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Abstract. These lectures explain how to apply the Cartan–Kähler theorem to problems in
differential geometry. We want to decide if there are submanifolds of a given dimension inside
a given manifold on which given differential forms vanish. The Cartan–Kähler theorem gives
a linear algebra test: if the test passes, such submanifolds exist. I will not give a proof or give
the most general statement of the theorem, as it is difficult to state precisely.

1. Expressing differential equations using differential forms. Take a differential
equation of second order 0 = f(x, u, ux, uxx). To write it as a first order system, add a
new variable p to represent ux, and a new equation:

ux = p,

0 = f(x, u, p, px) .

It is easy to generalize this to any number of variables and equations of any order: reduce
any system of differential equation to a first order system.

To express a first order differential equation 0 = f(x, u, ux), add a variable p to
represent the derivative ux, let ϑ = du− p dx on the manifold

M = {(x, u, p) |0 = f(x, u, p)}

(assuming it is a manifold). A submanifold of M of suitable dimension on which 0 = ϑ

and 0 6= dx is locally the graph of a solution. It is easy to generalize this to any number
of variables and any number of equations of any order.
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2. The Cartan–Kähler theorem. An integral manifold of a collection of differential
forms is a submanifold on which the forms vanish. An exterior differential system is
an ideal I ⊂ Ω∗ of smooth differential forms on a manifold M , closed under exterior
derivative, which splits into a direct sum

I = I0 ⊕ I1 ⊕ . . .⊕ In

of forms of various degrees: Ip ..= I∩Ωp. Any collection of differential forms has the same
integral manifolds as the exterior differential system it generates. An exterior differential
system is analytic if it is locally generated by real analytic differential forms.

Some trivial examples: the exterior differential system generated by
1. 0,
2. Ω∗,
3. the pullbacks of all forms via a submersion,
4. dx1 ∧ dy1 + dx2 ∧ dy2 in R4,
5. dy − z dx on R3.
Problem 1. What are the integral manifolds of our trivial examples?

The elements of I0 are 0-forms, i.e. functions. All I-integral manifolds lie in the zero
locus of these functions. Replace our manifold M by that zero locus (which might not
be a manifold, a technical detail we will ignore); henceforth we add to the definition of
exterior differential system the requirement that I0 = 0.

An integral element at a point m ∈M of an exterior differential system I is a linear
subspace E ⊂ TmM on which all forms in I vanish. Every tangent space of an integral
manifold is an integral element, but some integral elements of some exterior differential
systems do not arise as tangent spaces of integral manifolds.
Problem 2. What are the integral elements of our trivial examples?

The polar equations of an integral element E are the linear functions
w ∈ TmM 7→ ϑ(w, e1, e2, . . . , ek)

where ϑ ∈ Ik+1 and e1, e2, . . . , ek ∈ E. They vanish on a vector w just when the span
of {w} ∪ E is an integral element. If an integral element E is contained in another one,
E ⊂ F , then all polar equations of E occur among those of F : larger integral elements
have more (or at least the same) polar equations.
Problem 3. What are the polar equations of the integral elements of our trivial exam-
ples?

A partial flag E• is a sequence of nested linear subspaces E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Ep
in a vector space. The increments of a partial flag are the integers measuring how the
dimensions increase:

dimE0,

dimE1 − dimE0,

dimE2 − dimE1,...
dimEp − dimEp−1.
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A flag is a partial flag
E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Ep

for which dimEi = i. Danger: most authors require that a flag have subspaces of all
dimensions; we do not: we only require that the subspaces have all dimensions 0, 1, 2, . . . , p
up to some dimension p. In particular, the increments of any flag are 0, 1, 1, . . . , 1.

The polar equations of a flag E• of integral elements form a partial flag in the cotan-
gent space. The characters s0, s1, . . . , sp of E• are the increments of its polar equations, i.e.
the numbers of linearly independent polar equations added at each increment in the flag.
Problem 4. What are the characters of the integral flags of our trivial examples?

The rank p Grassmann bundle of a manifold M is the set of all p-dimensional linear
subspaces of tangent spaces of M .
Problem 5. Recall how charts are defined on the Grassmann bundle. Prove that the
Grassmann bundle is a fiber bundle over the underlying manifold.

The integral elements of an exterior differential system form a subset of the Grassmann
bundle. Let us inquire whether this subset is a submanifold of the Grassmann bundle;
if so, let us predict its dimension. We say that a flag of integral elements predicts the
dimension dimM+s1+2s2+. . .+psp; an integral element predicts the dimension predicted
by the generic flag inside it.
Theorem 1 (Cartan’s bound). Every integral element predicts the dimension of a sub-
manifold of the Grassmann bundle containing all nearby integral elements.

An integral element E correctly predicts dimension if the integral elements near E
form a manifold of dimension predicted by E. An integral element which correctly predicts
dimension is involutive.
Theorem 2 (Cartan–Kähler). There is an integral manifold tangent to every involutive
integral element of any analytic exterior differential system.

If an integral element is involutive, then all nearby integral elements are too, as the
nonzero polar equations will remain nonzero. An exterior differential system is involutive
if its generic maximal dimensional integral element is involutive.
Problem 6. The Frobenius theorem in this language: on a manifold M of dimension
p + q, take an exterior differential system I locally generated by q linearly independent
1-forms together with all differential forms of degree more than p: Ik = Ωk for k > p.
Prove that I is involutive if and only if every 2-form in I is a sum of terms of the form ξ∧ϑ
where ϑ is a 1-form in I. Prove that this occurs just when the p-dimensional I-integral
manifolds form the leaves of a foliation F of M . Prove that then I1 consists precisely of
the 1-forms vanishing on the leaves of F .

3. Example: Lagrangian submanifolds. Let
ϑ ..= dx1 ∧ dy1 + dx2 ∧ dy2 + . . .+ dxn ∧ dyn.

Let I be the exterior differential system generated by ϑ on M ..= R2n. The integral
manifolds of I are called Lagrangian manifolds. Let us employ the Cartan–Kähler theorem
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to prove the existence of Lagrangian submanifolds of complex Euclidean space. Writing
spans of vectors in angle brackets,

Flag Polar equations Characters
E0 = {0} {0} s0 = 0
E1 = 〈∂x1〉

〈
dy1〉 s1 = 1

...
...

...
En = 〈∂x1 , ∂x2 , . . . , ∂xn〉

〈
dy1, dy2, . . . , dyn

〉
sn = 1

The flag predicts

dimM + s1 + 2s2 + . . .+ nsn = 2n+ 1 + 2 + . . .+ n.

The nearby integral elements at a given point of M are parameterized by dy = a dx,
which we plug in to ϑ = 0 to see that a can be any symmetric matrix. So the space of
integral elements has dimension

dimM + n(n+ 1)
2 = 2n+ n(n+ 1)

2 ,

correctly predicted. Therefore the Cartan–Kähler theorem proves the existence of La-
grangian submanifolds of complex Euclidean space, one (at least) through each point,
tangent to each subspace dy = a dx, at least for any symmetric matrix a close to 0.

Problem 7. On a complex manifoldM , take a Kähler form ϑ and a holomorphic volume
form Ψ, i.e. closed forms expressed in local complex coordinates as

ϑ =
√
−1
2 gµν̄ dz

µ ∧ dzν̄ ,

Ψ = f(z) dz1 ∧ dz2 ∧ . . . ∧ dzn,

with f(z) a holomorphic function and gµν̄ a positive definite self-adjoint complex matrix
of functions. Prove the existence of special Lagrangian manifolds, i.e. integral manifolds
of the exterior differential system generated by the pair of ϑ and the imaginary part of Ψ.

4. The last character. In applying the Cartan–Kähler theorem, we are always looking
for submanifolds of a particular dimension p. For simplicity, we can add the hypothesis
that our exterior differential system contains all differential forms of degree p + 1 and
higher. In particular, the p-dimensional integral elements are maximal dimensional in-
tegral elements. The polar equations of any maximal dimensional integral element Ep
cut out precisely Ep, i.e. there are dimM − p independent polar equations on Ep. We
encounter s0, s1, . . . , sp polar equations at each increment, so the number of independent
polar equations is s0 + s1 + . . . + sp. Our hypothesis helps us to calculate sp from the
other characters:

s0 + s1 + . . .+ sp−1 + sp = dimM − p.

For even greater simplicity, we take this as a definition for the final character sp, throwing
out the previous definition. Now we can ignore any differential forms of degree more than p
when we test Cartan’s bound.
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5. Example: harmonic functions. We will prove the existence of harmonic functions
on the plane with given value and first derivatives at a given point. On M = R5

x,y,u,ux,uy
,

let I be the exterior differential system generated by

ϑ ..= du− ux dx− uy dy,
Θ ..= dux ∧ dy − duy ∧ dx.

Note that
dϑ = −dux ∧ dx− duy ∧ dy

also belongs to I because any exterior differential system is closed under exterior deriva-
tive. An integral surface X ⊂M on which 0 6= dx∧ dy is locally the graph of a harmonic
function u = u(x, y) and its derivatives ux = ∂u

∂x , ux = ∂u
∂x .

Each integral plane E2 (i.e. integral element of dimension two) on which dx ∧ dy 6= 0
is given by equations

dux = uxx dx+ uxy dy,

duy = uyx dx+ uyy dy,

for a unique choice of four constants uxx, uxy, uyx, uyy subject to the two equations uxy =
uyx and 0 = uxx + uyy. Hence integral planes at each point have dimension two. The
space of integral planes has dimension dimM + 2 = 5 + 2 = 7.

Each vector inside that integral plane has the form

v = (ẋ, ẏ, uxẋ+ uy ẏ, uxxẋ+ uxy ẏ, uyxẋ+ uyy ẏ) .

Each integral line E1 is the span E1 = 〈v〉 of a nonzero such vector. Compute

v

(
dϑ

Θ

)
=
(
ẋ dux + ẏ duy − (uxxẋ+ uxy ẏ) dx− (uyxẋ+ uyy ẏ) dy
ẏ dux − ẋ duy + (uxxẋ+ uxy ẏ) dy − (uyxẋ+ uyy ẏ) dx

)
.

and
Flag Polar equations Characters
E0={0} 〈ϑ〉 s0 = 1
E1=〈v〉 〈ϑ, v dϑ, v Θ〉 s1 = 2

Since we are only interested in finding integral surfaces, we compute the final character
from

s0 + s1 + s2 = dimM − 2.

The Cartan characters are (s0, s1, s2) = (1, 2, 0) with predicted dimension dimM + s1 +
2s2 = 5 + 2 + 2 · 0 = 7: involution. We see that harmonic functions exist near any point
of the plane, with prescribed value and first derivatives at that point.

6. Generality of integral manifolds. The proof of the Cartan–Kähler theorem (which
we will not give) constructs integral manifolds inductively, starting with a point, then
building an integral curve, and so on. The choice of the initial data at each inductive
stage consists of s0 constants, s1 functions of one variable, and so on. Different choices of
this initial data give rise to different integral manifolds in the final stage. In this sense,
the integral manifolds depend on s0 constants, and so on.
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If one describes some family of submanifolds in terms of the integral manifolds of an
exterior differential system, someone else might find a different description of the same
submanifolds in terms of integral manifolds of a different exterior differential system, with
different Cartan characters.

For example, any smooth function y = f(x) of one variable is equivalent information
to having a constant f(0) and a function y′ = f ′(x) of one variable.

For example, immersed plane curves are the integral curves of I = 0 on M = R2.
Check that any integral flag E0 = {0}, E1 = 〈v〉 has (s0, s1) = (0, 1). But immersed plane
curves are also the integral curves of the ideal I generated by

ϑ ..= sinφdx− cosφdy

on M ..= R2
x,y × S1

φ. Here (s0, s1) = (1, 1). The last nonzero character does not change.
In general, we cannot expect all of the Cartan characters to stay the same for different
descriptions of various submanifolds, but we can expect the last nonzero Cartan character
to stay the same.

Lagrangian submanifolds of Cn depend on one function of n variables. This count is
correct: those which are graphs y = y(x) are precisely of the form

y = ∂S

∂x

for some potential function S(x), unique up to adding a real constant. On the other
hand, the proof of the Cartan–Kähler theorem builds up each Lagrangian manifold from
a choice of one function of one variable, one function of two variables, and so on. Similarly,
harmonic functions depend on two functions of one variable. Summing up: we “trust” the
last nonzero Cartan–Kähler sp to tell us the generality of the integral manifolds: they
depend on sp functions of p variables, but we do not “trust” s0, s1, . . . , sp−1.

7. Example: triply orthogonal webs. On a three-dimensional Riemannian mani-
fold X, a triply orthogonal web is a triple of foliations whose leaves are pairwise perpen-
dicular. We will see that these exist, locally, depending on three functions of two variables.
Each leaf is perpendicular to a unique smooth unit length 1-form ηi, up to ±, which sat-
isfies 0 = ηi∧dηi, by the Frobenius theorem. LetM be the set of all orthonormal bases of
the tangent spaces of X, with obvious bundle map x : M → X, so that each point of M
has the form m = (x, e1, e2, e3) for some x ∈ X and orthonormal basis e1, e2, e3 of TxX.
The soldering 1-forms ω1, ω2, ω3 on M are defined by

v ωi = 〈ei, x∗v〉 .

Note: they are 1-forms on M , not on X. Let

ω =

ω1
ω2
ω3

 .

Define cross product α× β on R3-valued 1-forms by

α× β(u, v) = α(u)× β(v)− α(v)× β(u).



EXTERIOR DIFFERENTIAL SYSTEMS 51

Images (a), (b), (c): Daniel Piker, 2015

By the fundamental lemma of Riemannian geometry, there is a unique R3-valued 1-form γ

for which dω = 1
2γ × ω. Our triply orthogonal web is precisely a section X → M of the

bundle map M → X on which 0 = ωi ∧ dωi for all i, hence an integral 3-manifold of the
exterior differential system I on M generated by the 3-forms

ω1 ∧ dω1, ω2 ∧ dω2, ω3 ∧ dω3.

Using the equations above, I is also generated by

γ3 ∧ ω1 ∧ ω2, γ1 ∧ ω2 ∧ ω3, γ2 ∧ ω3 ∧ ω1.

The three-dimensional I-integral manifolds on which

0 6= ω1 ∧ ω2 ∧ ω3

are locally precisely the triply orthogonal webs. The three-dimensional integral elements
on which

0 6= ω1 ∧ ω2 ∧ ω3
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are precisely given by

γ =

 0 p12 p13
p21 0 p23
p31 p32 0

ω

for any pij , hence 6 + 6 = 12 dimensions of integral elements. Since the system is gen-
erated by 3-forms, on any integral flag in this integral element, 0 = s0 = s1. Count out
(s0, s1, s2, s3) = (0, 0, 3, 0), predicting 12 dimensions of integral elements: involution.

We conclude: for any orthonormal basis at a point of any real analytic Riemannian
3-manifold, there are infinitely many real analytic triply orthogonal webs, depending on
three functions of two variables, defined near that point, with the tangent spaces of the
leaves perpendicular to those basis vectors.

8. Example: isometric immersion. Take a surface P with a Riemannian metric.
Naturally we are curious if there is an isometric immersion f : P → R3, i.e. a smooth
map preserving the lengths of all curves on P . For example, these surfaces

are isometric immersions of a piece of this paraboloid

More generally, take a Riemannian manifold P̄ of dimension three. We ask if there is
an isometric immersion f : P → P̄ .

On the orthonormal frame bundle FP , denote the soldering forms as ω = ω1 +iω2. By
the fundamental lemma of Riemannian geometry there is a unique 1-form (the connection
1-form) γ so that dω = iγ∧ω and dγ = (i/2)Kω∧ω̄. As above, on FP̄ there is a soldering
1-form ω̄ and a connection 1-form γ̄ so that dω̄ = 1

2 γ̄ × ω̄. This ensures that

dγ̄ = 1
2 γ̄ × γ̄ + 1

2

(s
2 −R

)
ω̄ × ω̄.

with Ricci curvature Rij = Rji and scalar curvature s = Rii.
If there is an isometric immersion f : P → P̄ , then let X ..= Xf ⊂M ..= FP ×FP̄ be

its adapted frame bundle, i.e. the set of all tuples
(p, e1, e2, p̄, ē1, ē2, ē3)

where p ∈ P with orthonormal frame e1, e2 ∈ TpP and p̄ ∈ P̄ with orthonormal frames
ē1, ē2, ē3 ∈ Tp̄P̄ , so that f∗e1 = ē1 and f∗e2 = ē2. Let I be the exterior differential system
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on M generated by the 1-forms ϑ1
ϑ2
ϑ3

 ..=

ω̄1 − ω1
ω̄2 − ω2
ω̄3

 .

Along X, all of these 1-forms vanish, while the 1-forms ω1, ω2, γ remain linearly indepen-
dent. Conversely, we will eventually prove that all I-integral manifolds on which ω1, ω2, γ

are linearly independent are locally frame bundles of isometric immersions. For the mo-
ment, we concentrate on asking whether we can apply the Cartan–Kähler theorem.

Compute:

d

ϑ1
ϑ2
ϑ3

 = −

 0 γ̄3 − γ 0
− (γ̄3 − γ) 0 0

γ̄2 −γ̄1 0

 ∧
ω1
ω2
γ

 modϑ1, ϑ2, ϑ3.

We count s1 = 2, s2 = 1, s3 = 0. Each three-dimensional integral element has ω̄ = ω,
so is determined by the linear equations giving γ̄1, γ̄2, γ̄3 in terms of ω1, ω2, γ on which
dϑ = 0:  γ̄1

γ̄2
γ̄3 − γ

 =

a b

c −a
0 0

(ω1
ω2

)
.

Therefore there is a three-dimensional space of integral elements at each point. But
s1 + 2s2 = 4 > 3: no integral element correctly predicts dimension, so we cannot apply
the Cartan–Kähler theorem.

What to do? On every integral element, we said that γ̄1
γ̄2

γ̄3 − γ

 =

a b

c −a
0 0

(ω1
ω2

)
.

Make a new manifold M ′ ..= M × R3
a,b,c, and on M ′ let I ′ be the exterior differential

system generated by ϑ4
ϑ5
ϑ6

 ..=

 γ̄1
γ̄2

γ̄3 − γ

−
a b

c −a
0 0

(ω1
ω2

)
.

9. Prolongation. Take an exterior differential system I on a manifoldM . What should
we do if there are no involutive integral elements? Let M ′ be the set of all pairs (m,E)
consisting of a point m of M and an I-integral element E ⊂ TmM . So M ′ is a subset of
the Grassmann bundle over M . Locally on M , take a local basis ω, ϑ, π of the 1-forms,
with ϑ a basis for the 1-forms in I. We can write each integral element on which ω has
linearly independent components as the solutions of the linear equations 0 = ϑ, π = aω

for some constants a. On an open subset of M ′, a is a function valued in some vector
space. Pull back the 1-forms ϑ, ω, π toM ′ via the map (m,E) ∈M ′ 7→ m ∈M . OnM ′, let
ϑ′ ..= π−aω. The exterior differential system I ′ onM ′ generated by ϑ′ is the prolongation
of I. Inductively, let M (1) ..= M ′, I(1) ..= I ′, M (k+1) ..=

(
M (k))′, I(k+1) ..=

(
I(k))′, if

defined.
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Theorem 3 (Cartan–Kuranishi). If eachM (k) is a submanifold of the Grassmann bundle
over M (k−1), with finitely many connected components, and if each M (k) →M (k−1) is a
submersion, then all but finitely many I(k) are involutive.

10. Back to isometric immersion. Returning to our example of isometric immersion
of surfaces, we have prolongation given byϑ4

ϑ5
ϑ6

 ..=

 γ̄1
γ̄2

γ̄3 − γ

−
a b

c −a
0 0

(ω1
ω2

)
.

Note that 0 = dϑ1, dϑ2, dϑ3 modulo ϑ4, ϑ5, ϑ6, so we can forget about them.
Calculate the exterior derivatives:

d

ϑ4
ϑ5
ϑ6

 = −

 Da Db

Dc −Da
0 0

 ∧ (ω1
ω2

)
+

 0
0

tω1 ∧ ω2

 modϑ1, . . . , ϑ6.

where DaDb
Dc

 ..=

da+ (b+ c)γ −R23ω1
db− 2aγ +R13ω1

dc− 2aγ


and the torsion is

t ..= s

4 −R33 −K − a2 − bc.

This torsion clearly has to vanish on any three-dimensional I ′-integral element, i.e. every
three-dimensional I ′-integral element lives over the subset of M ′ on which

0 = s

4 −R33 −K − a2 − bc.

To ensure that this subset is a submanifold, we let M ′0 ⊂ M ′ be the set of points where
this equation is satisfied and at least one of a, b, c is not zero. Clearly M ′0 ⊂ M ′ is
a submanifold, on which we find Da,Db,Dc linearly dependent. On M ′0, every three-
dimensional I ′-integral element on which ω1, ω2, γ are linearly independent has s1 = 2,
s2 = 0 and two dimensions of integral elements at each point. Therefore the exterior
differential system is in involution: there is an integral manifold through each point ofM ′0,
and in particular above every point of the surface. The prolongation exposes the hidden
necessary condition for existence of a solution: the relation t = 0 between the curvature
of the ambient space, that of the surface, and the shape operator.

We will not prove the elementary:

Lemma 1. Every smooth three-dimensional integral manifold X of the linear Pfaffian
system constructed above on which 0 6= ω1 ∧ω2 ∧ γ is locally the adapted frame bundle of
an isometric immersion open ⊂ P → P̄ .

To sum up:

Theorem 4. Take any surface P with real analytic Riemannian metric, with chosen point
p0 ∈ P and Gauss curvature K. Take any 3-manifold P̄ with real analytic Riemannian
metric, with chosen point p̄0, and a linear isometric injection F : Tp0P → Tp̄0 P̄ . Let ν be



EXTERIOR DIFFERENTIAL SYSTEMS 55

a unit normal vector to the image of F . Let R be the Ricci tensor on that 3-manifold and
s the scalar curvature. Pick a nonzero quadratic form q on the tangent plane Tp0P so
that

det q = K +R(ν, ν)− s

4 .

Then there is a real analytic isometric immersion f of some neighborhood of p0 to P̄ , so
that f ′(p0) = F and so that f induces shape operator q at p0.

11. For further information. For proof of the Cartan–Kähler theorem see [2], which
we followed very closely, and also the canonical reference work [1] and the canonical
textbook [6]. The last two also give proof of the Cartan–Kuranishi theorem. For more on
triply orthogonal webs in Euclidean space, and orthogonal webs in Euclidean spaces of
all dimensions, see [3, 4, 7, 8]. For more on isometric immersions and embeddings see [5].
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