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THE PRIOR DISTRIBUTION OF A RANDOM MEASURE

Abstract. It is known that an infinite, exchangeable sequence of obser-
vations from a Borel space, in particular a Polish one, is underlain by an
almost surely (a.s.) unique random probability measure on this space such
that, conditioned on it, the observations are independent and identically
distributed with that measure. The distribution of that random measure is
the prior distribution involved in Bayes inference. The present paper proves
that the prior distribution of the a.s. unique random measure underlying
an infinite, exchangeable sequence of observations from a Polish space is a
Radon probability measure on the σ-field generated by the narrow topology
in the space of Borel probability measures on the starting Polish space.

1. Introduction.This paper uses the notation of Kallenberg (2002, 2005).
Statistical analysis usually starts from independent and identically dis-

tributed (iid) observations whose underlying probability distribution de-
pends on some state of nature which Bayesian statisticians consider as ran-
dom. This view means postulating a random probability distribution that
underlies the outcome of a statistical experiment, and the prior distribution
of this random measure is acting in Bayes inference.

The present paper considers the case of an infinite, exchangeable se-
quence of observations from a Polish space; it is known from Theorem II.82.5
in Rogers and Williams (1994) that a space is Polish if and only if it is hom-
eomorphic to a Gδ subset of [0, 1]∞. Such an exchangeable sequence is un-
derlain by an a.s. unique random probability measure, so the distribution of
this random measure, as stated in Ferguson (1973), is the prior distribution
involved in non-parametric problems.

2010 Mathematics Subject Classification: Primary 60G57; Secondary 60G09, 62A15.
Key words and phrases: conditional distribution, exchangeability, narrow topology, Radon
random probability measure.
Received 9 February 2017; revised 25 June 2018.
Published online 22 February 2019.

DOI: 10.4064/am2362-7-2018 [39] c© Instytut Matematyczny PAN, 2019



40 N. Bac-Van

Now, extending a theorem of de Finetti (1931), Theorem 1.1 and Proposi-
tion 1.4(i) in Kallenberg (2005) showed that, for an infinite exchangeable
sequence ξ = (Xi, i = 1, 2, . . .) of random elements Xi in a Borel space
(S,S), there is an a.s. unique random probability measure ν on (S,S) and
a σ-field F in the basic probability space (Ω,A) such that

P(ξ ∈ · | F)ω = (ν∞ω )(·) for almost all ω ∈ Ω,

where F can be replaced by σ(ν). In particular, for every B ∈ S and every i,

P(Xi ∈ B | F)ω = νω(B) for almost all ω ∈ Ω;

in other words, ν is a conditional distribution (cd) of Xi given F . That is,
conditioned on ν, the random elements Xi are iid with common distribu-
tion ν, and the distribution of the random measure ν is just the prior dis-
tribution in Bayes inference.

Also, Kallenberg (2005, p. 25) and (2017, p. 15) stated that ν is a random
element in the space M1(S) of probability measures µ on (S,S) endowed
with the σ-field generated by all projection maps πB : µ 7→ µ(B), B ∈ S.
Let g = (πB;B ∈ S); then the map g : M1(S) →×B∈S RB is a bijec-

tion onto its image. When S is uncountable, the Borel σ-field B(RS) gener-
ated by the product topology in×B∈S RB is wider than the product σ-field⊗

B∈S B(RB), so it is desirable to extend the prior distribution of the ran-
dom measure ν from the σ-field g−1[

⊗
B∈S B(RB)] generated by the map g

to g−1[B(RS)].

In comparison to the above situation, let X be some random element Xi

in a Polish space (S,S), S = B(S); then there exists a cd ν of X given a
σ-field F ⊂ A in (Ω,A). Since S is Polish, M1(S) is also the space P(S)
of Radon probability measures on B(S). Therefore, from the topological
viewpoint it is significant to pose the problem of extending the distribution
of a cd ν of a random element in a Polish space S; the present paper aims
at solving this problem. Such an extension for the distribution of a cd ν,
treated as a random measure, has not been conducted in Kallenberg (2017).
We intend to prove that the prior distribution of ν is a Radon probability
measure on the σ-field B(P(S)) generated by the narrow topology in the
space P(S) of probability measures on the Polish space S. It is known that
Radon measures permit us to avoid the image measure catastrophe; see
Schwartz (1973, pp. 30–31).

The paper is organized as follows. We recall some needed facts in Sec-
tion 2, with emphasis on induced measures and image measures. Our results
are presented in Section 3. For any normal topological space X , Proposi-
tion 3.1 gives a homeomorphism that transforms a random element in P(X )
equipped with the narrow topology into a random element in a product space

×R equipped with the product topology; homomorphisms into×R from
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P(X ) are always defined through the correspondence µ 7→ (µ(ϕ), ϕ ∈ D[a,b]),
µ(ϕ) =

	
X ϕdµ, where D[a,b] is the class of all continuous [a, b]-valued func-

tions with some [a, b] ⊂ R. Then Corollary 3.1(1) of Proposition 3.4 states
that the conditional distribution ν of a random element in a Polish space S
can be viewed as a random point in a product space×R which has a dis-
tribution on the product σ-field

⊗
B, the homeomorphic image of which is

contained in the Borel σ-field B(P(S)) of P(S) endowed with the narrow
topology. In order to use Corollary 3.1(1), Proposition 3.3 offers a homeo-
morphism θ from a Polish space into a compact Hausdorff space Σ; by θ, the
conditional distribution ν in Corollary 3.1(1) is transformed into a random
point ν̂ in the space P(Σ) of Radon probabilities on Σ, and P(Σ) is com-
pact by Proposition 3.2. Then, using the set Ψ of all continuous [0, 1]-valued
functions ψ on Σ as the index set, we shall extend a distribution on the
product σ-field

⊗
ψ∈Ψ Bψ, the homeomorphic image of which is contained

in B(P(Σ)). In addition, from the random point ν̂ in P(Σ), the family

ζ̂(ν̂) = (ν̂(ψ), ψ ∈ Ψ), ν̂(ψ) =
	
Σ ψ dν̂, generates a consistent system of

finite-dimensional probability distributions (µF , F finite ⊂ Ψ) which deter-

mines the Kolmogorov distribution µ′ of the process ζ̂(ν̂) = (ν̂(ψ), ψ ∈ Ψ).

Then we show that the measure induced by µ′ is the distribution of ζ̂(ν̂)
on the Borel σ-field over the relative product topology in the range space
of ζ̂(ν̂); this is the result of Proposition 3.5, which leads to the distribution
of ν̂ on a Borel subset of P(Σ). Finally, using the inverse of the homeo-
morphism from P(S) into P(Σ), we get the distribution of the random
measure ν on B(P(S)), attaining the aim of the paper in Theorem 3.1.

2. Preliminaries

2.1. Radon probabilities

Definition 2.1. A Radon probability measure µ on a Hausdorff topo-
logical space X is a Borel measure, i.e. the domain of µ is the Borel σ-field
B(X ), which is inner regular, i.e.

(∀B ∈ B(X )) µ(B) = sup{µ(K) : K compact, K ⊂ B}.
The space of Radon probability measures on X will be denoted by P(X ).

Below, B̂(X )µ denotes the µ-completion of B(X ); see Kallenberg (2002,

p. 13). From (ibid., p. 13) µ has a unique extension to B̂(X )µ; hence, it
follows from Schwartz (1973, Proposition 1, p. 18) that the above inner

regularity holds on B̂(X )µ.
From Schwartz (1973, Definition R2, p. 13), a Radon probability µ is

outer regular, that is,

(∀B ∈ B̂(X )µ) µ(B) = inf
O open⊃B

µ(O).
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From the inner and outer regularity of µ, it follows that a Radon probability
measure µ is a regular set function (cf. Dunford and Schwartz (1958, Defini-

tion 11, p. 137)) on B̂(X )µ.

If every Borel probability measure on a Hausdorff topological space X
is a Radon probability, X is called a Radon space. From Oxtoby and Ulam
(1939), every Polish space is Radon.

2.2. Induced measures

Definition 2.2. Let (X , E ,m) be a measure space and Y ⊂ X . Put
EY = E ∩ Y = {A ∩ Y : A ∈ E}; then Y ∈ EY . The set function mY defined
on the σ-field EY by mY (B) = inf{m(A) : A ∈ E , A ⊃ B} is called the
measure induced by m on the subset Y .

From Schwartz (1973, p. 20), it is known that mY is countably additive,
so mY is a measure on EY .

2.3. Image measures

Definition 2.3. Let (X , E ,m) be a measure space and (Γ, C) a mea-
surable space. Let g : (X , E) → (Γ, C) be an m-measurable mapping, i.e.
g−1(C) ⊂ Êm, the m-completion of E . Then, by using the unique extension
of m to Êm, the measure, denoted by gm, defined on C by

(gm)(C) = m(g−1(C)) ∀C ∈ C,
is called the image measure of m by the map g.

Proposition 2.1. Let X , Y be Hausdorff topological spaces, µ a Radon
probability on X , and g : X → Y a continuous map. Then the image measure
gµ is a Radon probability on Y.

See Schwartz (1973, pp. 36–37).

2.4. Narrow topology. In Schwartz (1973, p. 370, Definition 1), the
narrow topology was defined in the space of finite Radon measures on an
arbitrary Hausdorff topological space, and in Proposition 2, p. 371 there, it
was proved that this topology is Hausdorff. We shall only use the following
narrow topology definition in Schwartz (1973, Part II, Chap. V, §1) for a
completely regular space:

X being a completely regular space, a generalized sequence {µd} in P(X )
is said to converge narrowly to µ ∈ P(X ) if, D denoting the collection of all
continuous [0, 1]-valued functions ϕ on X ,

(∀ϕ ∈ D) lim
d
µd(ϕ) = µ(ϕ), µ(ϕ) =

�

X
ϕdµ.

Hence, from (ibid., Theorem 7, p. 385) we obtain
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Proposition 2.2. If X is a Polish space, P(X ) equipped with the narrow
topology is Polish.

Furthermore, we get

Proposition 2.3. Let g be a homeomorphism from a Hausdorff space
X onto a Hausdorff space Z, and P(X ), P(Z) be equipped with the narrow
topologies. Then the map h : µ 7→ gµ is a homeomorphism from P(X ) onto
P(Z).

Proof. By assumption, g : X → Z and g−1 : Z → X are continuous.
Thus, the conditions of Theorem 11 in Schwartz (1973, p. 37) are fulfilled;
therefore, every ν ∈ P(Z) is the image gµ of some µ ∈ P(X ). From (ibid.,
Theorem 10, p. 37), the map h : µ 7→ gµ on P(X ) to P(Z) is injective,
so it is a bijection from P(X ) onto P(Z). From Schwartz (1973, Proposi-
tion 3, p. 372), with P(X ) and P(Z) equipped with the narrow topologies the
bijection h is continuous, and so is the inverse bijection h−1 : ν 7→ g−1ν from
P(Z) onto P(X ). Thus, h is a homeomorphism from P(X ) onto P(Z).

3. Conditional probability distributions

3.1. Narrow topology: the case of normal topological spaces. In
the space rca(X ,B(X )) (cf. Dunford and Schwartz, 1958, pp. 161–162) of
all regular countably additive real-valued set functions defined on the Borel
σ-field of a topological space X , we shall also introduce the narrow topology.

Definition 3.1. For X completely regular, a generalized sequence {µd}
in rca(X ,B(X )) is said to converge narrowly to µ ∈ rca(X ,B(X )) if

lim
d
µd(ϕ) = µ(ϕ) ∀ϕ ∈ D.

By the regularity of Radon probability measures, always P(X ) ⊂
rca(X ,B(X )).

First, we get

Proposition 3.1. The narrow topology in rca(X ,B(X )) is Hausdorff for
a normal topological space X , and on rca(X ,B(X )) equipped with the narrow
topology the map ζ : µ 7→ (µ(ϕ), ϕ ∈ D) is a homeomorphism into×ϕ∈D Rϕ
equipped with the product topology. In particular, ζ is a homeomorphism from
P(X ) equipped with the relative narrow topology onto the subspace ζ(P(X ))
of ×ϕ∈D Rϕ equipped with the relative product topology.

Proof. Let p ∈ rca(X ,B(X )) be such that p(ϕ) =
	
X ϕdp ≥ 0 for all

ϕ ∈ D. Let us show that p is non-negative.

By Hahn’s decomposition (cf. Dunford and Schwartz, 1958, Theorem
III.4.10, p. 129), there is a set E0 ∈ B(X ) such that p is non-negative on
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subsets of E0 and non-positive on subsets of Ec0. By the definition of regular
set functions (cf. ibid., p. 137),

(∀ε > 0)(∃ a closed set F ⊂ E0)(∃ an open set G ⊃ E0)

(∀C ∈ B(X ), C ⊆ G− F ) |p(C)| < ε.

Then for each n, there are a closed set Fn ⊂ E0 and an open set Gn ⊃ E0

such that |p(C)| < 1/n for all C ⊆ Gn−Fn; moreover, Gn+1 can be replaced
by G′n+1 = Gn ∩ Gn+1, so we can assume that the sequence {Gn} is non-
increasing.

Suppose that p(Gcn0
) < 0 for some n0. In Dunford and Schwartz (1958,

p. 127), it was proved that a real-valued countably additive set function
defined on a σ-field in an arbitrary set is always bounded, so the sequence
{−p(Gcn)} is bounded and non-decreasing, hence converges to a positive
limit β, say. From Urysohn’s theorem, there is f ∈ D such that f(F ) = 0
and f(Gc) = 1; in addition,∣∣∣ �

G−F
f dp

∣∣∣ ≤ p(E0 − F ) + (−p)(G− E0).

Thus, |
	
G−F f dp| ≤ 2ε. In particular, if fn ∈ D is such that fn(Fn) = 0 and

fn(Gcn) = 1, then |
	
Gn−Fn

fn dp| ≤ 2/n. Furthermore, for p(f) =
	
X f dp

≥ 0, by assumption we have

p(f) =
�

Gc

f dp+
�

G−F
f dp = p(Gc) +

�

G−F
f dp;

in particular,

0 ≤ p(fn) = p(Gcn) +
�

Gn−Fn

fn dp,

so limn→∞ p(fn) = −β < 0, which is a contradiction.
Therefore, p(Gcn) = 0 for all n because p(Gcn) ≤ 0; moreover,

p(Ec0) = p(Gcn) + p(Gn − E0) = p(Gn − E0),

so |p(Ec0)| = |p(Gn − E0)| < 1/n for all n. Thus, p(Ec0) = 0, so p is non-
negative on B(X ).

If a generalized sequence {µd} in rca(X ,B(X )) has two limits µ and µ′

in the narrow topology then (µ− µ′)(ϕ) = (µ′ − µ)(ϕ) = 0 for all ϕ ∈ D, so
µ − µ′ and µ′ − µ are non-negative. Thus, µ = µ′, i.e. the narrow topology
in rca(X ,B(X )) is Hausdorff.

Let µ, µ′ ∈ rca(X ,B(X )). Then ζ(µ) = ζ(µ′) means µ(ϕ) = µ′(ϕ), or
(µ − µ′)(ϕ) = 0, for all ϕ ∈ D; thus, µ = µ′. Hence, ζ is an injection
from rca(X ,B(X )) into×ϕ∈D Rϕ. Since ζ(rca(X ,B(X ))) ⊂×ϕ∈D Rϕ, to

the relative product topology of ζ(rca(X ,B(X ))) there corresponds by the
bijection ζ−1 a topology τP in rca(X ,B(X )); then ζ is a homeomorphism
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from (rca(X ,B(X )), τP ) onto ζ(rca(X ,B(X ))) equipped with the relative
product topology. Moreover, τP is just the narrow topology since the τP -
convergence of a generalized sequence {µd} to µ in rca(X ,B(X )) means
ζ(µd) → ζ(µ) in the product space×ϕ∈D Rϕ, or µd(ϕ) → µ(ϕ) for all
ϕ ∈ D.

Propositions 3.2 below will serve the proof of Proposition 3.5.

Proposition 3.2. If X is a compact Hausdorff space, then the set P(X )
of all Radon probabilities on B(X ) is also a compact Hausdorff space in the
narrow topology.

Proof. The space X being compact, by the F. Riesz representation the-
orem in Dunford and Schwartz (1958, p. 265), C(X ) being the space of
all bounded continuous functions on X , each element µ of the B-space
rca(X ,B(X )) can be identified with an element z ∈ C∗(X ) such that
zϕ = µ(ϕ) for all ϕ ∈ C(X ). Then a generalized sequence {zd} in C∗(X )
converges to z ∈ C∗(X ) in the weak∗ topology of C∗(X ) (cf. Dunford and
Schwartz, 1958, p. 420) if and only if the corresponding {µd, d ∈ D} con-
verges to µ in the narrow topology of rca(X ,B(X )). Thus, to the narrowly
closed set P(X ) in rca(X ,B(X )) there corresponds a weak∗-closed set F in
C∗(X ), and, since P(X ) is bounded in the B-space rca(X ,B(X )), by iso-
metric correspondence F is bounded in the norm topology of the B-space
C∗(X ); according to Dunford and Schwartz (1958, Corollary V.4.3, p. 424),
F is compact in the weak∗ topology of C∗(X ) since it is closed in the weak∗

topology and bounded in the norm topology. By the homeomorphism be-
tween rca(X ,B(X )) equipped with the narrow topology and C∗(X ) equipped
with the weak∗ topology, the set P(X ) corresponding to the compact set F
is compact in the narrow topology of rca(X ,B(X )) which is Hausdorff by
Proposition 3.1; thus, P(X ) is compact Hausdorff.

The following proposition, which appeared in a lecture given by Lau-
rent Schwartz in Hanoi, April 1976, specifies Theorem 22 in Dunford and
Schwartz (1958, p. 276).

Proposition 3.3. Let S be a completely regular topological space; then

• the map θ : S 3 s 7→ (ϕ(s), ϕ ∈ D) ∈ [0, 1]D is a homeomorphism from
S onto θ(S) supplied with the relative topology from the product topology
in [0, 1]D,
• the closure Σ = θ(S) is a compact Hausdorff space.

Proof. The map θ is injective, for given s, s′ ∈ S, s 6= s′, by the complete
regularity there is a ϕ ∈ D such that ϕ(s) 6= ϕ(s′); it is continuous, for
given any generalized sequence sd converging to s, θ(sd) converging to θ(s)
according to the product topology is equivalent to the convergence of every
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coordinate θϕ(sd) = ϕ(sd) to θϕ(s) = ϕ(s). To show that the map θ is open,
let U be an open set in S. Fix a point s ∈ U ; then there exists ϕ0 ∈ D with
ϕ0(s) = 1 and ϕ0(U

c) = 0, so if ϕ0(s
′) 6= 0 then s′ ∈ U . Consider

A = {z : z = (zϕ, ϕ ∈ D) ∈ [0, 1]D, zϕ0 ∈ (0, 1]} ⊂ [0, 1]D;

then A is an open cylinder in [0, 1]D equipped with the product topology,
so, in the subspace θ(S), A ∩ θ(S) is open. In addition,

A ∩ θ(S) = {z : z = (ϕ(s′), ϕ ∈ D), s′ ∈ S, ϕ0(s
′) 6= 0},

so A ∩ θ(S) ⊂ {z : z = (ϕ(s′), ϕ ∈ D), s′ ∈ U} = θ(U). Now, s being an
arbitrary point in U , θ(s) is any point in θ(U), and θ(s) ∈ A ∩ θ(S) since
the coordinate (θ(s))ϕ0 = ϕ0(s) equals 1 ∈ (0, 1]; moreover, A ∩ θ(S) is a
neighborhood of θ(s), so any point in θ(U) has a neighborhood contained
in θ(U). Hence, in the relative product topology of θ(S), θ(U) is an open
set, so the map θ is open; therefore θ is a homeomorphism from S onto
θ(S) ⊂ [0, 1]D.

By the Tikhonov theorem, [0, 1]D is a compact Hausdorff space, so Σ =
θ(S) is compact Hausdorff.

3.2. Conditional probability distributions as Radon random
measures. We start from a random element X mapping the basic proba-
bility space (Ω,A,P) into a Polish space S supplied with its Borel σ-field
B(S). Since every Polish space is a Borel space, from Kallenberg (2002, The-
orem 6.3, p. 107) there always exists a conditional distribution ν of X given
a sub-σ-field F ⊂ A. The following proposition leads to Corollary 3.1 as
mentioned in the Introduction.

Proposition 3.4. Let X be a normal topological space, and η̄ : Ω →
P(X ) be an F-measurable Radon probability measure on B(X ); that is, η̄ω
is a Radon probability measure for each ω ∈ Ω, and for every B ∈ B(X ),
η̄ω(B) is F-measurable in ω. Let ζ(µ) = (µ(ϕ), ϕ ∈ D) for µ ∈ P(X ). Then,
the space P(X ) being equipped with the narrow topology, for Bϕ = B(Rϕ),
η̄ has a probability distribution on the σ-field ζ−1(

⊗
ϕ∈D Bϕ) contained in

the Borel σ-field B(P(X )).

Proof. Since η̄(ϕ) =
	
X ϕdη̄ is F-measurable in ω for any ϕ ∈ D, ζ(η̄) =

(η̄(ϕ), ϕ ∈ D) is a family of F-measurable random variables. Therefore,
the F-measurable random process ζ(η̄) has a probability distribution on
the product σ-field

⊗
ϕ∈D Bϕ. Moreover, from Proposition 3.1, ζ is a hom-

eomorphism from P(X ) equipped with the relative narrow topology into
the product space×ϕ∈D Rϕ; thus, η̄ has a probability distribution on the

σ-field ζ−1(
⊗

ϕ∈D Bϕ), which is contained in the σ-field B(P(X )) generated
by the narrow topology since

⊗
ϕ∈D Bϕ is contained in the Borel σ-field
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generated by the product topology in×ϕ∈D Rϕ, whose inverse image by the

homeomorphism ζ is B(P(X )).

Corollary 3.1. S being a Polish space, let ζ(µ) = (µ(ϕ), ϕ ∈ D) for
µ ∈ P(S).

(1) Let ν be a cd given F of a random element X in S. Then ν has a prob-
ability distribution on the σ-field ζ−1(

⊗
ϕ∈D Bϕ) contained in the Borel

σ-field B(P(S)) of the space P(S) equipped with the narrow topology.
(2) Furthermore, the image measure θν by the map θ : S → Σ in Proposi-

tion 3.3 is a cd given F of θ◦X; then, with ν̂ denoting θν, ν̂(ω) ∈ P(Σ)
for each ω ∈ Ω.

(3) Let Ψ be the set of continuous [0, 1]-valued functions on Σ, and Bψ =

B(Rψ) for ψ ∈ Ψ . For λ ∈ P(Σ), let ζ̂(λ) = (λ(ψ), ψ ∈ Ψ) where
λ(ψ) =

	
Σ ψ dλ. Then ν̂ has a probability distribution on the σ-field

ζ̂−1(
⊗

ψ∈Ψ Bψ) contained in B(P(Σ)), the Borel σ-field of P(Σ) equipped
with the narrow topology.

Later, Theorem 3.1 will show that in (1), ν has a probability distribution
on B(P(S)).

Proof of Corollary 3.1. (1) Since every Polish space is Radon, ν ∈ P(S)
for each ω ∈ Ω; thus, ν is an F-measurable Radon probability measure
on B(S), so the first assertion follows from Proposition 3.4.

(2) Since X is a random element in S, from Proposition 3.3 the range
space of θ ◦X is Σ. Furthermore, for C ∈ B(Σ),

(θν)(C) = ν(θ−1C) = PF (X ∈ θ−1C) = PF (θ ◦X ∈ C) PF -a.s.,

so θν is a cd of θ ◦ X given F . Also, θν is an F-measurable probability
measure on B(Σ) since (θν)(C) is F-measurable in ω for every C ∈ B(Σ).
By Proposition 2.1, for each ω ∈ Ω, the image measure (θν)(ω) = ν̂(ω) is
in P(Σ).

(3) Thus, ν̂ is an F-measurable Radon probability measure on B(Σ).
Since Σ is compact Hausdorff by Proposition 3.3, hence normal, Proposi-
tion 3.4 leads to the third assertion.

The proposition below gives the extended distribution of ν̂ in Corollary
3.1(2)&(3). In the proof we shall use the following lemma.

Lemma 3.1. Let (Zt, τt), t ∈ T, be an indexed family of topological spaces,
and A a Borel set in Z =×t∈T Zt equipped with the product topology τ .
Assume that the relative topology τA = A ∩ τ has a countable base. Then

A ∩
⊗
t∈T
B(Zt) = A ∩ B

(
×
t∈T

Zt

)
.



48 N. Bac-Van

Proof. Let β be a countable base for τA = A ∩ τ . Every set B ∈ β ⊂
A ∩ τ is the union of some family Φ of finite intersections of cylinders like
A ∩ (Ut ××s∈T−{t} Zs) with Ut ∈ τt. Then Φ ⊂ A ∩ τ . Since the topology
A∩ τ has a countable base, by Lindelöf’s theorem in Dunford and Schwartz
(1958, I.4.14, p. 12) there is a countable subfamily Φ0 ⊂ Φ with

⋃
Φ0 =

⋃
Φ.

Then B =
⋃
Φ0, so

B ∈ σ
({
A ∩

(
Ut × ×

s∈T−{t}
Zs

)
, t ∈ T

})
= A ∩

⊗
t∈T
B(Zt);

hence, σ(β) ⊆ A ∩
⊗

t∈T B(Zt).

Moreover, σ(A∩τ) = σ(β) since A∩τ has a countable base β. In addition,

(∀t ∈ T ) A ∩
(
Ut × ×

s∈T−{t}
Zs

)
∈ A ∩ τ,

so A ∩
⊗

t∈T B(Zt) ⊆ σ(A ∩ τ) = σ(β). Then σ(β) = A ∩
⊗

t∈T B(Zt).

Since σ(β) = σ(A ∩ τ) = A ∩ σ(τ) = A ∩ B(×t∈T Zt), we get

A ∩
⊗
t∈T
B(Zt) = A ∩ B

(
×
t∈T

Zt

)
.

By assumption A ∈ B(Z), so B(A) = A ∩ B(×t∈T Zt). Then the above
equality means that every set of B(Z) contained in A coincides with an
intersection C ∩A for some C ∈

⊗
t∈T B(Zt).

Proposition 3.5. Let ν̂, the Polish space S, the space Σ and the set Ψ
be as in Corollary 3.1(3). For λ ∈ P(Σ), put ζ̂(λ) = (λ(ψ), ψ ∈ Ψ)),

ζ̂ψ(λ) = λ(ψ) =
	
Σ ψ dλ, Aψ = ζ̂ψ[P(Σ)] ⊂ Rψ, and Bψ = B(Rψ); also,

assume P(Σ) is always equipped with the narrow topology. With the map θ
of Proposition 3.3, the map h : µ 7→ θµ is a homeomorphism from P(S)
onto π = h[P(S)] ⊂ P(Σ). Then the measure µ∗ induced by the Kolmogorov

distribution µ′ of the process (ν̂(ψ), ψ ∈ Ψ) = ζ̂(ν̂) on its range space ζ̂(π) is

the distribution of ζ̂(ν̂), and ζ̂−1µ∗, which is a Radon probability on B(π),
is the distribution of the π-valued random point ν̂.

Proof. (1) Since Σ in Proposition 3.3 is a compact Hausdorff space,
P(Σ) endowed with the narrow topology is by Proposition 3.2 a compact

Hausdorff space, hence normal. Then by Proposition 3.1, ζ̂ = (ζ̂ψ, ψ ∈ Ψ) is
a homeomorphism from P(Σ) into AΨ =×ψ∈Ψ Aψ ⊂×ψ∈Ψ Rψ, so, for each

ψ ∈ Ψ , the map ζ̂ψ from P(Σ) onto Aψ = ζ̂ψ[P(Σ)] being continuous, Aψ is
compact, hence closed in Rψ. Thus, Aψ ∈ Bψ, and B(Aψ) = Aψ ∩ Bψ.

(2) In addition, for any finite subset F of Ψ , (ζ̂ψ, ψ ∈ F ) : P(Σ) →
×ψ∈F Rψ, so, for all B ∈

⊗
ψ∈F Bψ,
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(ζ̂ψ, ψ ∈ F )−1(B) = {λ : λ ∈ P(Σ), (ζ̂ψ, ψ ∈ F )(λ) ∈ B}

=
{
λ : λ ∈ P(Σ), ζ̂(λ) ∈ B × ×

ψ∈Ψ−F
Rψ
}
.

Moreover, (B ××ψ∈Ψ−F Rψ) ∈
⊗

ψ∈Ψ Bψ, so

(ζ̂ψ, ψ ∈ F )−1
(⊗
ψ∈F
Bψ
)
⊂ ζ̂−1

(⊗
ψ∈Ψ
Bψ
)
.

(3) In Corollary 3.1 let m be the distribution of ν̂ on the σ-field

ζ̂−1(
⊗

ψ∈Ψ Bψ) ⊂ B(P(Σ)). Since

(ζ̂ψ, ψ ∈ F )−1
(⊗
ψ∈F
B(Aψ)

)
= (ζ̂ψ, ψ ∈ F )−1

(⊗
ψ∈F
Bψ
)
,

for C ∈
⊗

ψ∈F B(Aψ) we have (ζ̂ψ, ψ ∈ F )−1(C) ∈ ζ̂−1(
⊗

ψ∈Ψ Bψ), and

m[(ζ̂ψ, ψ ∈ F )−1(C)] = P[ν̂ ∈ (ζ̂ψ, ψ ∈ F )−1(C)]

= P[(ζ̂ψ, ψ ∈ F ) ◦ ν̂ ∈ C].

Thus, the image measure µF =(ζ̂ψ, ψ∈F )m on the Borel σ-field B(×ψ∈F Aψ)

=
⊗

ψ∈F B(Aψ) is the distribution of (ζ̂ψ, ψ ∈ F ) ◦ ν̂.

(4) In addition, (ζ̂ψ, ψ ∈ F ) ◦ ν̂ = (ζ̂ψ(ν̂), ψ ∈ F ), ζ̂ψ(ν̂) = ν̂(ψ) =	
Σ ψ dν̂, so µF is just a finite-dimensional probability distribution for the

family ζ̂(ν̂) of random variables ζ̂ψ(ν̂), ψ ∈ Ψ . Moreover, from the consis-
tency theorem (cf. Loève, 1977, p. 94), the consistent system {µF , F ⊂ Ψ}
uniquely determines a probability µ′ on the product σ-field

⊗
ψ∈Ψ (Bψ∩Aψ)

=
⊗

ψ∈Ψ B(Aψ) in the product space AΨ =×ψ∈Ψ Aψ; also, with πF be-

ing the canonical projection from AΨ onto×ψ∈F Aψ, the distribution µ′ is
determined by the condition

(∀F finite ⊂ Ψ) µ′(π−1F BF) = µF(BF), BF ∈
⊗
ψ∈F
B(Aψ).

(5) The map θ in Proposition 3.3 is a homeomorphism from S onto
θ(S) ⊂ Σ. From Proposition 2.3, the map h : µ 7→ θµ is a homeomorphism
from P(S) onto π = h[P(S)] ⊂ P(Σ).

In Corollary 3.1(2), θν has been denoted by ν̂; moreover, the range space
of ν is the Polish space P(S), so ν̂ has the image π = h[P(S)] for a range
space. Moreover, according to Schwartz (1973, Definition 2, p. 94), as the
continuous bijective image of the Polish space P(S), h[P(S)] is a Luzin space
contained in the Hausdorff space P(Σ); therefore, from Schwartz (1973,
Theorem 5, p. 101), π = h[P(S)] is a Borel set in P(Σ).

The Kolmogorov distribution µ′ has been defined on the σ-field⊗
ψ∈Ψ B(Aψ) in×ψ∈Ψ Aψ. From Definition 2.2, the induced measure µ′

ζ̂(π)
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is defined on the σ-field ζ̂(π) ∩
⊗

ψ∈Ψ B(Aψ). Since ζ̂(π) ⊂ ζ̂(P(Σ)) ⊂
×ψ∈Ψ Aψ, we have ζ̂(π)∈ ζ̂(π) ∩

⊗
ψ∈Ψ B(Aψ) according to Definition 2.2.

Moreover, ζ̂(ν̂) ∈ ζ̂(π), and µ′ is the distribution of ζ̂(ν̂) on
⊗

ψ∈Ψ B(Aψ),
so, for the induced measure,

µ′
ζ̂(π)

(ζ̂(π)) = inf
{
µ′(C) : C ∈

⊗
ψ∈Ψ
B(Aψ), C ⊃ ζ̂(π)

}
= 1.

(6) Hence, µ′
ζ̂(π)

is a probability measure on ζ̂(π)∩
⊗

ψ∈Ψ B(Aψ). Since ζ̂

is a homeomorphism from P(Σ) into AΨ =×ψ∈Ψ Aψ, and π ∈ B(P(Σ)), ζ̂ is
a homeomorphism from π equipped with the relative narrow topology onto
ζ̂(π) equipped with the relative product topology; thus, ζ̂(π) ∈ B(×ψ∈Ψ Aψ).

In addition, π = h(P(S)) is homeomorphic to the Polish space P(S), hence

π is also a Polish space, and so is ζ̂(π) equipped with the relative product
topology. Let τ be the product topology of×ψ∈Ψ Aψ; since ζ̂(π) is a Polish

space, the relative topology ζ̂(π) ∩ τ has a countable base. By Lemma 3.1,

ζ̂(π) ∩
⊗
ψ∈Ψ
B(Aψ) = ζ̂(π) ∩ B

(×
ψ∈Ψ

Aψ

)
= ζ̂(π) ∩ B(AΨ ).

Therefore, µ′
ζ̂(π)

is a probability measure on the σ-field ζ̂(π) ∩ B(AΨ ) =

B(ζ̂(π)).

(7) Now, define a probability measure µ∗ on ζ̂(π)∩B(AΨ ) = B(ζ̂(π)) by

µ∗ = µ′
ζ̂(π)

. Since ζ̂(π) is a Polish space, the Borel measure µ∗ on B(ζ̂(π)) is

Radon.
(8) π is the range space for ν̂, so ζ̂(π) is the range space for ζ̂(ν̂).

The Kolmogorov distribution µ′ is the distribution of ζ̂(ν̂) on the σ-field⊗
ψ∈Ψ B(Aψ). Therefore, with C ′ ∈

⊗
ψ∈Ψ B(Aψ),

P [ζ̂(ν̂) ∈ ζ̂(π) ∩ C ′] = P [ζ̂(ν̂) ∈ C ′] = µ′(C ′).

Further, from Definition 2.2,

µ′
ζ̂(π)

[ζ̂(π) ∩ C ′] = inf
{
µ′(C) : C ∈

⊗
ψ∈Ψ
B(Aψ), C ⊃ ζ̂(π) ∩ C ′

}
= inf

{
µ′(C) : C ∈

⊗
ψ∈Ψ
B(Aψ), ζ̂(π) ∩ C ⊇ ζ̂(π) ∩ C ′

}
= inf

{
µ′(C) : C ∈

⊗
ψ∈Ψ
B(Aψ), ζ̂(π) ∩ C = ζ̂(π) ∩ C ′

}
.

Since, for C,C ′ ∈
⊗

ψ∈Ψ B(Aψ), if ζ̂(π)∩C = ζ̂(π)∩C ′ then ζ̂(π)∩ (C4C ′)
= ∅, so µ′(C 4 C ′) = 0, i.e. µ′(C) = µ′(C ′). It follows that

µ′
ζ̂(π)

[ζ̂(π) ∩ C ′] = µ′(C ′) = P [ζ̂(ν̂) ∈ ζ̂(π) ∩ C ′].
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Thus, µ∗ = µ′
ζ̂(π)

is the distribution of ζ̂(ν̂) on ζ̂(π)∩
⊗

ψ∈Ψ B(Aψ) = ζ̂(π)∩

B(AΨ ) = B(ζ̂(π)). Hence, ζ̂−1 being a homeomorphism from ζ̂(π) onto π,

ζ̂−1µ∗ is the distribution of ν̂ on B(π), and ζ̂−1µ∗ is a Radon probability on
B(π) by Proposition 2.1.

Finally, we are ready to prove the following, attaining our aim.

Theorem 3.1. Let S be a Polish space, X : (Ω,A)→ (S,B(S)) a random
element in S, and F any sub-σ-field of A. Let ν be a conditional distribution
of X given F . Then ν ∈ P(S) for all ω ∈ Ω, and ν has a distribution which
is a Radon probability measure on the Borel σ-field B(P(S)) of the space
P(S) supplied with the narrow topology.

Proof. Since any Polish space is Radon, ν ∈ P(S) for all ω ∈ Ω.

In the proof of Proposition 3.5, h : µ 7→ θµ is a homeomorphism from
P(S) onto π = h[P(S)], and h−1 is one from π onto P(S), so Borel sets
C ∈ B(π) bijectively correspond to Borel sets B ∈ B(P(S)); thus, for ν̂ = θν,

we have ν̂ ∈ C ⇔ ν ∈ B, and C = h(B). Also, by denoting η̂π = ζ̂−1µ∗, from

Proposition 2.1 the image measure h−1η̂π of the Radon probability ζ̂−1µ∗ in
Proposition 3.5 is a Radon probability on P(S). Furthermore, since ζ̂−1µ∗

is the distribution of ν̂ on B(π), we have

η̂π(C) = P (ν̂ ∈ C) = P (ν ∈ B).

In addition,

η̂π(C) = η̂π(h(B)) = (h−1η̂π)(B),

so h−1η̂π is the distribution of ν on B(P(S)), and h−1η̂π is a Radon measure
since the space P(S) supplied with the narrow topology is Polish by Proposi-
tion 2.2, hence a Radon space.

A random probability measure on a Polish space (S,B(S)) will be called
a Radon random probability measure if it has a determined distribution on
B(P(S)). Thus, Theorem 3.1 asserts that an infinite, exchangeable sequence
in a Polish space is directed (cf. Kallenberg, 2005, Proposition 1.4(i), p. 28)
by a Radon random probability measure. In other words, we have the fol-
lowing

Conclusion 3.1. The prior distribution of the a.s. unique random mea-
sure underlying an infinite, exchangeable sequence of observations from a
Polish space S is a Radon probability measure on the σ-field B(P(S)) in the
Polish space P(S) equipped with the narrow topology.
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