1Cm.

The equality is plain for γ = 0. For 0 < γ < 1, we first have

lim inf
y→∞

f(y;m, γ)

yγ
≥ lim inf

y→∞

(y − δ)γ
	y+δ
y−δ k

m
λ (y − x) dx

yγ

=

δ�

−δ
kmλ (u) du

for all δ > 0 and hence

lim inf
y→∞

f(y;m, γ)

yγ
≥ λm−1Cm.
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Then, with δ = yγ/(2m−1),

y+δ�

0

xγkmλ (y − x) dx ≤ (y + δ)γλm−1Cm,

2y�

y+δ

xγkmλ (y − x) dx ≤ (2y)γ
y�

δ

kmλ (u) du ≤ 2γ

(2m− 1)λm
,

and
∞�

2y

xγkmλ (y − x) dx ≤
∞�

y

2γuγkmλ (u) du ≤ 2γ

(2m− 1− γ)λmy2m−1−γ
.

Hence

lim sup
y→∞

f(y;m, γ)

yγ
≤ λm−1Cm

for 2m− 1 ≥ 1.

Applying (3.1), we now write (1.1) in the form
∞�

0

e−sxF (x) dx =
L

Γ (α+ 1)

∞�

0

e−(s−1)xxα dx+G(s).

Multiplying both sides by ∆∗mλ (t)eity, integrating with respect to t on
(−∞,∞), then exchanging the integration order on the left-hand side and
in the first term on the right-hand side and applying (1.7), we obtain the
equality

∞�

0

e−σxF (x)kmλ (y − x) dx =
L

Γ (α+ 1)

∞�

0

e−(σ−1)xxαkmλ (y − x) dx(3.4)

+

∞�

−∞
∆∗mλ (t)eityG(σ + it) dt.

3.1. Proof of necessity. Assume (1.4), i.e., F (x) ∼ Lexxα/Γ (α + 1).
First, for v = ey > u = ex,

(u logα u)−1(F (log v)− F (log u)) = (exxα)−1(F (y)− F (x))

=
L

Γ (α+ 1)

(
ey−x

(
y

x

)α
(1 + o(1))− 1 + o(1)

)
as u→∞ and u/v → 1+, i.e., x→∞ and y − x→ 0+. Therefore,

lim inf (u logα u)−1(F (log v)− F (log u)) ≥ 0,

i.e., F (log u) is l.s.d. with index α.
Then, with m ≥ 1 + [α]/2, by the dominated convergence theorem, the

left-hand side and the first term on the right-hand side of (3.4) have finite
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limits as σ → 1+ and the limitation and integration are exchangeable there.
Hence, the second term on the right-hand side also has a limit. Therefore
the limit (1.2) exists for every λ > 0 and y > 0 and it equals

∞�

0

(
e−xF (x)− Lxα

Γ (α+ 1)

)
kmλ (y − x) dx =

∞�

0

o(xα)kmλ (y − x) dx.

Then (1.3) follows from Lemma 2.

3.2. Proof of sufficiency. Assume that F (log u) is l.s.d. with index α
and that (1.2) and (1.3) are satisfied.

By Lemma 1, we may further assume that lim infx→∞(exxα)−1F (x) > 0.
Otherwise, we replace F (x) by F1(x) = aexxα + F (x) with any con-
stant a greater than the constant c given in Lemma 1. The latter satis-
fies the conditions of Theorem 1 with L replaced by L1 = L + aΓ (α + 1).
Then lim (exxα)−1F (x) = L/Γ (α + 1) follows from lim (exxα)−1F1(x) =
L1/Γ (α+ 1). Hence we may further assume F (x) ≥ 0 for x ≥ x0.

We begin with the equality (3.4). Letting σ → 1+, by the dominated
convergence theorem, the partial integral of the left-hand side on the interval
0 ≤ x ≤ x0 has a finite limit and, by the monotone convergence theorem, the
partial integral on the interval x0 ≤ x <∞ has a limit. Thus the left-hand
side has a limit too and the limitation and integration are interchangeable.
Also, by the monotone convergence theorem, the first term on the right-hand
side has a finite limit

L

Γ (α+ 1)

∞�

0

xαkmλ (y − x) dx

for 2m > 1 + α. Therefore, by (1.2) and (1.3), and Lemma 2, we arrive at

∞�

0

e−xF (x)kmλ (y − x) dx =
L

Γ (α+ 1)

∞�

0

xαkmλ (y − x) dx+ oλ(1)yα(3.5)

=
Lλm−1Cmy

α

Γ (α+ 1)
(1 + oλ(1))

for λ > λ0 and y ≥ y0(λ), where oλ(1)→ 0 as y →∞. It follows, since

x0�

0

e−xF (x)kmλ (y − x) dx = oλ(1),

that

(3.6)

y+δ0�

y−δ0

e−xF (x)kmλ (y − x) dx ≤ Lλm−1Cmy
α

Γ (α+ 1)
(1 + oλ(1))
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with δ0 > 0 for y ≥ max{y0(λ), x0 + δ0}. The left-hand side of (3.6) equals

(3.7) e−(y−δ0)F (y − δ0)
y+δ0�

y−δ0

kmλ (y − x) dx+ I1(δ0) + I2(δ0),

where

I1(δ0) :=

y+δ0�

y−δ0

(e−x − e−(y−δ0))F (x)kmλ (y − x) dx,

I2(δ0) :=

y+δ0�

y−δ0

e−(y−δ0)(F (x)− F (y − δ0))kmλ (y − x) dx.

We have, for sufficiently small δ0 > 0,

I1(δ0) ≥ −3δ0

y+δ0�

y−δ0

e−xF (x)kmλ (y − x) dx(3.8)

≥ −3δ0
Lλm−1Cmy

α

Γ (α+ 1)
(1 + oλ(1))

by (3.6). To estimate I2(δ0), we note that

f(u) := F (log u)

is l.s.d. with index α. Hence

lim inf
u→∞, v−u→0+

(euuα)−1(F (v)− F (u)) ≥ 0.

Then, given ε > 0,

(3.9) (euuα)−1(F (v)− F (u)) > −ε

for u ≥ u0, 0 < v−u < 2δ1(ε). Thus, for δ0 satisfying 0 < δ0 ≤ min{δ1, ε/3},

(3.10) I2(δ0) ≥ −ε(y − δ0)α
y+δ0�

y−δ0

kmλ (y − x) dx.

From (3.6)–(3.8) and (3.10), we obtain

(
e−(y−δ0)F (y − δ0)− ε(y − δ0)α

) y+δ0�
y−δ0

kmλ (y − x) dx

≤ (1 + ε)
Lλm−1Cmy

α(1 + oλ(1))

Γ (α+ 1)

for λ > λ0 and y ≥ max{x0 + u0 + δ0, y0(λ)}. Therefore
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e−(y−δ0)F (y − δ0) ≤ ε(y − δ0)α +
(1 + ε)Lλm−1Cmy

α(1 + oλ(1))

Γ (α+ 1)
	y+δ0
y−δ0 k

m
λ (y − x) dx

(3.11)

≤ ε(y − δ0)α +
(1 + ε)2Lyα(1 + oλ(1))

Γ (α+ 1)

for
y+δ0�

y−δ0

kmλ (y − x) dx ≥ λm−1Cm −
2

(2m− 1)λmδ2m−10

≥ λm−1Cm
1 + ε

with λ > λ1(ε) (≥ λ0) (δ0 is independent of λ). Dividing both sides of (3.11)
by (y − δ0)α and letting y →∞, we conclude that

(3.12) lim sup
x→∞

(exxα)−1F (x) ≤ L

Γ (α+ 1)

since ε may be arbitrarily small.
It remains to show that

(3.13) lim inf
x→∞

(exxα)−1F (x) ≥ L

Γ (α+ 1)
.

By (3.12), F (x)e−x ≤ Kxα for x ≥ x1. Then, for y > max{y0(λ), x0, x1 + δ}
with δ > 0, the left-hand side of (3.5) is at most

(3.14)

y+δ�

y−δ
e−xF (x)kmλ (y − x) dx+

x1�

0

e−xF (x)kmλ (y − x) dx

+K
(y−δ�
x1

xαkmλ (y − x) dx+

∞�

y+δ

xαkmλ (y − x) dx
)
.

We have
y−δ�

x1

xαkmλ (y − x) dx =

y−x1�

δ

(y − u)αkmλ (u) du

≤ yα

λmδ2m−1(2m− 1)
,

and
∞�

y+δ

xαkmλ (y − x) dx =

∞�

δ

(y + u)αkmλ (u) du

≤ (2y)α
∞�

δ

du

λmu2m
+

∞�

y

(2u)α
du

λmu2m

=
(2y)α

(2m− 1)λmδ2m−1
+

2α

(2m− 1− α)λmy2m−1−α
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since 2m > 1 + α. Therefore, by (3.14),

(3.15) e−(y+δ)F (y + δ)

y+δ�

y−δ
kmλ (y − x) dx+ I3(δ) + I4(δ)

≥ Lλm−1Cmy
α

Γ (α+ 1)
(1 + oλ(1))− (1 + 2α)yα

(2m− 1)λmδ2m−1
+
O(1)

λm

where

I3(δ) :=

y+δ�

y−δ
(e−x − e−(y+δ))F (y + δ)kmλ (y − x) dx,

I4(δ) :=

y+δ�

y−δ
e−x(F (x)− F (y + δ))kmλ (y − x) dx.

We have

I3(δ) =

y+δ�

y−δ
(ey+δ−x − 1)e−(y+δ)F (y + δ)kmλ (y − x) dx(3.16)

< (e2δ − 1)K(y + δ)αλm−1Cm ≤ 3δKyαλm−1Cm

for sufficiently small δ. Also, for y ≥ u0 + δ1 and y − δ ≤ x ≤ y + δ with
0 < δ ≤ δ1, by (3.9),

e−x(F (x)− F (y + δ)) < εxα.

Hence, by (3.2),

(3.17) I4(δ) < ε

y+δ�

y−δ
xαkmλ (y − x) dx < ελm−1Cmy

α(1 + oλ(1)).

Fixing sufficiently small δ satisfying 0 < δ ≤ min{δ1, ε/(3K)}, by (3.15)–
(3.17) we have

λm−1Cme
−(y+δ)F (y + δ) + 2ελm−1Cmy

α(1 + oλ(1))

≥ Lλm−1Cmy
α

Γ (α+ 1)
(1 + oλ(1))− (1 + 2α)yα

(2m− 1)λmδ2m−1
+
O(1)

λm

for y ≥ max{y0(λ), x0, u0 + x1 + δ1} and λ > λ0. Dividing both sides by yα

and taking limits as y →∞, we see that

λm−1Cm lim inf
x→∞

e−xx−αF (x) + 2ελm−1Cm

≥ Lλm−1Cm
Γ (α+ 1)

− (1 + 2α)

(2m− 1)λmδ2m−1
.
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Finally, dividing both sides by λm−1Cm and taking limits as λ→∞, we see
that

lim inf
x→∞

e−xx−αF (x) + 2ε ≥ L

Γ (α+ 1)
.

for every ε > 0. Thus (3.13) follows.

This completes the proof of the sufficiency of the conditions of Theo-
rem 1, and also the proof of the theorem.

4. Proofs of Theorems 2–4

Proof of Theorem 2. Assume that (1.5) approaches zero as σ, σ′ → 1+
uniformly for y ≥ y0(λ). By Cauchy’s criterion, limit (1.2) exists for every
λ > λ0 and every y ≥ y0(λ). Let `(λ, y) denote the limit function of (1.2).
Then

y−α
∞�

−∞
∆∗mλ (t)eityG(σ + it) dt

converges to y−α`(λ, y) as σ → 1+ uniformly for y ≥ y0(λ). Given ε > 0, by
(1.5),

(4.1)
∣∣∣y−α ∞�

−∞
∆∗mλ (t)eityG(σ + it) dt− y−α`(λ, y)

∣∣∣ < ε

for 1 < σ < 1 + δ(λ). Fixing σ = σ0 < 1 + δ(λ) and noting that G(σ0 + it)
is a continuous function of t, by the Riemann–Lebesgue lemma we have

lim
y→∞

∞�

−∞
∆∗mλ (t)eityG(σ0 + it) dt = 0.

It follows from (4.1) that

lim sup
y→∞

y−α`(λ, y) ≤ lim
y→∞

y−α
∞�

−∞
∆∗mλ (t)eityG(σ0 + it) dt+ ε = ε.

Similarly, lim infy→∞ y
−α`(λ, y) ≥ −ε, whence limy→∞ y

−α`(λ, y) = 0, i.e.,
(1.3) holds for every λ > λ0. Since F (log u) is l.s.d. with index α, by Theo-
rem 1, limx→∞ e

−xx−αF (x) = L/Γ (α+ 1).

Conversely, by (3.4),

∞�

−∞
∆∗mλ (t)eity

(
G(σ + it)−G(σ′ + it)

)
dt

=

∞�

0

(e−(σ−1)x − e−(σ′−1)x)

(
e−xF (x)− Lxα

Γ (α+ 1)

)
kmλ (y − x) dx.
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If limx→∞ e
−xx−αF (x) = L/Γ (α+ 1) then

(e−(σ−1)x − e−(σ′−1)x)

(
e−xF (x)− Lxα

Γ (α+ 1)

)
≤ εxα

uniformly for 0 ≤ x < ∞ when 1 < σ ≤ σ′ < 1 + η. Hence, with m ≥
1 + [α]/2, by Lemma 2,

1

yα

∣∣∣ ∞�
−∞

∆∗mλ (t)eity
(
G(σ + it)−G(σ′ + it)

)
dt
∣∣∣

≤ εy−α
∞�

0

xαkmλ (y − x) dx = ελm−1Cm(1 + oλ(1)) < 2ελm−1Cm

for y ≥ y1. This shows that (1.5) approaches zero as σ, σ′ → 1+ uniformly
for y > 0.

Moreover, by Theorem 1, F (log u) is l.s.d. with index α.

Proof of Theorem 3. As in the proof of Theorem 1, we may further
assume that F (x) ≥ 0 for x ≥ x0.

We begin with (3.4). As σ → 1+, the left-hand side has a limit	∞
0 e−xF (x)kmλ (y − x) dx by the dominated convergence theorem and the

monotone convergence theorem. Moreover, the first term on the right-hand
side has a limit� yα by Lemma 2. Hence the second term on the right-hand
side has a limit, by (1.9), which is at most Kλm−1Cmy

α. Therefore

(4.2) (0 ≤)

y+δ�

y

e−xF (x)kmλ (y − x) dx ≤
∞�

x0

e−xF (x)kmλ (y − x) dx ≤ Byα

for y ≥ max{y0, x0} and every δ > 0 with some constant B > 0. The
left-hand side equals

(4.3) e−yF (y)

0�

−δ
kmλ (u) du+ I5 + I6,

where

I5 :=

0�

−δ
(e−(y−u) − e−y)F (y − u)kmλ (u) du,

I6 :=

0�

−δ
e−y(F (y − u)− F (y))kmλ (u) du.

Since F (log u) is linearly bounded below decreasing,

e−y(F (x)− F (y)) ≥ −Ayα

for y ≥ y1, y < x < y + 2δ1 with some constants A > 0 and (1 ≥) δ1 > 0.
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Hence,

(4.4) I6 ≥ −Ayα
0�

−δ1

kmλ (u) du ≥ −Eyα.

Also, by (4.2),

(4.5) I5 ≥ −2

0�

−δ1

e−(y−u)F (y − u)kmλ (u) du ≥ −2Byα.

From (4.2)–(4.5), we see that

e−yF (y)

δ1�

0

kmλ (u) du ≤ (3B + E)yα,

and so e−yF (y) ≤ Cyα.
Conversely, if F (x) ≤ Cexxα is true then by (3.4),
∞�

−∞
∆∗mλ (t)eityG(σ + it) dt ≤

(
C +

|L|
Γ (α+ 1)

)∞�
0

e−(σ−1)xxαkmλ (y − x) dx

and hence the left-hand side of (1.9) is at most(
C +

|L|
Γ (α+ 1)

)∞�
0

xαkmλ (y − x) dx < Kλm−1Cmy
α

for y ≥ y0(λ) by Lemma 2.

Proof of Theorem 4. Suppose first that F (x)(exxα)−1 ≥ c for all x ≥ x0
with some constant c > 0. By (3.4),

∞�

−∞
∆∗mλ (t)eityG(σ + it) dt =

∞�

0

e−σxF (x)kmλ (y − x) dx

− L

Γ (α+ 1)

∞�

0

e−(σ−1)xxαkmλ (y − x) dx.

By the monotone convergence theorem, the first term on the right-hand side
has a limit as σ → 1+ and the limitation and integration are interchangeable.
Thus

lim inf
σ→1+

∞�

−∞
∆∗mλ (t)eityG(σ + it) dt

≥
∞�

0

e−xF (x)kmλ (y − x) dx− L

Γ (α+ 1)

∞�

0

xαkmλ (y − x) dx

≥
(
c− L

Γ (α+ 1)

)
λm−1Cmy

α(1 + oλ(1))



Exact Wiener–Ikehara theorems 375

by Lemma 2, where oλ(1) → 0 as y → ∞. Thus (1.11) holds with γ = c/2
for y ≥ y0(λ).

Conversely, assume that (1.11) holds with positive constants λ, γ, y0 and
an integer m ≥ 1 + [α]/2. By (3.4) and (1.11), for y ≥ y0, 1 < σ < 1 + η(y),

∞�

0

e−σxF (x)kmλ (y − x) dx− L

Γ (α+ 1)

∞�

0

e−(σ−1)xxαkmλ (y − x) dx

>

(
− L

Γ (α+ 1)
+
γ

2

)
λm−1Cmy

α.

Taking limits on the left-hand side as σ → 1+ and then applying Lemma 2,
we arrive at

(4.6)

∞�

0

e−xF (x)kmλ (y − x) dx >
γ′

3
yα

for y > max{y0, y1}, where γ′ = γλm−1Cm. If we assume that F (x)/(exxα)
≤ C, then the left-hand side is at most

C
�

|x−y|≥δ

xαkmλ (y − x) dx+

y+δ�

y−δ
e−xF (x)kmλ (y − x) dx.

The first term is bounded above by

C

(
(1 + 2α)yα

(2m− 1)λmδ2m−1
+

2α

(2m− 1− α)λmy2m−1−α

)
as shown in the proof of the sufficiency part of Theorem 1. For sufficiently
large δ > 0 (independent of y), this is not larger than γ′yα/6. Fixing δ = δ0,
we see that

(4.7)

y+δ0�

y−δ0

e−xF (x)kmλ (y − x) dx ≥ γ′

6
yα

for y ≥ max{y0, y1 + δ0}. If F (x) is nondecreasing, then

e−y+δ0F (y + δ0)λ
m−1Cm ≥

γ′

6
yα

and F (x)(exxα)−1 ≥ c for x ≥ x0 with some small constant c > 0 follows.

If, instead, F (log u) is linearly bounded below decreasing with index
β < α then there exist positive constants A, δ1 and x1 such that

(exxβ)−1(F (y)− F (x)) ≥ −A

for x ≥ x1, 0 ≤ y − x < 2δ1, i.e.,

(4.8) (exxβ)−1(F (x)− F (y)) ≤ A.
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We claim that there exists a constant B > 0 such that

(4.9) (exxβ)−1(F (x)− F (y + δ0)) ≤ AB
for y ≥ max{y0, y1, x1} + δ0, y − δ0 ≤ x ≤ y + δ0. Then, in this case, the
left-hand side of (4.7) equals

y+δ0�

y−δ0

e−xF (y + δ0)k
m
λ (y − x) dx+

y+δ0�

y−δ0

e−x(F (x)− F (y + δ0))k
m
λ (y − x) dx

≤ e−y+δ0F (y + δ0)λ
m−1Cm +AB

y+δ0�

y+δ0

xβkmλ (y − x) dx

= e−y+δ0F (y + δ0)λ
m−1Cm + λm−1CmO(yβ)

by Lemma 2. Therefore,

e−y+δ0F (y + δ0)λ
m−1Cm + λm−1CmO(yβ) ≥ γ′

6
yα

and so F (x)(exxα)−1 ≥ c for x ≥ x0 with some constant c > 0.
It remains to show (4.9). Let k = [2δ0/δ1] and let Y denote y + δ0. By

(4.8), we have

(4.10) (eY−nδ1(Y − nδ1)β)−1
(
F (Y − nδ1)− F (Y − (n− 1)δ1)

)
≤ A

for n = 1, . . . , k. We first show, by induction, that

(4.11) (eY−nδ1(Y − nδ1)β)−1(F (Y − nδ1)− F (Y ))

≤ A+A
n−1∑
`=1

e`δ1
(
Y − (n− `)δ1
Y − nδ1

)β
for n = 1, . . . , k. Hence (4.9) holds for x = Y −nδ1 (≥ y−δ0) for n = 1, . . . , k
with

B = 2 + 2β
k−1∑
`=1

e`δ1

since
Y − (n− `)δ1
Y − nδ1

≤ 2.

To show (4.11), for n = 1, it is merely (4.10). Then, we have(
eY−(n+1)δ1(Y − (n+ 1)δ1)

β
)−1(

F (Y − (n+ 1)δ1)− F (Y )
)

= (eY−nδ1(Y − nδ1)β)−1(F (Y − nδ1)− F (Y ))eδ1
(

Y − nδ1
Y − (n+ 1)δ1

)β
+
(
eY−(n+1)δ1(Y − (n+ 1)δ1)

β
)−1(

F (Y − (n+ 1)δ1)− F (Y − nδ1)
)
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≤
(
A+A

n−1∑
`=1

e`δ1
(
Y − (n− `)δ1
Y − nδ1

)β)
eδ1
(

Y − nδ1
Y − (n+ 1)δ1

)β
+A

= A+A
n∑
`=1

e`δ1
(
Y − (n+ 1− `)δ1
Y − (n+ 1)δ1

)β
.

Hence (4.11) holds for n = 1, . . . , k.

Finally, for Y − δ1 ≤ x < Y , (4.9) follows directly from (4.8). For
Y − nδ1 ≤ x < Y − (n − 1)δ1 with 2 ≤ n ≤ k + 1, by a similar argument,
we have

(exxβ)−1(F (x)− F (Y )) ≤ A+Aeδ12β
(

1 + 2β
n−2∑
`=1

e`δ1
)
.

This completes the proof of (4.9) as well as the proof of Theorem 4.

5. Beurling generalized primes. As a preliminary application of the
exact Wiener–Ikehara theorem we study the Beurling generalized primes.

A Beurling generalized prime number system (henceforth, a g-prime sys-
tem) P = {pi} is a sequence of real numbers satisfying

1 < p1 ≤ p2 ≤ · · · , pi →∞.

Associated with P we have the multiplicative semigroup of g-integers it
generates,

N = NP : 1 = n1 < n2 ≤ n3 ≤ · · · .

The g-prime counting functions are defined as

πP(x) := #{i ≥ 1 : pi ≤ x},
ΠP(x) := πP(x) + 1

2πP(x1/2) + 1
3πP(x1/3) + · · · ,

ψP(x) :=
∑
p
αi
i ≤x

log pi =

x�

1

log x dΠP(x),

and the g-integer counting function and associated g-zeta function as

NP(x) :=
∑
ni≤x

1, ζ(s) = ζP(s) :=
∑
ni≤x

n−si =

∞�

1−
x−s dNP(x).

For convenience, the subscript P is dropped if there is no need to emphasize
a particular P.

The central scheme of the theory of Beurling generalized primes is whether
one of P or NP being “reasonably near” its classical counterpart implies the
same for the other one.
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Theorem 5. Assume that N is a Beurling generalized number system
with density A > 0 and zeta function ζ(s). If 1/ζ(σ + it) converges in L1

on every fixed interval −T ≤ t ≤ T as σ → 1+ then M(x) :=
∑

n≤x µ(n) =
o(x).

Proof. On every fixed interval −T ≤ t ≤ T ,
	T
−T dt/|ζ(σ+it)| is bounded

for σ > 1 and
T�

−T

∣∣∣∣ 1

ζ(σ2 + it)
− 1

ζ(σ1 + it)

∣∣∣∣ dt→ 0

as 1 < σ1 < σ2, σ2 → 1+. Then

T�

−T

∣∣∣∣ 1

(σ2 + it)ζ(σ2 + it)
− 1

(σ1 + it)ζ(σ1 + it)

∣∣∣∣ dt
≤

T�

−T

∣∣∣∣ 1

σ1 + it

(
1

ζ(σ2 + it)
− 1

ζ(σ1 + it)

)∣∣∣∣ dt
+

T�

−T

∣∣∣∣ σ1 − σ2
(σ2 + it)(σ1 + it)

1

ζ(σ2 + it)

∣∣∣∣ dt
→ 0

as σ2 → 1+; that is, 1/((σ + it)ζ(σ + it)) converges in L1. The function

G(s) :=

∞�

1

x−s−1M(x) dx =
1

sζ(s)
, σ > 1,

satisfies the conditions of Corollary 1. Thus M(ex) = o(ex).

In the case of the rational integers N, the exact Wiener–Ikehara theorem
and Theorem 5 show that M(x) = o(x) if and only if the Riemann zeta
function ζ(s) has no zeros on the line σ = 1.

Also, in the case of the Beurling–Diamond primes P [Beu, BaDi], the
associated zeta function ζP has a representation [Dia]

ζP(s) =
(s− 1− i)1/2(s− 1 + i)1/2

s− 1
exp

{∞�
1

x−s d(Πc(x)−ΠP(x))
}
,

where Πc(x) − ΠP(x) = O(x1/2). The system NP satisfies the condition
of Theorem 5. We conclude that MP(x) = o(x). Note that the Beurling–
Diamond primes P do not satisfy the PNT [Zha87]. This indicates that
the “equivalence” of M(x) = o(x) and the PNT in N does not hold in the
Beurling generalized numbers. This leaves the conjecture that M(x) = o(x)
and the Chebyshev bound ψ(x)� x are equivalent there.
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To attack the conjecture, it is shown in [DeDiVi] and [Zha18] that, in a
g-prime system N with N(x) satisfying N(x) ∼ Ax and

∞�

1

x−σ−1|N(x)−Ax| dx = O((σ − 1)−β), σ > 1,

with some constant β ∈ [0, 1/2), if ψ(x) � x then M(x) = o(x), i.e., the
Chebyshev bound implies M(x) = o(x). This proves the conjecture in one
direction in this case.

However, we now know that the conjecture is false in the opposite direc-
tion. Take the case of the generalized number system NB given in [DiZh].
The system has a density A > 0 since NB(x)−Ax = xE(x) with

E(x) = O(log log log log x/log x).

Also NB(x) satisfies
∞�

1

x−2|NB(x)−Ax| dx <∞.

Since
1

ζB(s)
=

s− 1

(s− 1)ζB(s)

has a continuous extension to {σ ≥ 1}, NB satisfies the conditions of The-
orem 5. We conclude that MB(x) = o(x). However, in this system, the
Chebyshev bounds do not hold for

lim sup
x→∞

πB(x)

x/log x
=∞ and lim inf

x→∞

πB(x)

x/log x
= 0.

Therefore, for this system MB(x) = o(x) does not imply the Chebyshev up-
per bound though NB(x) satisfies the conditions of Theorem 3.1 of [DeDiVi]
or Corollary 1 in [Zha18], as just shown. This shows that the conjecture is
false.

6. Concluding remarks. New significant applications of the exact
Wiener–Ikehara theorems are possible. Also the condition that F (log u) is
l.s.d. may replace the nondecreasing condition on F (x) in many tauberian
theorems. These will be the subjects of our next paper.
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[Sch25a] R. Schmidt, Über divergente Folgen und lineare Mittelbindungen, Math. Z. 22

(1925), 89–152.
[Sch25b] R. Schmidt, Die Umkehrsätze des Borelschen Summierungsverfahrens, Schr.

Königsberger Gelehrten Ges. 1 (1925), 205–256.
[Wie32] N. Wiener, Tauberian theorems, Ann. of Math. (2) 33 (1932), 1–100.
[Zha87] W.-B. Zhang, A generalization of Halász’s theorem to Beurling’s generalized

integers and its application, Illinois J. Math. 31 (1987), 645–664.
[Zha14] W.-B. Zhang, Wiener–Ikehara theorems and the Beurling generalized primes,

Monatsh. Math. 174 (2014), 627–652.
[Zha15] W.-B. Zhang, A proof of a conjecture of Bateman and Diamond on Beurling

generalized primes, Monatsh. Math. 176 (2015), 637–656.
[Zha18] W.-B. Zhang, Halász’s theorem for Beurling numbers, Acta Arith. 183 (2018),

223–235.

Wen-Bin Zhang
Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, IL 61801, U.S.A.
and
Department of Mathematics
South China University of Technology
Guangzhou, People’s Republic of China
E-mail: w-zhang1@math.uiuc.edu

http://dx.doi.org/10.1090/S0273-0979-05-01062-1
http://dx.doi.org/10.5802/jtnb.1034
http://dx.doi.org/10.24033/asens.1023
http://dx.doi.org/10.4064/aa160-3-3
http://dx.doi.org/10.1090/S0002-9947-1981-0607121-1
http://dx.doi.org/10.1007/978-3-662-10225-1
http://dx.doi.org/10.1142/S1793042113500760
http://dx.doi.org/10.1007/BF01479600
http://dx.doi.org/10.2307/1968102
http://dx.doi.org/10.1007/s00605-013-0597-8
http://dx.doi.org/10.1007/s00605-014-0681-8
http://dx.doi.org/10.4064/aa8668-11-2017

	1 Introduction
	2 Linearly slowly decreasing functions
	3 Proof of Theorem 1
	3.1 Proof of necessity
	3.2 Proof of sufficiency

	4 Proofs of Theorems 2–4
	5 Beurling generalized primes
	6 Concluding remarks
	References

