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Summary. We give a syntactic characterization of abstract elementary classes (AECs)
closed under intersections using a new logic with a quantifier for isomorphism types that we
call structural logic: we prove that AECs with intersections correspond to classes of models
of a universal theory in structural logic. This generalizes Tarski’s syntactic characterization
of universal classes. As a corollary, we prove that any AEC closed under intersections with
countable Löwenheim–Skolem–Tarski number is axiomatizable in L∞,ω(Q), where Q is the
quantifier “there exist uncountably many”.

1. Introduction

1.1. Background and motivation. Shelah’s abstract elementary clas-
ses (AECs) [She87, Bal09, She09a, She09b] are a semantic framework to
study the model theory of classes that are not necessarily axiomatized by an
Lω,ω-theory. Roughly speaking (see Definition 2.4), an AEC is a pair (K,≤K)
satisfying some of the category-theoretic properties of (Mod(T ),�), for T
an Lω,ω-theory. This encompasses classes of models of an L∞,ω sentence (i.e.
infinite conjunctions and disjunctions are allowed), and even L∞,ω(〈Qλi〉i<α)
theories, where Qλi is the quantifier “there exist λi-many”.

Since the axioms of AECs do not contain any axiomatizability require-
ment, it is not clear whether there is a natural logic whose class of models
is exactly the AECs. More precisely, one can ask whether there is a nat-
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ural abstract logic (in the sense of Barwise, see the survey [BFB85]) such
that classes of models of theories in that logic are AECs and any AEC is
axiomatized by a theory in that logic.

An example of the kind of theorem one may expect is Tarski’s character-
ization of universal classes. Tarski [Tar54] showed that classes of structures
in a finite relational vocabulary which are closed under isomorphism, sub-
structures, and unions of chains (according to the substructure relation) are
exactly the classes of models of a universal Lω,ω-theory. The proof of Tarski’s
result generalizes to non-finite vocabularies as follows:

Definition 1.1. K is a universal class if it is a class of structures in
a fixed vocabulary that is closed under isomorphisms, substructures, and
unions of chains (according to the substructure relation).

Fact 1.2 (Tarski’s presentation theorem, [Tar54]). Let K be a class of
structures in a fixed vocabulary. The following are equivalent:

(1) K is a universal class.
(2) K is the class of models of a universal L∞,ω-theory.

Here, a universal sentence is one of the form ∀x0 . . . xn−1ψ with ψ ∈ L∞,ω
quantifier-free. Note that this is not the only definition of universal sentences
in the literature; see [Vas17b, Remark 2.5] for further discussion. Universal
classes are a special type of abstract elementary classes. In a sense, their
complexity is quite low and indeed several powerful theorems can be proven
there (see e.g. [She09b, Chapter V] and the second author’s ZFC proof of
the eventual categoricity conjecture there [Vas17a, Vas17b]).

A more general kind of AECs is AECs with intersections. They were intro-
duced by Baldwin and Shelah [BS08, Definition 1.2]. They are defined as the
AECs in which the intersection of any set of K-substructures of a fixed model
N is again a K-substructure (see Definition 3.1). In universal classes, this
property follows from closure under substructures so any universal class is an
AEC with intersections. Being closed under intersections does not imply that
the classes are easy to analyze: e.g. [HS90, BK09, BS08, BU17] provide ex-
amples of AECs closed under intersections that fail to be tame. Nevertheless,
AECs with intersections are still less complex than general AECs. For ex-
ample, the second author has shown that Shelah’s eventual categoricity con-
jecture holds there assuming a large cardinal axiom [Vas17a, Theorem 1.7],
whereas the conjecture is still open for general AECs.

1.2. Tarski’s presentation theorem for AECs with intersections.
In the present paper, we generalize Tarski’s presentation theorem to AECs
with intersections as follows: we introduce a new logic, Lκ-struct

∞,ω , which is
essentially L∞,ω expanded by what we call structural quantifiers, and show
that AECs with intersections are (essentially) exactly the class of models of



Structural logic and AECs with intersections 3

a particular kind of theory—what we call a ∀Qstruct-theory (Definition 2.8)
—in the logic Lκ-struct

∞,ω . More precisely (Corollary 3.11), any ∀Qstruct-theory
in Lκ-struct

∞,ω gives rise to an AEC with intersections, and for any AEC with
intersections, there is an expansion of its vocabulary with countably many
relation symbols such that the resulting class is axiomatized by a ∀Qstruct-
theory in Lκ-struct

∞,ω . Moreover, the expansion is functorial (i.e. it induces an
isomorphism of concrete category, see Definition 3.3).

The idea of the proof is to code the isomorphism types of the set c`N (a)
of intersections of all the K-substructures of N containing the finite se-
quences a. The logic Lκ-struct

∞,ω is expanded by a family of generalized quan-
tifiers in the sense of Mostowski and Lindström [Mos57, Lin66]; sentences
such as Qstruct

(M2,M1)
xy φ(x)ψ(y) will model whether the solution sets (A,B) of

(φ, ψ) are isomorphic to (M2,M1) (where of course the two isomorphisms
must agree). This is crucial to code the ordering of the AEC. Our char-
acterization also generalizes Kirby’s result on the definability of Zilber’s
quasiminimal classes [Kir10, §5]. Indeed it is easy to see (Remark 2.3) that
Lℵ1-struct
ω1,ω is just Lω1,ω(Q) (where Q is the quantifier “there exist uncountably

many”) and quasiminimal classes are in particular AECs with intersections
(see [Vas18]). Thus we find that any AEC with intersections and countable
Löwenheim–Skolem–Tarski number is axiomatizable in L∞,ω(Q) (see Corol-
lary 3.12).

An immediate conclusion is that any AEC which admits intersections, has
Löwenheim–Skolem–Tarski number ℵ0, and has countably many countable
models, has a Borel functorial expansion (in the sense that its restriction to
ℵ0 can be coded by a Borel set of reals, see Corollary 3.14). This is further
evidence for the assertion that AECs with intersections have low complexity
and paves the way for the use of descriptive set-theoretic tools in the study
of these classes (see [She09a, Chapter I], [BLS15, BL16]).

1.3. Other approaches. Rabin [Rab62] syntactically characterizes
Lω,ω-theories whose class of models is closed under intersections. The char-
acterization is (provably) much more complicated than that of universal
classes. This paper shows that by changing the logic we can achieve a
much easier characterization. Recently, Lieberman, Rosický, and the sec-
ond author [LRV19] have shown that any AEC with intersections is a locally
ℵ0-polypresentable category. In particular, it is ℵ0-accessible, and this im-
plies that it is equivalent (as a category) to a class of models of an L∞,ω
sentence. We discuss these approaches in greater detail in Section 4.

1.4. Notation. We denote the universe of a τ -structure M by |M | and
its cardinality by ‖M‖. We use κ− to denote the predecessor of a cardinal κ:
it is κ0 if κ = κ+0 and κ otherwise.
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2. Structural quantifiers. We define a new logic, Lκ-struct. It consists
of Lω,ω with a family of quantifiers Qstruct

M,A , which generalize the quantifier
QI(M) from [MSS76, §4]. Compared to QI(M), we allow multiple formulas
and τ0-structures, with τ0 a subvocabulary of τ .

Definition 2.1. Let τ be a vocabulary and κ be an infinite cardinal.
We define the logic Lκ-struct(τ) as follows:

(1) Lκ-struct is the smallest set closed under the following:

(a) atomic formulas;
(b) negation;
(c) binary conjunction and disjunction;
(d) existential and universal quantification; and
(e) if n < ω, φ(x, z) and 〈ψi(yi, z) : i < n〉 are formulas in Lκ-struct(τ),

τ0 is a subvocabulary of τ , M is a τ0-structure with universe an
ordinal strictly less than κ and A := 〈Ai : i < n〉 are subsets of |M |,
then letting y := 〈yi : i < n〉 we have

Qstruct
M,A xy φ(x, z)〈ψi(yi, z) : i < n〉 ∈ Lκ-struct(τ).

(2) Satisfaction �Lκ-struct is defined inductively as follows (we omit the sub-
script since it will always be clear from context):

(a) As usual for the first-order operations.
(b) If N is a τ -structure, n < ω, φ(x, z) and 〈ψi(yi, z) : i < n〉 are for-

mulas in Lκ-struct(τ), τ0 is a subvocabulary of τ , M is a τ0-structure
with universe an ordinal strictly less than κ and A := 〈Ai : i < n〉
are subsets of |M |, then letting y := 〈yi : i < n〉, we have N |=
Qstruct
M,A xy φ(x,b)〈ψi(yi,b) : i < n〉 if and only if:

(i) for all i < n, N |= ∀x (ψi(x,b)→ φ(x,b)); and
(ii) there is a τ0-substructure N0 of N with universe φ(N,b), and

there is an isomorphism f from N0 onto M such that for all
i < n, f [ψi(N,b)] = Ai.

We define variants such as Lκ-struct
∞,ω in the natural way.

Several notational remarks are in order. First, the restriction of the uni-
verse of M to be an ordinal is here to avoid having a logic with class-many
formulas. We will often use Qstruct

M,A when the universe ofM is not an ordinal,
and this should just be replaced by Qstruct

M ′,A′ , where M
′,A′ are renaming of

M and A so that the universe of M ′ is an ordinal.
Second, the main cases for us in the formula Qstruct

M,A xy φ(x, z)〈ψi(yi, z) :
i < n〉 are when n = 0 or n = 1. In the former case, we will just write
Qstruct
M xφ(x, z), and in the latter Qstruct

M,A xy φ(x, z)ψ(y, z). In most cases,
A will induce a substructure of M .



Structural logic and AECs with intersections 5

In order to analyze a class of models axiomatized by structural quanti-
fiers, we use a strong notion of elementarity, �∗F , which ensures that classes
of models of an Lκ-struct-theory are closed under unions of �∗F -increasing
chains.

Definition 2.2.

(1) Given a language τ and a logic L, a fragment F is a set F ⊆ L(τ) closed
under subformulas and containing all atomic formulas.

(2) Given a fragment F ⊆ Lκ-struct
∞,ω (τ) and two τ -structures N1 ⊆ N2, we

write N1 �F N2 if and only if for every φ(x) ∈ F and a ∈ N1,

N1 � φ(a) ⇐⇒ N2 � φ(a).

(3) Given a fragment F ⊆ Lκ-struct
∞,ω (τ) and two τ -structures N1 ⊆ N2 we

write N1 �∗F N2 if and only if:

(a) N1 �F N2; and
(b) for any formula Qstruct

M,A xy φ(x, z)〈φi(yi, z) : i < n〉 in F , if |φ(N1,b)|
< κ, then φ(N1,b) = φ(N2,b) and ψi(N1,b) = ψi(N2,b) for all
i < n.

(4) Given a fragment F ⊆ Lκ-struct
∞,ω and a theory T ⊆ F , we let ModF (T )

be the class (Mod(T ),�∗F ).

Note that we do not assume that a fragment must be closed under the
finitary operations, just that it contains the atomic formulas and is closed
under subformulas.

We also have the following basic facts:

Remark 2.3. (1) Lℵ0-struct
λ,κ is equivalent to Lλ,κ.

(2) For any ordinal α, we can express ∃≥ℵαxφ(x, z) in Lℵα-struct
(|α|+ℵ0)+,ω by∧

n<ω

¬Qstruct
n xφ(x, z) ∧

∧
β<α

¬Qstruct
ℵβ xφ(x, z).

In particular “there exist uncountably many” can be expressed in Lℵ1-struct
ω1,ω .

(3) In fact, Lℵ1-struct
λ+,ω

is equivalent to Lλ+,ω(Q), where Q is the quantifier
“there exist uncountably many”. We have just established the right-to-left
direction. For the other direction, use suitably relativized Scott sentences.
Specifically, let us explain how to replace an Lℵ1-struct

λ+,ω
formula of the form

Qstruct
M,A xy φ(x, z)〈ψi(yi, z) : i < n〉 by an equivalent formula in Lλ+,ω(Q).

Suppose that τ is the vocabulary of the formula and τ0 the vocabulary ofM .
Let τ ′0 = τ0∪{Pi : i < n}, where the Pi’s are unary predicates not appearing
in τ . Let MA be the τ ′0-structure (M,Ai)i<n, where we have written A =
〈Ai : i < n〉. Let ρ be a Scott sentence for MA. Let ρ′ be ρ relativized
to φ(·, z), with for all i < n all occurrences of Pi(y) replaced by ψi(y, z).
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Then Qstruct
M,A xy φ(x, z)〈ψi(yi, z) : i < n〉 is equivalent to

∧
i<n ∀x (ψi(x, z)→

φ(x, z)) ∧ ¬Qxφ(x, z) ∧ ρ′.
(4) The notion of elementarity �∗F introduced for structural quantifiers

coincides with the notion of elementarity used to study L(Q) (see [Bal09,
Definition 5.1.2]).

(5) An Lκ-struct(τ) formula of the form Qstruct
M,A xy φ(x, z)〈ψi(yi, z) : i < n〉,

with M a τ0-structure, τ0 ⊆ τ is equivalent to a disjunction of formulas
of the form Qstruct

M ′,Axy φ(x, z)〈ψi(yi, z) : i < n〉, where M ′ ranges over all
isomorphism types of τ -expansions of M . Thus we can avoid the use of a
subvocabulary τ0 but have to consider potentially longer disjunctions (of
length up to 2|τ |).

We now show that ModF (T ) defined above is an abstract elementary
class (AEC). For the convenience of the reader, we repeat the definition of
an AEC here.

Definition 2.4 ([She87]). An abstract elementary class (AEC ) is a pair
K = (K,≤K) satisfying the following properties:

(1) K is a class of structures in a fixed vocabulary τ = τ(K) and ≤K is a
partial order, M ≤K N implies M ⊆ N , and K and ≤K are both closed
under isomorphisms.

(2) Coherence: if M0,M1,M2 ∈ K, M0 ⊆M1 ≤K M2 and M0 ≤K M2, then
M0 ≤K M1.

(3) Tarski–Vaught chain axioms: if δ is a limit ordinal, 〈Mi : i < δ〉 is a
≤K-increasing chain, and M :=

⋃
i<δMi, then:

(a) M ∈ K.
(b) M0 ≤K M .
(c) Smoothness: if N ∈ K is such that Mi ≤K N for all i < δ, then

M ≤K N .

(4) Löwenheim–Skolem–Tarski (LST ) axiom: there exists a cardinal λ ≥
|τ(K)| + ℵ0 such that for any N ∈ K and any A ⊆ |N |, there exists
M ∈ K such that A ⊆ |M |, M ≤K N , and ‖M‖ ≤ |A| + λ. We write
LS(K) for the least such λ.

Theorem 2.5. Let F be a fragment of Lκ-struct
∞,ω (τ) and let T ⊆ F be a

theory. Then K := ModF (T ) is an AEC with LS(K) ≤ |F|+ κ.

Proof. This is a very similar situation to L(Q) where Q is “there exist
uncountably many”, and most of the axioms are straightforward. We only
show that K is closed under unions of increasing chains. Let 〈Ni | i < δ〉
be continuous and �∗F -increasing and let Nδ :=

⋃
j<δNj . We want to show

that N0 �∗F Nδ. We work by induction on formulas. The steps are standard
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except for the structural quantifier. Let χ(z) be a formula in F of the form
Qstruct
M,A xy φ(x, z)〈ψi(yi, z) : i < n〉.
By elementarity of the inner formulas, we know that for ψ ∈ Ψ :=

{φ} ∪ {ψi : i < n}, ψ(Nδ,b) =
⋃
i<δ ψ(Ni,b).

We consider two cases. If |φ(N0,b)| < κ, then by the definition of �∗F ,
ψ(N0,b) = ψ(Ni,b) for all i < δ and ψ ∈ Ψ . This implies that for all ψ ∈ Ψ ,
ψ(N0,b) = ψ(Nδ,b), and so N0 |= χ(b) if and only if Nδ |= χ(b).

The remaining case is when |φ(N0,b)| ≥ κ. In this case, N0 6|= χ(b) (by
definition of Lκ-struct), and since φ(N0,b) ⊆ φ(Nδ,b), we must also have
|φ(Nδ,b)| ≥ κ and hence Nδ 6|= χ(b).

The following example is due to Shelah (see [She87, beginning of Sec-
tion 3]) and has been further examined by Kueker [Kue08, Example 6.3]:

Example 2.6. Fix an infinite cardinal λ. SetKλ to be the AEC consisting
of well-orderings (X,<) either of size λ or of order type λ+ with the ordering
on the class Kλ being initial segment. The rigidity of well-orderings implies
that this is an AEC with intersections with LS(Kλ) = λ. This class can be
axiomatized in Lλ+-struct

λ++,ω by the sentence

∀x
∨

λ≤α<λ+
Qstruct

(α,∈) y (y < x).

Several natural logics whose classes of models form AECs are unsuccess-
ful in axiomatizing this class (although Remark 2.3(3) implies that Kℵ0 is
Lω2,ω(Q) axiomatizable).

Remark 2.7. Although classes axiomatizable in Lκ-struct
∞,ω form AECs,

it seems unlikely that every AEC is axiomatizable with structural quanti-
fiers. In particular, classes axiomatizable using Shelah’s cofinality quanti-
fier Qcf

κ (see [She75, Definition 1.3]) form (with the right notion of strong
substructure) an AEC. However, it seems unlikely that such classes can be
axiomatized using structural quantifiers as there is no way to pick out a
witnessing sequence in the linear order even after functorial expansion. By
Theorem 3.9, this means that these classes are not closed under intersections.

In the next section, we will be interested in sentences in structural logic
of a particular form:

Definition 2.8. A sentence of Lκ-struct
∞,ω is called a ∀Qstruct-sentence if it

is of the form
∀z

∨
(M,A)∈S

Qstruct
M,A xy φ(x, z)〈ψi(yi, z) : i < n〉

where φ and the ψi’s are quantifier-free and S is a non-empty set. A theory
in Lκ-struct

∞,ω is called a ∀Qstruct-theory if it consists exclusively of ∀Qstruct-
sentences.
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Note that this generalizes the usual definition of a universal sentence in
the following sense:

Lemma 2.9. If φ = ∀zψ(z), where ψ is quantifier-free in L∞,ω(τ), then
there exists a ∀Qstruct-formula φ′ of Lℵ0-struct

∞,ω (τ) such that φ and φ′ have
the same models.

Proof. Say z = 〈zi : i < n〉 for n < ω. If n > 0, take
φ′ = ∀zQstruct

1 x (x = z0 ∧ ψ(z)),

where we see 1 as a structure in the empty language whose universe has
one element. If n = 0, then there are two cases: either the empty structure
satisfies φ, in which case φ is equivalent to ∀z0 φ, and we can proceed as
before; or the empty structure does not satisfy φ, which must mean (since
φ is quantifier-free) that there are constant symbols in τ . In this case the
empty structure is never a τ -structure, and so as before φ is equivalent to
∀z0 φ.

One may argue that a ∀Qstruct-sentence is more like a ∀∃ sentence than
just a universal sentence. However, Remark 3.10 below highlights that the
inner disjunction plays the role that a quantifier-free formula would play in
the proof of Tarski’s presentation theorem. Thus ∀Qstruct-sentences play the
same role that universal sentences play in L∞,ω.

3. Axiomatizing abstract elementary classes with intersections.
Recall the definition of an AEC with intersections:

Definition 3.1 ([BS08, Definition 1.2]). Let K be an AEC.
(1) For N ∈ K and A ⊆ |N |, write c`NK (A) for the set

⋂
{N0 : N0 ≤K N ∧A

⊆ |N0|}. Almost always, K is clear from context and we omit it. We abuse
notation and also write c`N (A) for the τ(K)-substructure of N with
universe c`N (A). When a ∈ <∞M , we write c`N (a) for c`N (ran(a)).

(2) We say that K has intersections (or is closed under intersections) if
c`N (A) ≤K N for any N ∈ K and A ⊆ |N |.
We show that the class of models of a ∀Qstruct-theory in structural logic

is an AEC with intersections:
Theorem 3.2. Let T be a ∀Qstruct-theory of Lκ-struct

∞,ω and let F be the
smallest fragment containing T . Then ModF (T ) is an AEC with intersec-
tions and Löwenheim–Skolem–Tarski number at most |F|+ κ−.

Proof. Let K := ModF (T ). By Theorem 2.5, K is an AEC. We show
that K has intersections. Let N ∈ K, A ⊆ |N |, and let N0 := c`N (A). We
show that N0 �∗F N . We proceed by induction on formulas. The atomic,
conjunction, disjunction, and negation cases are trivial. The universal case
also follows directly from our assumption on the theory (recall that the
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definition of fragment used here does not require closure under the finitary
operations).

It remains to deal with the case of a formula χM,A(z) of the form
Qstruct
M,A xy φ(x, z)〈φi(yi, z) : i < n〉. Let Ψ := {φ} ∪ {ψi : i < n} and

let b ∈ N0. Assume first that N |= χM,A(b). Let ψ ∈ Ψ . For any N ′

with A ⊆ |N ′| and N ′ �∗F N we must have (by definition of c`) that
b ∈ N ′ and ψ(N ′,b) = ψ(N,b). It follows that also ψ(N0,b) = ψ(N,b),
so N0 |= χM,A(b). Assume now that N0 |= χM,A(b). By the assumption on
the theory, there must exist an (M ′,A′) such that N |= χM ′,A′(b). By the
previous argument, N0 |= χM ′,A′(b), and moreover ψ(N,b) = ψ(N0,b)
for any ψ ∈ Ψ . Since N0 |= χM,A(b), this directly implies that N |=
χM,A(b).

By a similar argument, we must have (regardless of the truth value of
χM,A in N0 or N), for any ψ ∈ Ψ , |ψ(N,b)| < κ and ψ(N0,b) = ψ(N,b).
It also follows that |c`N (A)| ≤ |A|+ |F|+ κ−, so LS(K) ≤ |F|+ κ−.

We now work toward a converse. For this, we will use the notion of a
functorial expansion [Vas16, Definition 3.1]. This is a class in an expanded
language that looks exactly the same as the original AEC. For example,
the Morleyization of an elementary class is a functorial expansion. For more
examples, see [Vas16, §3].

Definition 3.3. For K an AEC, a functorial expansion of K is a classK+

of structures in a vocabulary τ(K+) ⊇ τ(K) (in this paper always finitary)
such that the reduct map is a structure-preserving bijection fromK+ onto K.
That is, if two structures are isomorphic in K then their expansions to K+

are still isomorphic, and ifM is a K-substructure of N then their expansions
to K+ are substructures. For a functorial expansion K+, we let K+ :=
(K+,≤K+), where M ≤K+ N if and only if M�τ(K) ≤K N�τ(K). We will
also say that K+ is a functorial expansion of K.

Remark 3.4. An AEC admits intersections if and only if it admits in-
tersections in some functorial expansion.

In addition to the obvious monotonicity properties of c`N , we will use
the following basic fact about AECs with intersections:

Fact 3.5 ([Vas17a, Proposition 2.14(4)]). Let K be an AEC with inter-
sections. Let M ≤K N and let A ⊆ |M |. Then c`M (A) = c`N (A).

In any AEC, one can define a notion of orbital types (also called Galois
types in the literature, see [She09a, II.1.9]). We have no use for the general
notion of orbital type in this paper, we will just recall what orbital types
of finite sequences over the empty set look like in AECs admitting intersec-
tions:
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Definition 3.6. Let K be an AEC with intersections. For M,N ∈ K
and a ∈ <ωM , b ∈ <ωN , we write (a,M) ≡ (b, N) if there exists f :
c`M (a) ∼= c`N (b) such that f(a) = b. Note that this is an equivalence
relation. We denote by D(K) the set of all ≡-equivalence classes.

Remark 3.7. Let K be an AEC with intersections. If M0 ≤K M are
both in K and a ∈ <ωM , then (a,M0) ≡ (a,M) (as witnessed by the iden-
tity map). In particular, for any (b, N) ∈ D(K), the Löwenheim–Skolem–
Tarski axiom of AECs implies that there exists N0 ∈ K≤LS(K) such that
(b, N0) ∈ D(K).

Lemma 3.8. Let K be an AEC with intersections. Then |D(K)| ≤ 2LS(K).
More precisely, |D(K)| < LS(K)+ +µ, where µ is the least cardinal such that
for any (not necessarily increasing) sequence 〈Mi : i < µ〉 of elements of
K≤LS(K), there exist i < j < µ such that Mj embeds into Mi.

Proof. Let θ := µ+LS(K)+. Suppose for a contradiction that |D(K)| ≥ θ.
We build 〈(ai,Mi) : i < θ〉 such that for all i < θ:

• ai ∈ <ωMi.
• Mi ∈ K≤LS(K).
• There are no i0 < i and a ∈ <ωMi0 such that (a,Mi0) ≡ (ai,Mi).

This is possible by the assumption that |D(K)| ≥ θ and θ > LS(K). This is
enough: by the definition of µ, there exist i0 < i < θ such that Mi embeds
into Mi0 . This contradicts the assumption that (ai,Mi) had no realization
in Mi0 .

Theorem 3.9. Let K be an AEC with intersections. Then there is

• a functorial expansion K+ of K with vocabulary τ+ = τ(K)∪{En | n < ω}
and
• a ∀Qstruct-theory T in LLS(K)+-struct

(LS(K)+|D(K)|)+,ω(τ+)

such that K+ = ModF (T ), where F is the smallest fragment containing T .

Proof. We define K+ as follows:

• En is an (n+ 1)-ary relation symbol.
• M+ ∈ K+ if and only if M+�τ(K) ∈ K and EM

+

n = {(a,b) | `(b) = n,

a ∈ c`M
+�τ(K)(b)}.

T is the following theory:

• For each n < ω and each k ≤ n, include the sentence

∀z0 . . . znEn(zk, z0, z1, . . . , zn).

Note that this sentence is not formally a ∀Qstruct-sentence, but is equiva-
lent to one by Lemma 2.9.
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• If K is empty, include Qstruct
0 xx = x and Qstruct

1 xx 6= x. Assume now
that K is not empty. Let D be a complete set of representatives of the
elements of D(K) (so |D| = |D(K)|), with the additional requirement that
(a,M) ∈ D implies ‖M‖ ≤ LS(K) (this is possible by Remark 3.7). Let
S be the set of pairs (M2,M1) such that for some (ab,M) ∈ D, we have
M2 = c`M (ab) and M1 = c`M (a). Note that for such pairs M1 ≤K M2 by
coherence. Moreover |S| ≤ |D|+ LS(K). Include in T all sentences of the
form

∀z, z′
∨

(M2,M1)∈S

Qstruct
M2,M1

xy
(
E`(zz′)(xzz

′)
)(
E`(z)(yz)

)
.

Let F be the smallest fragment containing T . We show that this works.

(1) Let M+ ∈ K+ and let M := M+�τ(K). We have:

• for all a ∈M , a ∈ c`M (a); and
• for all a1,a2 ∈M ,

M+ |= Qstruct
c`M (a1a2),c`M (a1)

xy
(
E`(a1)(xa1)

)(
E`(a1a2)ya1a2

)
.

So M+ � T .
(2) Suppose that M+ ≤K+ N+. Then c`M (a) = c`N (a) are of size at most

LS(K), so M+ �∗F N+ follows.
(3) Suppose that M+ � T . We wish to express it as a directed colimit from
K+. For a ∈ M+, let Ma be the τ+-substructure of M+ with universe
{b ∈ M+ | M+ � E`(a)(ba)}. By definition of T (and definition of
a functorial expansion), a ∈ Ma, Ma ∈ K+, and a ⊆ b implies that
Ma ≤K+ Mb. Thus,

M+ =
⋃

a∈M+

Ma ∈ K+.

(4) Suppose that M+, N+ |= T and M+ �∗F N+. This elementarity implies
that, in the notation of the previous item, given a ∈ M+, Ma = Na.
Now as before M+ =

⋃
a∈M+ Ma =

⋃
a∈M+ Na ≤K+ N+, as needed.

Remark 3.10. It is instructive to see how the proof of Theorem 3.9 plays
out when K is a universal class. In this case, En is definable, i.e. we can
replace the formula En(x,y) by

∨
ρ x = ρ(y), where ρ ranges over all terms

in the vocabulary of K. Thus there is no need to expand the vocabulary of K.
Similarly, if (M2,M1) is a pair in K withM1 ⊆M2 such thatM2 = c`M2(ab)
and M1 = c`M2(a), then Qstruct

M2,M1
xy (E`(zz′)(x, zz

′))(E`(z)(yz)) is equivalent
to
∧
φ∈tpqf(b1b2;M2)

φ(z; z′). Thus we indeed recover Tarski’s characterization
of universal classes as classes of models of a universal L∞,ω-theory.

We have arrived at the promised characterization of AECs with intersec-
tions using structural logic:
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Corollary 3.11. Let K be an AEC. The following are equivalent:

(1) K has intersections.
(2) There is a functorial expansion K+ of K with countably many relation

symbols of finite arity and a ∀Qstruct-theory T in LLS(K)+-struct
∞,ω (τ(K+))

such that K+ = ModF (T ), where F is the smallest fragment contain-
ing T .

Proof. Combine Remark 3.4 and Theorems 3.2 and 3.9.

As a particular case, we find that AECs with intersections and countable
Löwenheim–Skolem–Tarski number are axiomatizable in L∞,ω(Q):

Corollary 3.12. Let K be an AEC with intersections and LS(K) = ℵ0.
Then there is a functorial expansion K+ with countably many relation sym-
bols of finite arity and an Lℵ1+|D(K)|+,ω(Q)-theory T such that K+ is the
class of models of T .

Proof. Combine Theorem 3.9 with Remark 2.3(3).

Remark 3.13. The ordering on K+ may no longer be given by elemen-
tarity according to a fragment of L∞,ω(Q) containing T . This is because
we are using Scott sentences to code isomorphism types. Nevertheless, the
axiomatization given by Corollary 3.12 uses only negative instances of Q so
indeed leads to an AEC with countable Löwenheim–Skolem–Tarski number.

We state a consequence on the descriptive set-theoretic complexity of K.
Recall that Baldwin and Larson [BL16, Definitions 3.1 and 3.3] call an AEC
K analytically presented if LS(K) = ℵ0 and K≤ℵ0 ; Shelah [She09a, Defini-
tion I.1.4] calls this notion PCℵ0 , and it is also called “PCδ over Lω1,ω” in
other places. We call an AEC K Borel presented (or just Borel) if LS(K) = ℵ0
and K≤ℵ0 is Borel (note that we think of each model as a real, and we also
ask for the ordering relation on the countable models to be Borel).

Corollary 3.14. If K is an AEC with intersections, LS(K) = ℵ0, and
I(K,ℵ0) ≤ ℵ0, then K has a Borel functorial expansion (so in particular it
is analytically presented).

Proof. Let K+ be as described by Theorem 3.9. By Lemma 3.8, |D(K)|
≤ ℵ0. Since K+ is a functorial expansion, |D(K+)| ≤ ℵ0. This means that
the sentences given by Theorem 3.9 all have countable length, and the result
directly follows (use Scott sentences).

The following stronger property is interesting: let us call an AEC K
model-complete if for any M,N ∈ K, M ≤K N if and only if M ⊆ N .
When does an AEC have a model-complete functorial expansion (in a finitary
vocabulary)? To see that this cannot happen for all AECs with intersections,
consider the following simple example of Kueker [Kue08, Example 2.10]: The
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vocabulary has a unary predicate P , and K is the class ofM such that PM is
countably infinite and |M |\PM is infinite. Order the class byM ≤K N if and
only ifM ⊆ N and PM = PN . This has intersections but no model-complete
functorial expansions. More generally, the AECs which have model-complete
functorial expansions are exactly those with finite character. Finite character
is a key property of finitary AECs introduced by Hyttinen and Kesälä [HK06]
and isolated by Kueker [Kue08, Definition 3.1]. For this result, we assume
the reader is familiar with Galois (orbital) types and the definition of finite
character:

Theorem 3.15. Let K be an AEC. The following are equivalent:

(1) K has finite character.
(2) K has a model-complete functorial expansion in a finitary vocabulary.

Proof. IfK has finite character, letK+ be the (<ℵ0)-Galois Morleyization
of K [Vas16, Definition 3.3]; it is obtained by adding a relation symbol for
each Galois type of a finite sequence over the empty set. Then it is easy to see
that K+ is model-complete. Conversely, if K has a model-complete functorial
expansion K+ then since Galois types preserve τ(K+)-quantifier-free types,
K must have finite character.

4. Equivalence vs. axiomatization. The previous section showed how
to axiomatize an AEC with intersections after functorial expansion. This is
partial progress towards a more general question about the axiomatizability
of AECs.

Question 4.1. Is there a natural logic LAEC along with natural notions
of fragments F ⊆ LAEC and elementarity �AEC

F that is “the right logic for
AECs” in the sense that the logic is both:

(1) limited: given a theory T ⊆ LAEC and a fragment F ⊆ LAEC contain-
ing T , the class

(Mod(T ),�AEC
F )

is an AEC (preferably with a bound on the Löwenheim–Skolem–Tarski
number easily computable from F and T ); and

(2) complete: given an AEC (K,≤K), there is a theory TK ⊆ LAEC and a
fragment FK ⊆ LAEC containing TK such that

(K,≤K) = (Mod(TK),�AEC
FK ).

The adjective “natural” is intended to forbid direct reference to AECs in
defining the logic. For instance, the following should be forbidden: Given a
language τ , let L(τ) consist of a sentence φK for each AEC K in the lan-
guage τ . Then satisfaction is defined so M � φK if and only if M ∈ K.
Clearly, by definition, K = Mod(φK). This could be similarly extended to a
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notion of elementarity that would capture ≤K. However, this logic is defined
by explicit reference to AECs, so seems unnatural, and moreover unhelpful
to adding to the understanding of AECs. Shelah [She09a, Definition IV.1.9]
defines an extension of L∞,LS(K)+ that achieves completeness without a func-
torial expansion, but similarly fails to be limited (item (1) above). Baldwin
and the first author [BB17, Theorem 3.9] show that every AEC K admits a
functorial expansion to an L∞,LS(K)+ axiomatizable class. However, not every
L∞,LS(K)+ axiomatizable class is an AEC (e.g. complete metric spaces), so
this fails the limited condition. Between these two examples, it is not known
if every AEC is axiomatizable by a sentence of L∞,∞.

A related question has been posed by Makkai and Rosický. Recall that
a functor between two categories F : C → D is an equivalence if it is full,
faithful, and essentially surjective.

Question 4.2 (Makkai, Rosický). Is every AEC equivalent to the models
of a sentence of L∞,ω?

As evidence for this, recall that Makkai and Paré [MP89, Proposition 3.2.3
and Theorem 4.3.2] have shown that every accessible category (one that is
closed under sufficiently directed colimits and generated by a set of “small”
models) is equivalent to the models of an L∞,∞ axiomatizable class; such
classes are clearly accessible. Further discussion of these issues can be found
in [LRV19, §4], [BR12], or [Lie11]. After the initial submission of the present
paper, Simon Henry [Hen] gave a topos-theoretic proof showing that the
AEC of all uncountable sets (ordered by subset) is a counterexample to
Question 4.2.

Although Questions 4.1 and 4.2 seem very similar, the following example
illustrates the key difference: an equivalence of categories is not required to
preserve the underlying structure of sets. This means that entire models can
be condensed to single points. As an example, consider again quasiminimal
classes [Kir10, Section 5]. First, note that most quasiminimal classes are not
finitary: Kirby [Kir13, Section 2.8] proves this for Zilber’s pseudominimal
fields, but this can also easily be seen for the “toy example” of equivalence
relations with countably infinite classes, ordered by “equivalence classes do
not grow”. By Theorem 3.15 above, such classes do not have functorial expan-
sions that are model complete. On the other hand, any L∞,ω axiomatizable
class has such a functorial expansion. Thus we get the following corollary.

Corollary 4.3. Zilber’s pseudoexponential fields do not have a functo-
rial expansion that is axiomatizable by L∞,ω.

However, quasiminimal classes are finitely accessible. This is a categorical
formulation of the fact that they are closed under directed colimits and every
structure is the directed colimit of the finite-dimensional models. Thus, by
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Makkai and Paré, the class is equivalent as a category to an L∞,ω axioma-
tized class. Indeed, while Makkai and Paré work through sketches, there is
a straightforward description of the equivalent class.

Fix K to be a quasiminimal class and, for each n < ω, let Mn ∈ K be an
n-dimensional model. Then define TK ∈ L∞,ω(τK) as follows:

• τK has a sort Sn for each n < ω and a function f̄ : Sm → Sn for each
K-embedding f : Mn →Mm.
• TK consists of the following:

– if f : Mn →Mm and g : Mm →Mk are K-embeddings, then include

∀x ∈ Sk
(
g ◦ f(x) = f̄(ḡ(x))

)
;

– for each n,m < ω, include

∀x∈ Sn, y ∈ Sm ∃z ∈ Sn+m
∨

f :Mn→Mn+m, g:Mm→Mn+m

(f̄(z) = x∧ḡ(z) = y).

The first sentence says that a model is essentially a functor from the
opposite category of the finite-dimensional models to the category of sets,
and the second sentence gives the directedness of the resulting system. Then
the equivalence F : K → Mod(TK) is given by, for M ∈ K,

• SFMn := {x : Mn →M | x is a K-embedding},
• f̄FM takes x : Mm →M to x ◦ f : Mn →M .

Thus, although Zilber’s pseudoexponential fields are equivalent to an L∞,ω
axiomatizable class, the equivalence turns every finite-dimensional substruc-
ture into a point.

We close with an example of an AEC that is well-behaved, yet the au-
thors know of no limited logic (in the sense of Question 4.1) that captures
it, either up to equivalence of categories or axiomatization of a functorial
expansion.

Example 4.4. Let T be a superstable first-order theory and let λ be
an infinite cardinal. Set Kλ to be the λ-saturated models of T ordered by
elementary substructure. Since T is superstable, the class is closed under in-
creasing unions, and thus in an AEC with Löwenheim–Skolem–Tarski num-
ber at most 2|T |+λ. Since every model of T can be extended to a λ-saturated
one, this class inherits many desirable AEC properties from Mod(T ): amal-
gamation, tameness, etc. (if λ = ℵ0, the class is even closed under regular
ultraproducts)

Acknowledgments. We thank John T. Baldwin, Marcos Mazari-Arm-
ida, and the referee for feedback which helped improve the presentation of
this paper.
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